1
|
Sirocchi LS, Scharnweber M, Oberndorfer S, Siszler G, Zak KM, Rumpel K, Neumüller RA, Wilding B. Discovery of Carbodiimide Warheads to Selectively and Covalently Target Aspartic Acid in KRAS G12D. J Am Chem Soc 2025; 147:15787-15795. [PMID: 40267480 DOI: 10.1021/jacs.5c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Targeted covalent inhibitors are known to be successful therapeutics used in various indications. Covalent drugs typically target cysteine, as cysteine is well suited due to its high nucleophilicity. However, its low abundance in protein binding sites represents a major limitation. As a result, there is a need to covalently target additional nucleophilic amino acids. Recent literature has reported covalent inhibitors labeling aspartic acid in KRASG12D. However, these compounds also covalently bind to KRASG12C, indicating their cross-reactivity to cysteine along with aspartic acid. We report here carbodiimides as a novel reactive group to selectively target aspartic acid. Covalent inhibitors bearing a carbodiimide moiety are shown to covalently label KRASG12D in biochemical and cellular assays. A high-resolution X-ray crystal structure was obtained, which illustrates the mechanism of the covalent bond formation with KRASG12D. Carbodiimide warheads show selectivity toward KRASG12D over other KRAS alleles and represent a new covalent warhead suitable for covalently binding to aspartic acid in a biochemical and cellular context.
Collapse
Affiliation(s)
- Ludovica S Sirocchi
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Maximilian Scharnweber
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Gabriella Siszler
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Krzysztof M Zak
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| | - Birgit Wilding
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna A-1121, Austria
| |
Collapse
|
2
|
Yang J. Towards site-specific manipulation in cysteine-mediated redox signaling. Chem Sci 2025:d5sc02016f. [PMID: 40321179 PMCID: PMC12046419 DOI: 10.1039/d5sc02016f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Cysteine sulfenic acid (SOH) modifications are pivotal in redox signaling, yet establishing their causal biological roles remains challenging due to methodological limitations. Traditional approaches often lack precision or disrupt non-redox cysteine functions. This perspective highlights two innovative chemical biology strategies to address these challenges: (1) integrating bioorthogonal cleavage chemistry with genetic code expansion for site-specific SOH incorporation in proteins of interest, enabling controlled activation of redox events, and (2) developing redox-targeted covalent inhibitors (TCIs) to selectively block SOH modifications. By bridging technological innovation with mechanistic inquiry, these strategies not only help elucidate SOH-mediated signaling networks for a better understanding of redox biology, but also hold therapeutic promise for precise redox medicine.
Collapse
Affiliation(s)
- Jing Yang
- Guangzhou National Laboratory, Guangzhou International Bio-Island Guangzhou China
- School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing Institute of Lifeomics Beijing China
| |
Collapse
|
3
|
Kaewkham O, Gleeson D, Fukasem P, Santatiwongchai J, Jones DJL, Britton RG, Gleeson MP. Probing the Effect of Protein and Inhibitor Conformational Flexibility on the Reaction of Rocelitinib-Like Covalent Inhibitors of Epidermal Growth Factor Receptor. A Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:3555-3567. [PMID: 40100083 PMCID: PMC12004534 DOI: 10.1021/acs.jcim.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase and a validated target for non-small cell lung cancer (NSCLC). Drug discovery efforts on this target initially focused on traditional competitive, reversible ATP-binding site inhibitors; however, irreversible covalent binding EGFR inhibitors have become increasingly more popular. Covalent EGFR inhibitors have been developed using a range of different scaffolds, and unsurprisingly, the incorporation of an electrophilic acrylamide group can result in sizable orientation differences relative to the Cys797 nucleophile and the Asp800 general base. In this work, we report a QM/MM study aiming to better understand the aspects of covalent adduct formation, including the role of protein flexibility on chemical reactivity, the impact of electrophile location within the ATP binding site, and the impact of the acrylamide conformation (s-cis vs s-trans). We focus here on the diaminopyrimidine scaffold, as exemplified by Rocelitinib, where the electrophile is attached to its back pocket binding group. Our goal is to elucidate how electrophilic groups can be incorporated onto different inhibitor scaffolds targeting reactive active site residues. We find that irrespective of the EGFR MD conformation chosen, acrylamide, in both the s-cis or s-trans, can undergo reaction with rate-determining barriers of ∼20 kcal/mol. Interestingly, the nature of the rate-determining step for Rocelitinib-like inhibitors was found to be either direct nucleophilic attack or keto-enol tautomerization, depending on the precise protein and inhibitor conformation.
Collapse
Affiliation(s)
- Orathai Kaewkham
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Gleeson
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Poowadon Fukasem
- Department
of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jirapat Santatiwongchai
- Department
of Chemistry & Applied Computational Chemistry Research Unit,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Donald J. L. Jones
- Leicester
Cancer Research Centre, University of Leicester, Leicester, LE1 7RH, U.K.
| | - Robert G. Britton
- Leicester
Cancer Research Centre, University of Leicester, Leicester, LE1 7RH, U.K.
| | - M. Paul Gleeson
- Department
of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
4
|
Petri L, Gabizon R, Ferenczy GG, Péczka N, Egyed A, Ábrányi-Balogh P, Takács T, Keserű GM. Size-Dependent Target Engagement of Covalent Probes. J Med Chem 2025; 68:6616-6632. [PMID: 40099438 PMCID: PMC11956015 DOI: 10.1021/acs.jmedchem.5c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Labeling proteins with covalent ligands is finding increasing use in proteomics applications, including identifying nucleophilic residues amenable for labeling and in the development of targeted covalent inhibitors (TCIs). Labeling efficiency is measured by the covalent occupancy of the target or by biochemical activity. Here, we investigate how these observed quantities relate to the intrinsic parameters of complex formation, namely, noncovalent affinity and covalent reactivity, and to experimental conditions, including incubation time and ligand concentration. It is shown that target engagement is beneficially driven by noncovalent recognition for lead-like compounds, which are appropriate starting points for targeted covalent inhibitors owing to their easily detectable occupancy and fixed binding mode, facilitating optimization. In contrast, labeling by fragment-sized compounds is inevitably reactivity-driven as their small size limits noncovalent affinity. They are well-suited for exploring ligandable nucleophilic residues, while small fragments are less appropriate starting points for TCI development.
Collapse
Affiliation(s)
- László Petri
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Ronen Gabizon
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Helen and Milton A. Kimmelman bldg, Rehovot 76100, Israel
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Nikolett Péczka
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| | - Attila Egyed
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Tamás Takács
- HUN-REN
Research Centre for Natural Sciences, Signal
Transduction and Functional Genomics Research Group, 2 Magyar tudósok krt, Budapest 1117, Hungary
- Doctoral
School of Biology, Institute of Biology,
ELTE Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| |
Collapse
|
5
|
Wang S, Woods EC, Jo J, Zhu J, Hansel-Harris A, Holcomb M, Llanos M, Pedowitz NJ, Upadhyay T, Bennett J, Fellner M, Park KW, Zhang A, Valdez TA, Forli S, Chan AI, Cunningham CN, Bogyo M. An mRNA Display Approach for Covalent Targeting of a Staphylococcus aureus Virulence Factor. J Am Chem Soc 2025; 147:8312-8325. [PMID: 40013487 PMCID: PMC12118155 DOI: 10.1021/jacs.4c15713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic human pathogen that causes over one million deaths around the world each year. We recently identified a family of serine hydrolases termed fluorophosphonate binding hydrolases (Fphs) that play important roles in lipid metabolism and colonization of a host. Because many of these enzymes are only expressed in Staphylococcus bacteria, they are valuable targets for diagnostics and therapeutics. Here, we developed and screened highly diverse cyclic peptide libraries using mRNA display with a genetically encoded oxadiazolone (Ox) electrophile that was previously shown to potently and covalently inhibit multiple Fph enzymes. By performing multiple rounds of counter selections with WT and catalytic dead FphB, we were able to tune the selectivity of the resulting selected cyclic peptides containing the Ox residue toward the active site serine. From our mRNA display hits, we developed potent and selective fluorescent probes that label the active site of FphB at single digit nanomolar concentrations in live S. aureus bacteria. Taken together, this work demonstrates the potential of using direct genetically encoded electrophiles for mRNA display of covalent binding ligands and identifies potent new probes for FphB that have the potential to be used for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jiyun Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Manuel Llanos
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - John Bennett
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ki Wan Park
- Department of Otolaryngology−Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anna Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A. Valdez
- Department of Otolaryngology−Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Alix I Chan
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
6
|
Imam IA, Al Adawi S, Liu X, Ellingson S, Brainson CF, Moseley HNB, Zinner R, Zhang S, Shao Q. L858R/L718Q and L858R/L792H Mutations of EGFR Inducing Resistance Against Osimertinib by Forming Additional Hydrogen Bonds. Proteins 2025; 93:673-683. [PMID: 39494831 PMCID: PMC12036761 DOI: 10.1002/prot.26761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.
Collapse
Affiliation(s)
- Ibrahim A. Imam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Shatha Al Adawi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sally Ellingson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- College of Medicine, Division of Biomedical Informatics University of Kentucky, Lexington, Kentucky, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hunter N. B. Moseley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ralph Zinner
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Shulin Zhang
- College of Medicine, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2025; 45:629-653. [PMID: 39287197 PMCID: PMC11796325 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Philip E. Bourne
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Uguen M, Shell DJ, Silva M, Deng Y, Li F, Szewczyk MM, Yang K, Zhao Y, Stashko MA, Norris-Drouin JL, Waybright JM, Beldar S, Rectenwald JM, Mordant AL, Webb TS, Herring LE, Arrowsmith CH, Ackloo S, Gygi SP, McGinty RK, Barsyte-Lovejoy D, Liu P, Halabelian L, James LI, Pearce KH, Frye SV. Potent and selective SETDB1 covalent negative allosteric modulator reduces methyltransferase activity in cells. Nat Commun 2025; 16:1905. [PMID: 39994194 PMCID: PMC11850789 DOI: 10.1038/s41467-025-57005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
A promising drug target, SETDB1, is a dual methyl-lysine (Kme) reader and methyltransferase implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identify a low micromolar potency small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization leads to the discovery of UNC10013, a covalent 3TD ligand targeting Cys385 of SETDB1. UNC10013 is potent with a kinact/KI of 1.0 × 106 M-1s-1 and demonstrates proteome-wide selectivity. In cells, negative allosteric modulation of SETDB1-mediated Akt methylation occurs after treatment with UNC10013. Therefore, UNC10013 is a potent, selective, and cell-active covalent ligand for the 3TD of SETDB1, demonstrating negative allosteric modulator properties and making it a promising tool to study the biological role of SETDB1 in disease progression.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Yu Deng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yani Zhao
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Stashko
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jarod M Waybright
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Design Therapeutics, Carlsbad, CA, USA
| | | | - Justin M Rectenwald
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas S Webb
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Robert K McGinty
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Silalai P, Teeyakasem P, Pruksakorn D, Saeeng R. Design and Synthesis of Mycophenolic Acid Analogues for Osteosarcoma Cancer Treatment. ACS BIO & MED CHEM AU 2025; 5:106-118. [PMID: 39990949 PMCID: PMC11843339 DOI: 10.1021/acsbiomedchemau.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 02/25/2025]
Abstract
Mycophenolic acid (MPA), a natural compound, was modified to new MPA analogues via the classical method of silylation and esterification. Their cytotoxicity was evaluated in vitro on four osteosarcoma cancer cell lines (MNNG/HOS, U2OS, 143B, and SaOS-2) and human normal cells (hFOB 1.19). The most potent silicon-containing compound 2d (R1 = TPS, R2 = H) exhibited good cytotoxic activity against all osteosarcoma cancer cell lines with IC50 values ranging from 0.64 to 2.27 μM and showing low cytotoxicity against normal cells. Further investigations revealed that compound 2d (R1 = TPS, R2 = H) displayed significant inhibition of IMPDH2 with K i app 1.8 μM. Furthermore, molecular modeling studies were performed to investigate the binding affinity of 2d (R1 = TPS, R2 = H) which can effectively bind to critical amino acids of three proteins (vascular endothelial growth factor receptor 2; VEGFR-2, cyclin-dependent kinase 2; CDK2, inosine-5'-monophosphate dehydrogenase; IMPDH) involved in cancer therapy. This finding suggests that triphenylsilyl-MPA (TPS-MPA) analogue could serve as a promising starting point for developing new anticancer drugs for osteosarcoma.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Orthopedics, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Rungnapha Saeeng
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
10
|
Milgram BC, Borrelli DR, Brooijmans N, Henderson JA, Hilbert BJ, Huff MR, Ito T, Jackson EL, Jonsson P, Ladd B, O’Hearn EL, Pagliarini RA, Roberts SA, Ronseaux S, Stuart DD, Wang W, Guzman-Perez A. Discovery of STX-721, a Covalent, Potent, and Highly Mutant-Selective EGFR/HER2 Exon20 Insertion Inhibitor for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2025; 68:2403-2421. [PMID: 39824516 PMCID: PMC11831596 DOI: 10.1021/acs.jmedchem.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
After L858R and ex19del epidermal growth factor receptor (EGFR) mutations, ex20ins mutations are the third most common class of driver-mutations in non-small cell lung cancer (NSCLC). Unfortunately, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) are generally ineffective for ex20ins patients due to insufficient mutant activity and selectivity over wild-type EGFR, leading to dose-limiting toxicities. While significant advances in recent years have been made toward identifying potent EGFR ex20ins mutant inhibitors, mutant vs wild-type EGFR selectivity remains a significant challenge. STX-721 (53) is a potent, irreversible inhibitor of the majority of EGFR/HER2 ex20ins mutants and demonstrates excellent mutant vs wild-type selectivity both in vitro and in vivo. STX-721 is currently in phase 1/2 clinical trials for EGFR/HER2 ex20ins-driven NSCLC.
Collapse
Affiliation(s)
- Benjamin C. Milgram
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Deanna R. Borrelli
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Natasja Brooijmans
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Jack A. Henderson
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Brendan J. Hilbert
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Michael R. Huff
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Takahiro Ito
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Erica L. Jackson
- Scorpion
Therapeutics, South San Francisco, California 94080, United States
| | - Philip Jonsson
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Brendon Ladd
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Erin L. O’Hearn
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Raymond A. Pagliarini
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Simon A. Roberts
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Sébastien Ronseaux
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Darrin D. Stuart
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Weixue Wang
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Angel Guzman-Perez
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| |
Collapse
|
11
|
Zhao Z, Bourne PE. Exploring Extended Warheads toward Developing Cysteine-Targeted Covalent Kinase Inhibitors. J Chem Inf Model 2024; 64:9517-9527. [PMID: 39656065 DOI: 10.1021/acs.jcim.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In designing covalent kinase inhibitors (CKIs), the inclusion of electrophiles as attacking warheads demands careful choreography, ensuring not only their presence on the scaffold moiety but also their precise interaction with nucleophiles in the binding sites. Given the limited number of known electrophiles, exploring adjacent chemical space to broaden the palette of available electrophiles capable of covalent inhibition is desirable. Here, we systematically analyze the characteristics of warheads and the corresponding adjacent fragments for use in CKI design. We first collect all the released cysteine-targeted CKIs from multiple databases and create one CKI data set containing 16,961 kinase-inhibitor data points from 12,381 unique CKIs covering 146 kinases with accessible cysteines in their binding pockets. Then, we analyze this data set, focusing on the extended warheads (i.e., warheads + adjacent fragments)─including 30 common warheads and 1344 unique adjacent fragments. In so doing, we provide structural insights and delineate chemical properties and patterns in these extended warheads. Notably, we highlight the popular patterns observed within reversible CKIs for the popular warheads cyanoacrylamide and aldehyde. This study provides medicinal chemists with novel insights into extended warheads and a comprehensive source of adjacent fragments, thus guiding the design, synthesis, and optimization of CKIs.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
13
|
Wang S, Woods EC, Jo J, Zhu J, Hansel-Harris A, Holcomb M, Pedowitz NJ, Upadhyay T, Bennett J, Fellner M, Park KW, Zhang A, Valdez TA, Forli S, Chan AI, Cunningham CN, Bogyo M. An mRNA Display Approach for Covalent Targeting of a Staphylococcus aureus Virulence Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622387. [PMID: 39574702 PMCID: PMC11581011 DOI: 10.1101/2024.11.06.622387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic human pathogen that causes over one million deaths around the world each year. We recently identified a family of serine hydrolases termed fluorophosphonate binding hydrolases (Fphs) that play important roles in lipid metabolism and colonization of a host. Because many of these enzymes are only expressed in Staphylococcus bacteria, they are valuable targets for diagnostics and therapeutics. Here we developed and screened highly diverse cyclic peptide libraries using mRNA display with a genetically encoded oxadiazolone (Ox) electrophile that was previously shown to potently and covalently inhibit multiple Fph enzymes. By performing multiple rounds of counter selections with WT and catalytic dead FphB, we were able to tune the selectivity of the resulting selected cyclic peptides containing the Ox residue towards the desired target. From our mRNA display hits, we developed potent and selective fluorescent probes that label the active site of FphB at single digit nanomolar concentrations in live S. aureus bacteria. Taken together, this work demonstrates the potential of using direct genetically encoded electrophiles for mRNA display of covalent binding ligands and identifies potent new probes for FphB that have the potential to be used for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jiyun Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - John Bennett
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anna Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, United States
| | - Alix I Chan
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
14
|
Sánchez-Fernández R, Sandá-Ares M, Lamas N, Cuesta T, Martínez JL, Fernandez-Trillo P, Pazos E. Luminescent Ln(III)-Metallopeptide Sensors for Monitoring Pseudomonas aeruginosa Elastase B Activity in Complex Biological Media. ACS Sens 2024; 9:5052-5057. [PMID: 39241167 PMCID: PMC11519908 DOI: 10.1021/acssensors.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/08/2024]
Abstract
The detection and monitoring of Pseudomonas aeruginosa and its virulence factors, such as the LasB protease, are crucial for managing bacterial infections. Traditional fluorescent sensors for this protease face limitations in bacterial cultures due to interference from pigments like pyoverdine secreted by this opportunistic pathogen. We report here a Ln(III)-metallopeptide that combines a DO3A-Ln(III) complex and a sensitizing unit via a short peptide sequence as a simple, tunable, and selective probe for detecting P. aeruginosa's LasB. The probe's luminescence switches off in the presence of P. aeruginosa's secretome due to LasB cleavage but remains stable in other bacterial environments, such as non-LasB-secreting P. aeruginosa strains or E. coli cultures. It also resists degradation by other proteases, like human leukocyte elastase and trypsin, and remains stable in the presence of bioanalytes related to P. aeruginosa infections, such as glutathione, H2O2, and pyocyanin, and in complex media like FBS. Importantly, time-gated experiments completely remove the background fluorescence of P. aeruginosa pigments, thus demonstrating the potential of the developed Ln(III)-metallopeptide for real-time monitoring of LasB activity in bacterial cultures.
Collapse
Affiliation(s)
- Rosalía Sánchez-Fernández
- CICA−Centro
Interdisciplinar de Química e Bioloxía and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña. Campus de Elviña, 15071 A Coruña, Spain
| | - Martín Sandá-Ares
- CICA−Centro
Interdisciplinar de Química e Bioloxía and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña. Campus de Elviña, 15071 A Coruña, Spain
| | - Nerea Lamas
- CICA−Centro
Interdisciplinar de Química e Bioloxía and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña. Campus de Elviña, 15071 A Coruña, Spain
| | - Trinidad Cuesta
- Centro
Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | | | - Paco Fernandez-Trillo
- CICA−Centro
Interdisciplinar de Química e Bioloxía and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña. Campus de Elviña, 15071 A Coruña, Spain
| | - Elena Pazos
- CICA−Centro
Interdisciplinar de Química e Bioloxía and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña. Campus de Elviña, 15071 A Coruña, Spain
| |
Collapse
|
15
|
Uguen M, Shell DJ, Silva M, Deng Y, Li F, Szewczyk MM, Yang K, Zhao Y, Stashko MA, Norris-Drouin JL, Waybright JM, Beldar S, Rectenwald JM, Mordant AL, Webb TS, Herring LE, Arrowsmith CH, Ackloo S, Gygi SP, McGinty RK, Barsyte-Lovejoy D, Liu P, Halabelian L, James LI, Pearce KH, Frye SV. Potent and Selective SETDB1 Covalent Negative Allosteric Modulator Reduces Methyltransferase Activity in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615363. [PMID: 39386588 PMCID: PMC11463403 DOI: 10.1101/2024.09.27.615363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A promising drug target, SETDB1, is a dual Kme reader and methyltransferase, which has been implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identified a low micromolar small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization led to the discovery of UNC10013, the first covalent 3TD ligand targeting Cys385 of SETDB1. UNC10013 is potent with a k inact /K I of 1.0 x 10 6 M -1 s -1 and demonstrated proteome-wide selectivity. In cells, negative allosteric modulation of SETDB1-mediated Akt methylation was observed after treatment with UNC10013. Therefore, UNC10013 is a potent, selective and cell-active covalent ligand for the 3TD of SETDB1, demonstrating negative allosteric modulator properties and making it a promising tool to study the biological role of SETDB1 in disease progression.
Collapse
|
16
|
Heppner DE, Ogboo BC, Urul DA, May EW, Schaefer EM, Murkin AS, Gehringer M. Demystifying Functional Parameters for Irreversible Enzyme Inhibitors. J Med Chem 2024; 67:14693-14696. [PMID: 39115869 PMCID: PMC12057623 DOI: 10.1021/acs.jmedchem.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- David E Heppner
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Blessing C Ogboo
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Daniel A Urul
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Erik M Schaefer
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Andrew S Murkin
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Matthias Gehringer
- Division of Medicinal Chemistry, Institute of Biomedical Engineering, University Hospital Tübingen and Institute of Pharmaceutical Sciences, University of Tübingen. 72076 Tübingen, Germany
| |
Collapse
|
17
|
Zhang J, Lim SM, Yu MR, Chen C, Wang J, Wang W, Rui H, Lu J, Lu S, Mok T, Chen ZJ, Cho BC. D3S-001, a KRAS G12C Inhibitor with Rapid Target Engagement Kinetics, Overcomes Nucleotide Cycling, and Demonstrates Robust Preclinical and Clinical Activities. Cancer Discov 2024; 14:1675-1698. [PMID: 38717075 PMCID: PMC11372373 DOI: 10.1158/2159-8290.cd-24-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 09/05/2024]
Abstract
First-generation KRAS G12C inhibitors, such as sotorasib and adagrasib, are limited by the depth and duration of clinical responses. One potential explanation for their modest clinical activity is the dynamic "cycling" of KRAS between its guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states, raising controversy about whether targeting the GDP-bound form can fully block this oncogenic driver. We herein report that D3S-001, a next-generation GDP-bound G12C inhibitor with faster target engagement (TE) kinetics, depletes cellular active KRAS G12C at nanomolar concentrations. In the presence of growth factors, such as epithelial growth factor and hepatocyte growth factor, the ability of sotorasib and adagrasib to inhibit KRAS was compromised whereas the TE kinetics of D3S-001 was nearly unaffected, a unique feature differentiating D3S-001 from other GDP-bound G12C inhibitors. Furthermore, the high covalent potency and cellular TE efficiency of D3S-001 contributed to robust antitumor activity preclinically and translated into promising clinical efficacy in an ongoing phase 1 trial (NCT05410145). Significance: The kinetic study presented in this work unveils, for the first time, that a GDP-bound conformation-selective KRAS G12C inhibitor can potentially deplete cellular active KRAS in the presence of growth factors and offers new insights into the critical features that drive preclinical and clinical efficacy for this class of drugs.
Collapse
Affiliation(s)
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Ra Yu
- Yonsei New II Han Institute for Integrative Lung Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tony Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, China
| | | | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Davison JR, Hadjithomas M, Romeril SP, Choi YJ, Bentley KW, Biggins JB, Chacko N, Castaldi MP, Chan LK, Cumming JN, Downes TD, Eisenhauer EL, Fei F, Fontaine BM, Endalur Gopinarayanan V, Gurnani S, Hecht A, Hosford CJ, Ibrahim A, Jagels A, Joubran C, Kim JN, Lisher JP, Liu DD, Lyles JT, Mannara MN, Murray GJ, Musial E, Niu M, Olivares-Amaya R, Percuoco M, Saalau S, Sharpe K, Sheahan AV, Thevakumaran N, Thompson JE, Thompson DA, Wiest A, Wyka SA, Yano J, Verdine GL. Genomic Discovery and Structure-Activity Exploration of a Novel Family of Enzyme-Activated Covalent Cyclin-Dependent Kinase Inhibitors. J Med Chem 2024; 67:13147-13173. [PMID: 39078366 PMCID: PMC11320645 DOI: 10.1021/acs.jmedchem.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.
Collapse
Affiliation(s)
- Jack R. Davison
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michalis Hadjithomas
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stuart P. Romeril
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yoon Jong Choi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Keith W. Bentley
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John B. Biggins
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nadia Chacko
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - M. Paola Castaldi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lawrence K. Chan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jared N. Cumming
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Thomas D. Downes
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric L. Eisenhauer
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Fan Fei
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Benjamin M. Fontaine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | | | - Srishti Gurnani
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Audrey Hecht
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher J. Hosford
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ashraf Ibrahim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Annika Jagels
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Camil Joubran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ji-Nu Kim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John P. Lisher
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Daniel D. Liu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James T. Lyles
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Matteo N. Mannara
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gordon J. Murray
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Emilia Musial
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mengyao Niu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Roberto Olivares-Amaya
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Marielle Percuoco
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Susanne Saalau
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kristen Sharpe
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Anjali V. Sheahan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Neroshan Thevakumaran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James E. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Dawn A. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aric Wiest
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stephen A. Wyka
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jason Yano
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gregory L. Verdine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
- Departments
of Chemistry and Chemical Biology, and Stem Cell and Regenerative
Biology, Harvard University and Harvard
Medical School, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
20
|
Ma S, Patel H, Peeples CA, Shen J. QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution. J Chem Theory Comput 2024; 20:5528-5538. [PMID: 38877999 DOI: 10.1021/acs.jctc.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Acrylamides are the most commonly used warheads of targeted covalent inhibitors (TCIs) directed at cysteines; however, the reaction mechanisms of acrylamides in proteins remain controversial, particularly for those involving protonated or unreactive cysteines. Using the combined semiempirical quantum mechanics (QM)/molecular mechanics (MM) free energy simulations, we investigated the reaction between afatinib, the first TCI drug for cancer treatment, and Cys797 in the EGFR kinase. Afatinib contains a β-dimethylaminomethyl (β-DMAM) substitution which has been shown to enhance the intrinsic reactivity and potency against EGFR for related inhibitors. Two hypothesized reaction mechanisms were tested. Our data suggest that Cys797 becomes deprotonated in the presence of afatinib, and the reaction proceeds via a classical Michael addition mechanism, with Asp800 stabilizing the ion-pair reactant state β-DMAM+/C797- and the transition state of the nucleophilic attack. Our work elucidates an important structure-activity relationship of acrylamides in proteins.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Heeral Patel
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
21
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
22
|
Ma S, Patel H, Peeples CA, Shen J. QM/MM simulations of EFGR with afatinib reveal the role of the β-dimethylaminomethyl substitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.18.580887. [PMID: 38766221 PMCID: PMC11100610 DOI: 10.1101/2024.02.18.580887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acrylamides are the most commonly used warheads of targeted covalent inhibitors (TCIs) directed at cysteines; however, the reaction mechanisms of acrylamides in proteins remain controversial, particularly for those involving protonated or unreactive cysteines. Using the combined semiempirical quantum mechanics (QM)/molecular mechanics (MM) free energy simulations, we investigated the reaction between afatinib, the first TCI drug for cancer treatment, and Cys797 in the EGFR kinase. Afatinib contains a β-dimethylaminomethyl (β-DMAM) substitution which has been shown to enhance the intrinsic reactivity and potency against EGFR for related inhibitors. Two hypothesized reaction mechanisms were tested. Our data suggest that Cys797 becomes deprotonated in the presence of afatinib and the reaction proceeds via a classical Michael addition mechanism, with Asp800 stabilizing the ion-pair reactant state β-DMAM+/C797- and the transition state of the nucleophilic attack. Our work elucidates an important structure-activity relationship of acrylamides in proteins.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, MD 21252
| | - Heeral Patel
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, MD 21252
| | - Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| |
Collapse
|
23
|
Schwarz M, Kurkunov M, Wittlinger F, Rudalska R, Wang G, Schwalm MP, Rasch A, Wagner B, Laufer SA, Knapp S, Dauch D, Gehringer M. Development of Highly Potent and Selective Covalent FGFR4 Inhibitors Based on S NAr Electrophiles. J Med Chem 2024; 67:6549-6569. [PMID: 38604131 DOI: 10.1021/acs.jmedchem.3c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.
Collapse
Affiliation(s)
- Moritz Schwarz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Maksym Kurkunov
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Florian Wittlinger
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ramona Rudalska
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Guiqun Wang
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Martin Peter Schwalm
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Benedikt Wagner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Stefan Knapp
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Daniel Dauch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
25
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
26
|
Lenchner DS, Petrova ZO, Hunihan L, Ashtekar KD, Walther Z, Wilson FH. A destabilizing Y891D mutation in activated EGFR impairs sensitivity to kinase inhibition. NPJ Precis Oncol 2024; 8:3. [PMID: 38182677 PMCID: PMC10770066 DOI: 10.1038/s41698-023-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) have transformed the treatment of EGFR-mutated non-small cell lung carcinoma (NSCLC); however, therapeutic resistance remains a clinical challenge. Acquired secondary EGFR mutations that increase ATP affinity and/or impair inhibitor binding are well-described mediators of resistance. Here we identify a de novo EGFR Y891D secondary alteration in a NSCLC with EGFR L858R. Acquired EGFR Y891D alterations were previously reported in association with resistance to first generation EGFR TKIs. Functional studies in Ba/F3 cells demonstrate reduced TKI sensitivity of EGFR L858R + Y891D, with the greatest reduction observed for first and second generation TKIs. Unlike other EGFR mutations associated with TKI resistance, Y891D does not significantly alter ATP affinity or promote steric hindrance to inhibitor binding. Our data suggest that the Y891D mutation destabilizes EGFR L858R, potentially generating a population of misfolded receptor with preserved signaling capacity but reduced sensitivity to EGFR inhibitors. These findings raise the possibility of protein misfolding as a mechanism of resistance to EGFR inhibition in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daniel S Lenchner
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Lisa Hunihan
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Frederick H Wilson
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Qu Z, Krabill AD, Zhang ZY. High-Throughput Discovery and Characterization of Covalent Inhibitors for Protein Tyrosine Phosphatases. Methods Mol Biol 2024; 2743:301-316. [PMID: 38147223 DOI: 10.1007/978-1-0716-3569-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Covalent inhibition has gained increasing interest in targeting the undruggable protein tyrosine phosphatases (PTPs). However, a systematic method for discovering and characterizing covalent PTP inhibitors has yet to be established. Here, we describe a workflow involving high-throughput screening of covalent fragment libraries and a novel biochemical assay that enables the acquisition of kinetics parameters of PTP inhibition by covalent inhibitors with higher throughput.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
28
|
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023; 127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Covalent drug discovery has been a challenging research area given the struggle of finding a sweet balance between selectivity and reactivity for these drugs, the lack of which often leads to off-target activities and hence undesirable side effects. However, there has been a resurgence in covalent drug design following the success of several covalent drugs such as boceprevir (2011), ibrutinib (2013), neratinib (2017), dacomitinib (2018), zanubrutinib (2019), and many others. Design of covalent drugs includes many crucial factors, where "evaluation of the binding affinity" and "a detailed mechanistic understanding on covalent inhibition" are at the top of the list. Well-defined experimental techniques are available to elucidate these factors; however, often they are expensive and/or time-consuming and hence not suitable for high throughput screens. Recent developments in in silico methods provide promise in this direction. In this report, we review a set of recent publications that focused on developing and/or implementing novel in silico techniques in "Computational Covalent Drug Discovery (CCDD)". We also discuss the advantages and disadvantages of these approaches along with what improvements are required to make it a great tool in medicinal chemistry in the near future.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
29
|
Davoine C, Traina A, Evrard J, Lanners S, Fillet M, Pochet L. Coumarins as factor XIIa inhibitors: Potency and selectivity improvements using a fragment-based strategy. Eur J Med Chem 2023; 259:115636. [PMID: 37478556 DOI: 10.1016/j.ejmech.2023.115636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Previously, we described weak coumarin inhibitors of factor XIIa, a promising target for artificial surface-induced thrombosis and various inflammatory diseases. In this work, we used fragment-based drug discovery approach to improve our coumarin series. First, we screened about 200 fragments for the S1 pocket. The S1 pocket of trypsin-like serine proteases, such as factor XIIa, is highly conserved and is known to drive a major part of the association energy. From the screening, we selected fragments displaying a micromolar activity and studied their selectivity on other serine proteases. Then, these fragments were merged to our coumarin templates, leading to the generation of nanomolar inhibitors. The mechanism of inhibition was further studied by mass spectrometry demonstrating the covalent binding through the formation of an acyl enzyme complex. The most potent compound was tested in plasma to evaluate its stability and efficacy on coagulation assays. It exhibited a plasmatic half-life of 1.9 h and a good selectivity for the intrinsic coagulation pathway over the extrinsic one.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Amandine Traina
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jonathan Evrard
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Steve Lanners
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
30
|
Hartung IV, Rudolph J, Mader MM, Mulder MPC, Workman P. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. J Med Chem 2023; 66:9297-9312. [PMID: 37403870 PMCID: PMC10388296 DOI: 10.1021/acs.jmedchem.3c00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 07/06/2023]
Abstract
Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.
Collapse
Affiliation(s)
- Ingo V. Hartung
- Medicinal
Chemistry, Global Research & Development, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Joachim Rudolph
- Discovery
Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Mary M. Mader
- Molecular
Innovation, Indiana Biosciences Research
Institute, Indianapolis, Indiana 64202, United States
| | - Monique P. C. Mulder
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Workman
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London, Sutton SM2 5NG, United Kingdom
- Chemical
Probes Portal, https://www.chemicalprobes.org/
| |
Collapse
|
31
|
Parker MJ, Lee H, Yao S, Irwin S, Hwang S, Belanger K, de Mare SW, Surgenor R, Yan L, Gee P, Morla S, Puyang X, Hsiao P, Zeng H, Zhu P, Korpal M, Dransfield P, Bolduc DM, Larsen NA. Identification of 2-Sulfonyl/Sulfonamide Pyrimidines as Covalent Inhibitors of WRN Using a Multiplexed High-Throughput Screening Assay. Biochemistry 2023; 62:2147-2160. [PMID: 37403936 PMCID: PMC10358344 DOI: 10.1021/acs.biochem.2c00599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Indexed: 07/06/2023]
Abstract
Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 ∼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.
Collapse
Affiliation(s)
- Mackenzie J. Parker
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hyelee Lee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shihua Yao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sean Irwin
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sunil Hwang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Kylie Belanger
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sofia Woo de Mare
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Richard Surgenor
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Lu Yan
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Patricia Gee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shravan Morla
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Xiaoling Puyang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Peng Hsiao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hao Zeng
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Ping Zhu
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Manav Korpal
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Paul Dransfield
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - David M. Bolduc
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Nicholas A. Larsen
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Högnäsbacka A, Poot AJ, Kooijman E, Schuit RC, Schreurs M, Verlaan M, van den Hoek J, Heideman DAM, Beaino W, van Dongen GAMS, Vugts DJ, Windhorst AD. Synthesis and preclinical evaluation of two osimertinib isotopologues labeled with carbon-11 as PET tracers targeting the tyrosine kinase domain of the epidermal growth factor receptor. Nucl Med Biol 2023; 120-121:108349. [PMID: 37209556 DOI: 10.1016/j.nucmedbio.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) that is able to inhibit the EGFR treatment resistance mutation T790M and primary EGFR mutations Del19 and L858R. The aim of the study was to evaluate the potential of carbon-11 labeled osimertinib to be used as a tracer for the PET imaging of tumors bearing the T790M mutation. METHODS Osimertinib was labeled with carbon-11 at two positions, and the effect of the labeling position on the metabolism and biodistribution was studied in female nu/nu mice. The mutation status specificity of osimertinib was confirmed in vitro in a cell growth inhibition experiment, and the tumor-targeting potential of the carbon-11 isotopologues was evaluated using female nu/nu mice xenografted with NSCLC cell lines; the wild-type EGFR expressing A549, the primary Del19 EGFR mutated HCC827 and the resistance T790M/L858R mutated H1975. One of the osimertinib tracers was selected based on the results acquired and evaluated for tracer specificity and selectivity by assessment of tumor uptake in a PET study where HCC827 tumor-bearing mice were pretreated with osimertinib or afatinib. RESULTS [Methylindole-11C]- and [dimethylamine-11C]osimertinib were synthesized by 11C-methylation of precursors AZ5104 and AZ7550, respectively. Rapid metabolism of both analogs of [11C]osimertinib was observed. Although the tumor uptake and retention of [methylindole-11C]- and [dimethylamine-11C]osimertinib in tumors were similar, the tumor-to-muscle ratios appeared to be higher for [methylindole-11C]osimertinib. The highest uptake, tumor-to-blood, and tumor-to-muscle ratio were observed in the Del19 EGFR mutated HCC827 tumors. However, the specificity and selectivity of [methylindole-11C]osimertinib PET could not be demonstrated in HCC827 tumors. The uptake of [methylindole-11C]osimertinib was not significantly higher in T790M resistance mutated H1975 xenografts compared to the negative control cell line A549. CONCLUSIONS Osimertinib was successfully labeled at two positions with carbon-11, yielding two EGFR PET tracers, [methylindole-11C]osimertinib and [dimethylamine-11C]osimertinib. The preclinical evaluation demonstrated uptake and retention in three NSCLC xenografts; A549, HCC827, and H1975. The highest uptake was observed in the primary Del19 EGFR mutated HCC827. The ability of [methylindole-11C]osimertinib to distinguish between the T790M resistance mutated H1975 xenografts and the wild-type EGFR expressing A549 could not be confirmed in the ex vivo study.
Collapse
Affiliation(s)
- Antonia Högnäsbacka
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| | - Alex J Poot
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Esther Kooijman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Robert C Schuit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Maxime Schreurs
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Mariska Verlaan
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Johan van den Hoek
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniëlle A M Heideman
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Pathology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
34
|
Zhang M, Liu Y, Jang H, Nussinov R. Strategy toward Kinase-Selective Drug Discovery. J Chem Theory Comput 2023; 19:1615-1628. [PMID: 36815703 PMCID: PMC10018734 DOI: 10.1021/acs.jctc.2c01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Kinase drug selectivity is the ground challenge in cancer research. Due to the structurally similar kinase drug pockets, off-target inhibitor toxicity has been a major cause for clinical trial failures. The pockets are similar but not identical. Here, we describe a transformation invariant protocol to identify distinct geometric features in the drug pocket that can distinguish one kinase from all others. We integrate available experimental structures with the artificial intelligence-based structural kinome, performing a kinome-wide structural bioinformatic analysis to establish the structural principles of kinase drug selectivity. We generate the structural landscape from the experimental kinase-ligand complexes and propose a binary network that encapsulates the information. The results show that all kinases contain binary units that are shared by less than seven other kinases in the kinome. 331 kinases contain unique binary units that may distinguish them from all others. The structural features encoded by these binary units in the network represent the inhibitor-accessible geometric space that may capture the kinome-wide selectivity. Our proposed binary network with the unsupervised clustering can serve as a general structural bioinformatic protocol for extracting the distinguishing structural features for any protein from their families. We apply the binary network to epidermal growth factor receptor tyrosine kinase inhibitor selectivity by targeting the gate area and the AKT1 serine/threonine kinase selectivity by binding to the αC-helix region and the allosteric pocket. Finally, we develop the cross-platform software, KDS (Kinase Drug Selectivity), for customized visualization and analysis of the binary networks in the human kinome (https://github.com/CBIIT/KDS).
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
35
|
Maz TG, Caliskan HB, Capan I, Caliskan B, Özçelik B, Banoglu E. Design, Synthesis and Evaluation of Aryl‐Tailored Oxadiazole‐thiones as New Urease Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tugce Gur Maz
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| | - H. Burak Caliskan
- Faculty of Engineering Department of Biomedical Engineering TOBB ETU Economy and Technology University 06560 Ankara Turkey
| | - Irfan Capan
- Technical Science Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara Turkey
| | - Burcu Caliskan
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| | - Berrin Özçelik
- Faculty of Pharmacy Department of Pharmaceutical Microbiology Gazi University 06560 Ankara Turkey
| | - Erden Banoglu
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| |
Collapse
|
36
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
37
|
Yu W, Zhao Y, Ye H, Wu N, Liao Y, Chen N, Li Z, Wan N, Hao H, Yan H, Xiao Y, Lai M. Structure-Based Design of a Dual-Targeted Covalent Inhibitor Against Papain-like and Main Proteases of SARS-CoV-2. J Med Chem 2022; 65:16252-16267. [PMID: 36503248 PMCID: PMC9762420 DOI: 10.1021/acs.jmedchem.2c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/15/2022]
Abstract
The two proteases, PLpro and Mpro, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PLpro and Mpro of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme. The maximum rate of the covalent inactivation is comparable to that of the most potent inhibitors reported for the viral proteases and covalent inhibitor drugs currently in clinical use. The covalent inhibition appears to be very specific for the viral proteases. The inhibitor has a potent antiviral activity against SARS-CoV-2 and is also well tolerated by mice and rats in toxicity studies. These results suggest that the inhibitor is a promising lead for development of drugs for treatment of COVID-19.
Collapse
Affiliation(s)
- Wenying Yu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Yucheng Zhao
- Department
of Resources Science of Traditional Chinese Medicines and State Key
Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Hui Ye
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Nanping Wu
- State
Key Laboratory for Diagnosis and Treatment of Infectious Diseases,
National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou310003, China
- First
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Yixian Liao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Nannan Chen
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Zhiling Li
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
| | - Ning Wan
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Haiping Hao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Jiangsu
Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing210009, China
| | - Honggao Yan
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Department
of Pharmacology, School of Pharmacy, China
Pharmaceutical University, Nanjing310003, China
| | - Yibei Xiao
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- Department
of Pharmacology, School of Pharmacy, China
Pharmaceutical University, Nanjing310003, China
| | - Maode Lai
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing210009, China
- State
Key Laboratory for Diagnosis and Treatment of Infectious Diseases,
National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou310003, China
- School
of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
38
|
Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Applications of covalent chemistry in targeted protein degradation. Chem Soc Rev 2022; 51:9243-9261. [PMID: 36285735 PMCID: PMC9669245 DOI: 10.1039/d2cs00362g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) and targeted covalent inhibitors (TCIs) are currently two exciting strategies in the fields of chemical biology and drug discovery. Extensive research in these two fields has been conducted, and significant progress in these fields has resulted in many clinical candidates, some of which have been approved by FDA. Recently, a novel concept termed covalent PROTACs that combine these two strategies has emerged and gained an increasing interest in the past several years. Herein, we briefly review and highlight the mechanism and advantages of TCIs and PROTACs, respectively, and the recent development of covalent PROTACs using irreversible and reversible covalent chemistry.
Collapse
Affiliation(s)
- Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Hanfeng Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Ran Cheng
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
39
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
40
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
41
|
de Jesus Salazar-Estrada I, Kamath KS, Liu F. Precision Targeting of Endogenous Epidermal Growth Factor Receptor (EGFR) by Structurally Aligned Dual-Modifier Labeling. ACS Pharmacol Transl Sci 2022; 5:859-871. [PMID: 36268127 PMCID: PMC9578136 DOI: 10.1021/acsptsci.2c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/28/2022]
Abstract
Covalent modification of endogenous proteins by chemical probes is used for proteome-wide profiling of cellular protein function and drug discovery. However, probe selectivity in the complex cellular environment is a challenge, and new probes with better target selectivity are continuously needed. On the basis of the success of monocovalent activity-based and reactivity-based probes, an approach of structurally aligned dual-modifier labeling (SADL) was investigated here on its potential in improving target precision. Two reactive groups, based on the acrylamide and NHS ester chemistry, were linked with structural alignment to be under the same anilinoquinazoline ligand-directive for targeting the epidermal growth factor receptor (EGFR) protein kinase as the model system for proteome-wide profiling. The SADL approach was compared with its monocovalent precursors in a label-free MaxLFQ workflow using MDA-MB-468 triple negative breast cancer cells. The dual-modifier probe consistently showed labeling of EGFR with improved precision over both monocovalent precursors under various controls. The workflow also labeled endogenous USP34 and PKMYT1 with high selectivity. Precision labeling with two covalent modifiers under a common ligand directive may broaden protein identification opportunities in the native environment to complement genetic and antibody-based approaches for elucidating biological or disease mechanisms, as well as accelerating drug target discovery.
Collapse
Affiliation(s)
| | | | - Fei Liu
- School
of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
42
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
43
|
Sõrmus T, Lavogina D, Teearu A, Enkvist E, Uri A, Viht K. Construction of Covalent Bisubstrate Inhibitor of Protein Kinase Reacting with Cysteine Residue at Substrate-Binding Site. J Med Chem 2022; 65:10975-10991. [PMID: 35960538 DOI: 10.1021/acs.jmedchem.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical success with targeted covalent inhibitors points to new possibilities for development of protein kinase (PK)-targeted drugs by exploiting reactive cysteine residues in and around the ATP-binding site. However, more than 300 human PKs lack cysteine residues in the ATP-binding site. Here, we report the first covalent bisubstrate PK inhibitor whose electrophilic warhead reaches outside the ATP-binding site and reacts with a distant cysteine residue. A series of covalent inhibitors and their reversible counterparts were synthesized and characterized. The most potent reversible inhibitor possessed picomolar affinity and its cysteine-reactive counterpart revealed high value of kinact/KI ratio (6.2 × 107 M-1 s-1) for the reaction with the catalytic subunit of cAMP-dependent PK (PKAc). Under optimized conditions, fluorescent dye-labeled covalent inhibitors demonstrated PKA-selectivity in the cell lysate and reacted with several proteins inside live cells, including PKAc. The disclosed compounds serve as leads for targeting PKs possessing an analogously positioned cysteine residue.
Collapse
Affiliation(s)
- Tanel Sõrmus
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Anu Teearu
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| |
Collapse
|
44
|
Brown BP, Zhang YK, Kim S, Finneran P, Yan Y, Du Z, Kim J, Hartzler AL, LeNoue-Newton ML, Smith AW, Meiler J, Lovly CM. Allele-specific activation, enzyme kinetics, and inhibitor sensitivities of EGFR exon 19 deletion mutations in lung cancer. Proc Natl Acad Sci U S A 2022; 119:e2206588119. [PMID: 35867821 PMCID: PMC9335329 DOI: 10.1073/pnas.2206588119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non-small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5'-triphosphate Km. Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Yun-Kai Zhang
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Soyeon Kim
- Department of Chemistry, University of Akron, Akron, OH 44325
| | | | - Yingjun Yan
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zhenfang Du
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jiyoon Kim
- Department of Chemistry, University of Akron, Akron, OH 44325
| | | | | | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Christine M. Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
45
|
Rezende Miranda R, Zhang C. Reactivity-based chemical-genetic study of protein kinases. RSC Med Chem 2022; 13:783-797. [PMID: 35923719 PMCID: PMC9298188 DOI: 10.1039/d1md00389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The human protein kinase superfamily comprises over 500 members that operate in nearly every signal transduction pathway and regulate essential cellular processes. Deciphering the functional roles of protein kinases with small-molecule inhibitors is essential to enhance our understanding of cell signaling and to facilitate the development of new therapies. However, it is rather challenging to identify selective kinase inhibitors because of the conserved nature of the ATP binding site. A number of chemical-genetic approaches have been developed during the past two decades to enable selective chemical perturbation of the activity of individual kinases. Herein, we review the development and application of chemical-genetic strategies that feature the use of covalent inhibitors targeting cysteine residues to dissect the cellular functions of protein kinases.
Collapse
Affiliation(s)
- Renata Rezende Miranda
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester New York 14623 USA
| | - Chao Zhang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- USC Norris Comprehensive Cancer Center, University of Southern California Los Angeles California 90089 USA
| |
Collapse
|
46
|
Tabuchi Y, Yang J, Taki M. Relative Nuclease Resistance of a DNA Aptamer Covalently Conjugated to a Target Protein. Int J Mol Sci 2022; 23:7778. [PMID: 35887130 PMCID: PMC9319527 DOI: 10.3390/ijms23147778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
A major obstacle to the therapeutic application of an aptamer is its susceptibility to nuclease digestion. Here, we confirmed the acquisition of relative nuclease resistance of a DNA-type thrombin binding aptamer with a warhead (TBA3) by covalent binding to a target protein in the presence of serum/various nucleases. When the thrombin-inhibitory activity of TBA3 on thrombin was reversed by the addition of the complementary strand, the aptamer was instantly degraded by the nucleases, showing that the properly folded/bound aptamer conferred the resistance. Covalently binding aptamers possessing both a prolonged drug effect and relative nuclease resistance would be beneficial for in vivo translational applications.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
| | - Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
- School of Medicine and Public Health, University of Wisconsin, Madison, WL 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
- Institute for Advanced Science, University of Electro-Communications (UEC), Chofu 182-8585, Japan
| |
Collapse
|
47
|
Mons E, Roet S, Kim RQ, Mulder MPC. A Comprehensive Guide for Assessing Covalent Inhibition in Enzymatic Assays Illustrated with Kinetic Simulations. Curr Protoc 2022; 2:e419. [PMID: 35671150 DOI: 10.1002/cpz1.419] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covalent inhibition has become more accepted in the past two decades, as illustrated by the clinical approval of several irreversible inhibitors designed to covalently modify their target. Elucidation of the structure-activity relationship and potency of such inhibitors requires a detailed kinetic evaluation. Here, we elucidate the relationship between the experimental read-out and the underlying inhibitor binding kinetics. Interactive kinetic simulation scripts are employed to highlight the effects of in vitro enzyme activity assay conditions and inhibitor binding mode, thereby showcasing which assumptions and corrections are crucial. Four stepwise protocols to assess the biochemical potency of (ir)reversible covalent enzyme inhibitors targeting a nucleophilic active site residue are included, with accompanying data analysis tailored to the covalent binding mode. Together, this will serve as a guide to make an educated decision regarding the most suitable method to assess covalent inhibition potency. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol I: Progress curve analysis of substrate association competition Basic Data Analysis Protocol 1A: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 1B: One-step irreversible covalent inhibition Basic Data Analysis Protocol 1C: Two-step reversible covalent inhibition Basic Data Analysis Protocol 1D: Two-step irreversible covalent inhibition with substrate depletion Basic Protocol II: Incubation time-dependent potency IC50 (t) Basic Data Analysis Protocol 2: Two-step irreversible covalent inhibition Basic Protocol III: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 3Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Bii: One-step irreversible covalent inhibition Basic Data Analysis Protocol 3C: Two-step reversible covalent inhibition Basic Protocol IV: Preincubation time-dependent inhibition with dilution/competition Basic Data Analysis Protocol 4: Preincubation time-dependent inhibition with dilution Basic Data Analysis Protocol 4Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 4Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Bii: One-step irreversible covalent inhibition.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.,Current: Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sander Roet
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
48
|
Zhou J, Saha A, Huang Z, Warshel A. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. J Am Chem Soc 2022; 144:7568-7572. [PMID: 35436404 DOI: 10.1021/jacs.2c00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has been a public health emergency with continuously evolving deadly variants around the globe. Among many preventive and therapeutic strategies, the design of covalent inhibitors targeting the main protease (Mpro) of SARS-CoV-2 that causes COVID-19 has been one of the hotly pursued areas. Currently, about 30% of marketed drugs that target enzymes are covalent inhibitors. Such inhibitors have been shown in recent years to have many advantages that counteract past reservation of their potential off-target activities, which can be minimized by modulation of the electrophilic warhead and simultaneous optimization of nearby noncovalent interactions. This process can be greatly accelerated by exploration of binding affinities using computational models, which are not well-established yet due to the requirement of capturing the chemical nature of covalent bond formation. Here, we present a robust computational method for effective prediction of absolute binding free energies (ABFEs) of covalent inhibitors. This is done by integrating the protein dipoles Langevin dipoles method (in the PDLD/S-LRA/β version) with quantum mechanical calculations of the energetics of the reaction of the warhead and its amino acid target, in water. This approach evaluates the combined effects of the covalent and noncovalent contributions. The applicability of the method is illustrated by predicting the ABFEs of covalent inhibitors of SARS-CoV-2 Mpro and the 20S proteasome. Our results are found to be reliable in predicting ABFEs for cases where the warheads are significantly different. This computational protocol might be a powerful tool for designing effective covalent inhibitors especially for SARS-CoV-2 Mpro and for targeted protein degradation.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
49
|
Borsari C, Keles E, McPhail JA, Schaefer A, Sriramaratnam R, Goch W, Schaefer T, De Pascale M, Bal W, Gstaiger M, Burke JE, Wymann MP. Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. J Am Chem Soc 2022; 144:6326-6342. [PMID: 35353516 PMCID: PMC9011356 DOI: 10.1021/jacs.1c13568] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Covalent protein
kinase inhibitors exploit currently noncatalytic
cysteines in the adenosine 5′-triphosphate (ATP)-binding site
via electrophiles directly appended to a reversible-inhibitor scaffold.
Here, we delineate a path to target solvent-exposed cysteines at a
distance >10 Å from an ATP-site-directed core module and produce
potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors.
First, reactive warheads are used to reach out to Cys862 on PI3Kα,
and second, enones are replaced with druglike warheads while linkers
are optimized. The systematic investigation of intrinsic warhead reactivity
(kchem), rate of covalent bond formation
and proximity (kinact and reaction space
volume Vr), and integration of structure
data, kinetic and structural modeling, led to the guided identification
of high-quality, covalent chemical probes. A novel stochastic approach
provided direct access to the calculation of overall reaction rates
as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker
lengths. X-ray crystallography, protein mass spectrometry (MS), and
NanoBRET assays confirmed covalent bond formation of the acrylamide
warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351,
the only known PI3Kα irreversible inhibitor. Washout experiments
in cancer cell lines with mutated, constitutively activated PI3Kα
showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kβ-dependent signaling,
which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective
signaling branches. The proposed approach is generally suited to develop
covalent tools targeting distal, unexplored Cys residues in biologically
active enzymes.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexander Schaefer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Goch
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
50
|
Srinivasan B. A guide to enzyme kinetics in early drug discovery. FEBS J 2022; 290:2292-2305. [PMID: 35175693 DOI: 10.1111/febs.16404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
Abstract
Drugs interact with their target of interest to bring about the desired phenotypic outcome that results in disease alleviation. Traditionally, most lead optimization exercises were driven by affinity measures (like IC50 ) to inform structure-activity relationship (SAR)-guided medicinal chemistry. However, an IC50 value is a thermodynamic estimate measured under equilibrium conditions that can vary as a function of substrate concentration and/or time (the latter especially for nonequilibrium modalities). Further, like other thermodynamic estimates, it is a state-function that is indifferent to the path traversed from the initial state to the final state. This can be a cause for concern in drug discovery given the predominance of nonequilibrium interactions and the open thermodynamic nature of the human system. Under such situations, employing rates along with equilibrium constants (or IC50 values) would be far more relevant to capture the time evolution of the small molecule's interaction with the target of interest. These rates are generally typified by the rate of association, rate of dissociation and the residence time of the small molecule on the target (target occupancy). These parameters, when combined with the concept of target vulnerability, therapeutic window, pharmacokinetic profile of the small molecule, estimates of endogenous ligand and target turnover, will shed critical insights into the kinetics and dynamics of a small molecule's interaction with the protein, and allow realistic modelling of the system to enable optimizations and dosing decisions. With that aim, this guide will attempt to introduce the traditional role of mechanistic enzymology within drug discovery and emphasize the importance of kinetics in guiding SAR-based optimizations. It will also present initial ideas on how kinetic investigation should be positioned relative to the temporal span of a drug-discovery pipeline to leverage maximal utility from the investment in time and effort.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic and Structural Biology Discovery Sciences R&D AstraZeneca Cambridge UK
| |
Collapse
|