1
|
Ashraf R, Adel M, Serya RAT, Ibrahim E, Haffez H, Soror S, Abouzid KAM. Design and synthesis of novel Hydroxamate and non-Hydroxamate HDAC inhibitors based on Chromone and Quinazolone scaffolds. Bioorg Chem 2025; 161:108514. [PMID: 40319810 DOI: 10.1016/j.bioorg.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The development of selective histone deacetylase (HDAC) inhibitors represents an encouraging approach for cancer therapy. In this study, we report design, synthesis, and biological evaluation of hydroxamate, amidoxime, and carboxylic acid-based derivatives as novel HDAC inhibitors. The synthesized compounds were assessed for their inhibitory activity against multiple HDAC isoforms, particularly HDAC6, 7, and 8. Compounds 13, 16, 20, and 26 exhibited potent and selective inhibition of HDAC6. Compound 26 exhibited the most potent inhibitory activity against HDAC6, with an IC50 value of 70 nM. Additionally, compounds 17 and 23 demonstrated significant broad-spectrum antiproliferative activity across various cancer cell lines compared to other tested derivatives. Furthermore, compounds 17 and 23 showed promising total pan-HDAC inhibitory activity. Subsequent biological studies revealed that compounds 13, 16, 17, 20, 23, and 26 induced a combination of early and late apoptosis along with necrosis. In silico studies, including molecular docking and ADME predictions, were also conducted. Collectively, these findings highlight the potential of these compounds as promising candidates for the development of a novel class of selective HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Rosaline Ashraf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Lin LW, Ehrlich AK, Rice RH. Epigenetic modifications control CYP1A1 Inducibility in human and rat keratinocytes. Toxicol Appl Pharmacol 2025; 494:117163. [PMID: 39580082 DOI: 10.1016/j.taap.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Serially passaged rat keratinocytes exhibit dramatically attenuated induction of Cyp1a1 by aryl hydrocarbon receptor ligands such as TCDD. However, the sensitivity to induction can be restored by protein synthesis inhibition. Previous work revealed that the functionality of the receptor was not affected by passaging. The present work explored the possibility of epigenetic silencing on CYP1A1 inducibility in both rat and human cells. Use of an array of small molecule epigenetic modulators demonstrated that inhibition of histone deacetylases mimicked the effect of protein synthesis inhibition. Consistent with this finding, cycloheximide treatment also reduced histone deacetylase activity. More importantly, when compared to human CYP1A1, rat Cyp1a1 exhibited much greater sensitivity toward epigenetic modulators, particularly inhibitors of histone deacetylases. Other genes in the aryl hydrocarbon receptor domain showed variable and less dramatic responses to histone deacetylase inhibitors. These findings highlight a potential species difference in epigenetics that must be considered when extrapolating results from rodent models to humans and has implications for xenobiotic- or drug-drug interactions where CYP1A1 activity plays an important role.
Collapse
Affiliation(s)
- Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
4
|
Lu B, Qiu R, Wei J, Wang L, Zhang Q, Li M, Zhan X, Chen J, Hsieh IY, Yang C, Zhang J, Sun Z, Zhu Y, Jiang T, Zhu H, Li J, Zhao W. Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer. NATURE CANCER 2024; 5:1622-1640. [PMID: 39198689 DOI: 10.1038/s43018-024-00816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
How dysregulated liquid-liquid phase separation (LLPS) contributes to the oncogenesis of female triple-negative breast cancer (TNBC) remains unknown. Here we demonstrate that phosphorylated histone deacetylase 6 (phospho-HDAC6) forms LLPS condensates in the nuclei of TNBC cells that are essential for establishing aberrant chromatin architecture. The disordered N-terminal domain and phosphorylated residue of HDAC6 facilitate effective LLPS, whereas nuclear export regions exert a negative dominant effect. Through phase-separation-based screening, we identified Nexturastat A as a specific disruptor of phospho-HDAC6 condensates, which effectively suppresses tumor growth. Mechanistically, importin-β interacts with phospho-HDAC6, promoting its translocation to the nucleus, where 14-3-3θ mediates the condensate formation. Disruption of phospho-HDAC6 LLPS re-established chromatin compartments and topologically associating domain boundaries, leading to disturbed chromatin loops. The phospho-HDAC6-induced aberrant chromatin architecture affects chromatin accessibility, histone acetylation, RNA polymerase II elongation and transcriptional profiles in TNBC. This study demonstrates phospho-HDAC6 LLPS as an emerging mechanism underlying the dysregulation of chromatin architecture in TNBC.
Collapse
Affiliation(s)
- Bing Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ru Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiatian Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qinkai Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mingsen Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiudan Zhan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - I-Yun Hsieh
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yifan Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Han Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Anjum K, Zhou L, Hayyat K, Huang X, Wang J, Zhang G, Zhu T, Che Q, Li D. Novel antifungal talaroenamine L with unusual leptosphaeronyl moiety from marine-derived Talaromyces sp. HDN17-428 via HDACi elicitation. Nat Prod Res 2024:1-7. [PMID: 39352949 DOI: 10.1080/14786419.2024.2407503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Vorinostat elicitation of the deep-sea fungus Talaromyces sp. HDN17-428 resulted in the isolation of one new compound, talaroenamine L (1) with unusual leptosphaeronyl moiety and three known compounds (2-4). Structures of 1-4 were confirmed by extensive NMR, HRESIMS and OR calculations. Antimicrobial activities of all compounds were tested in which compounds 1-4 showed substantial antifungal activities with MIC values ranged from 3.1 to 12.5 μM.
Collapse
Affiliation(s)
- Komal Anjum
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Khizar Hayyat
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiaxiang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
7
|
Shirbhate E, Singh V, Jahoriya V, Mishra A, Veerasamy R, Tiwari AK, Rajak H. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur J Med Chem 2024; 263:115938. [PMID: 37989059 DOI: 10.1016/j.ejmech.2023.115938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
A significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies. Several ongoing clinical trials on dual targeting strategy are being conducted comprising HDAC inhibitory component and an epigenetic regulating agent. In this perspective, the review discusses the pharmacological aspects of HDAC and other epigenetic regulating factors as dual inhibitors as an emerging alternative approach for combination therapies.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, AR, United States
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, CG, India.
| |
Collapse
|
8
|
Dai C, Wang X, Liu R, Gao W, Zhang H, Yin Z, Ding Z. ACY1215 Exerts Anti-inflammatory Effects by Inhibition of NF-κB and STAT3 Signaling Pathway to Repair Spinal Cord Injury. Biol Pharm Bull 2024; 47:1734-1745. [PMID: 39477466 DOI: 10.1248/bpb.b23-00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Spinal cord injury (SCI), a public health problem caused by mechanical injury, leads to secondary excessive inflammatory reactions and long-term damage to neurological function. ACY1215 is a highly selective histone deacetylase 6 (HDAC6) inhibitor and reportedly has anti-inflammatory effects; however, its regulatory role in SCI has not been studied. The purpose of this study was to explore the role of ACY1215 in preventing inflammation, inhibiting astrogliosis, enhancing remyelination and preserving axons after spinal cord injury and further exploring the possible cellular signaling pathways involved. First, lipopolysaccharide (LPS) was utilized to stimulate rat astrocytes in vitro. Quantitative RT (qRT)-PCR and Western blotting showed that ACY1215 inhibited the expression of glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) in LPS-activated astrocytes. In addition, Western blotting results showed that ACY1215 could inhibit the signal transduction pathway of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). In vivo, ACY1215 could exert anti-inflammatory effects by inhibiting the expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, ACY1215 repaired spinal cord injury by reducing the formation of glial scars and promoting remyelination and nerve recovery. In summary, ACY1215 can inhibit the NF-κB and STAT3 signaling pathways in astrocytes, reduce inflammation and ameliorate SCI. Our results provide a novel strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Ce Dai
- Department of Orthopaedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University
| | - Xiaohe Wang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, the First Affiliated Hospital, Jinan University
| | - Rui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University
| | - Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical University
| |
Collapse
|
9
|
Cong B, Thakur T, Uribe AH, Stamou E, Gopinath S, Maddocks O, Cagan R. Colon Cancer Cells Evade Drug Action by Enhancing Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572817. [PMID: 38187524 PMCID: PMC10769412 DOI: 10.1101/2023.12.21.572817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. One key reason is the failure of therapies that target RAS proteins, which represent approximately 40% of CRC cases. Despite the recent discovery of multiple alternative signalling pathways that contribute to resistance, durable therapies remain an unmet need. Here, we use liquid chromatography/mass spectrometry (LC/MS) analyses on Drosophila CRC tumour models to identify multiple metabolites in the glucuronidation pathway-a toxin clearance pathway-as upregulated in trametinib-resistant RAS/APC/P53 ("RAP") tumours compared to trametinib-sensitive RASG12V tumours. Elevating glucuronidation was sufficient to direct trametinib resistance in RASG12V animals while, conversely, inhibiting different steps along the glucuronidation pathway strongly reversed RAP resistance to trametinib. For example, blocking an initial HDAC1-mediated deacetylation step with the FDA-approved drug vorinostat strongly suppressed trametinib resistance in Drosophila RAP tumours. We provide functional evidence that pairing oncogenic RAS with hyperactive WNT activity strongly elevates PI3K/AKT/GLUT signalling, which in turn directs elevated glucose and subsequent glucuronidation. Finally, we show that this mechanism of trametinib resistance is conserved in an KRAS/APC/TP53 mouse CRC tumour organoid model. Our observations demonstrate a key mechanism by which oncogenic RAS/WNT activity promotes increased drug clearance in CRC. The majority of targeted therapies are glucuronidated, and our results provide a specific path towards abrogating this resistance in clinical trials.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Teena Thakur
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, Scotland G61 1BD UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, Scotland G61 1BD UK
| | - Evangelia Stamou
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Sindhura Gopinath
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 25-82 Annenberg Building; Box 1020, One Gustave L. Levy Place, New York, NY 10029
| | - Oliver Maddocks
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Ross Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| |
Collapse
|
10
|
Chen X, Wang J, Zhao P, Dang B, Liang T, Steimbach RR, Miller AK, Liu J, Wang X, Zhang T, Luan X, Hu J, Gao J. Tetrahydro-β-carboline derivatives as potent histone deacetylase 6 inhibitors with broad-spectrum antiproliferative activity. Eur J Med Chem 2023; 260:115776. [PMID: 37660484 DOI: 10.1016/j.ejmech.2023.115776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
A series of tetrahydro-β-carboline (THβC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THβC analogues were highly potent (IC50 < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR). Target engagement of HDAC6 was confirmed in RPMI-8226 cells using the WB assay. In vitro, (1S, 3R)-1-(4-chlorophenyl)-N-(4-(hydroxycarbamoyl)benzyl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxamide (14g) showed potent broad antiproliferative activity against various tumors including leukemia, colon cancer, melanoma, and breast cancer cell lines, better than ACY-1215. Moreover, 14g also showed good pharmacokinetics properties in mice via oral administration.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Peng Zhao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Jia Liu
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd, Jiangsu, China
| | - Tongtong Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, 24 Weihui Road, Yangling, 712100, Shaanxi, PR China.
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
11
|
Poonia P, Sharma M, Jha P, Chopra M. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Mol Divers 2023; 27:2053-2071. [PMID: 36214962 DOI: 10.1007/s11030-022-10540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
To date, many HDAC6 inhibitors have been identified and developed but none is clinically approved as of now. Through this study, we aim to obtain novel HDAC6 selective inhibitors and provide new insights into the detailed structural design of potential HDAC6 inhibitors. A HypoGen-based 3D QSAR HDAC6 pharmacophore was built and used as a query model to screen approximately 8 million ZINC database compounds. First, the ZINC Database was filtered using ADMET, followed by pharmacophore-based library screening. Using fit value and estimated activity cutoffs, a final set of 54 ZINC hits was obtained that were further investigated using molecular docking with the crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with Trichostatin A (PDB ID: 5EDU). Through detailed in silico screening of the ZINC database, we shortlisted three hits as the lead molecules for designing novel HDAC6 inhibitors with better efficacy. Docking with 5EDU, followed by ADMET and TOPKAT analysis of modified ZINC hits provided 9 novel potential HDAC6 inhibitors that possess better docking scores and 2D interactions as compared to the control ZINC hit molecules. Finally, a 50 ns MD analysis run followed by Protein-Ligand Interaction Energy (PLIE) analysis of the top scored hits provided a novel molecule N1 that showed promisingly similar results to that of Ricolinostat (a known HDAC6 inhibitor). The comparable result of the designed hits to established HDAC6 inhibitors suggests that these compounds might prove to be successful HDAC6 inhibitors in future. Designed novel hits that might act as good HDAC6 inhibitors derived from ZINC database using combined molecular docking and modeling approaches.
Collapse
Affiliation(s)
- Priya Poonia
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Monika Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Prakash Jha
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Madhu Chopra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India.
| |
Collapse
|
12
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
13
|
Mehmood SA, Sahu KK, Sengupta S, Partap S, Karpoormath R, Kumar B, Kumar D. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol 2023; 40:201. [PMID: 37294406 DOI: 10.1007/s12032-023-02058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Recent studies highlight the great potential impact of HDAC inhibitors (HDACis) in suppressing TNBC, even though clinical trials including a single HDACis demonstrated unsatisfactory outcomes against TNBC. New compounds created to achieve isoform selectivity and/or a polypharmacological HDAC strategy have also produced interesting results. The current study discusses the HDACis pharmacophoric models and the structural alterations that produced drugs with strong inhibitory effects on TNBC progression. With more than 2 million new cases reported in 2018, breast cancer-the most common cancer among women worldwide-poses a significant financial burden on an already deteriorating public health system. Due to a lack of therapies being developed for triple-negative breast cancers and the development of resistance to the current treatment options, it is imperative to plan novel therapeutics in order to bring new medications to the pipeline. Additionally, HDACs deacetylate a large number of nonhistone cellular substrates that control a variety of biological processes, such as the beginning and development of cancer. The significance of HDACs in cancer and the therapeutic potential of HDAC inhibitor. Furthermore, we also reported molecular docking study with four HDAC inhibitors and performed molecular dynamic stimulation of the best dock score compound. Among the four ligands belinostat compound showed best binding affinity with histone deacetylase protein which was -8.7 kJ/mol. It also formed five conventional hydrogen bond with Gly 841, His 669, His 670, pro 809, and His 709 amino acid residues.
Collapse
Affiliation(s)
- Syed Abdulla Mehmood
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Humdard University, New Delhi, India
| | - Kantrol Kumar Sahu
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
14
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
15
|
Lee JH, Kim HS, Jang SW, Lee GR. Histone deacetylase 6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation. Sci Rep 2022; 12:22550. [PMID: 36581745 PMCID: PMC9800578 DOI: 10.1038/s41598-022-27230-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by preventing abnormal or excessive immune responses. Histone deacetylase 6 (HDAC6) regulates expression of Foxp3, and thus, Treg cell differentiation; however, its role in Treg cell differentiation is unclear and somewhat controversial. Here, we investigated the role of HDAC6 in TGF-β-induced murine Treg cells. HDAC6 expression was higher in Treg cells than in other T helper cell subsets. Pharmacological inhibitors of HDAC6 selectively inhibited Treg cell differentiation and suppressive function. A specific HDAC6 inhibitor induced changes in global gene expression by Treg cells. Of these changes, genes related to cell division were prominently affected. In summary, HDAC6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation.
Collapse
Affiliation(s)
- Ji Hyeon Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Hyeong Su Kim
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Sung Woong Jang
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Gap Ryol Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| |
Collapse
|
16
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 2022; 40:14204-14222. [PMID: 34784487 DOI: 10.1080/07391102.2021.2001378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations. The combination of in silico with in vitro neuroprotective results allowed the identification of a lead compound (FH-27) which shows neuroprotective effect that could be due to HDAC6 inhibition. Further, FH-27 chemical moiety was used to design a second series of compounds improving the neuroprotective effect from 2- to 10-fold higher (YSL-99, YSL-109, YSL-112, YSL-116 and YSL-121; 1.25 ± 0.67, 1.82 ± 1.06, 7.52 ± 1.78, 5.59 and 5.62 ± 0.31 µM, respectively). In addition, the R enantiomer of FH-27 (YSL-106) was synthesized, showing a better neuroprotective effect (1.27 ± 0.60 µM). In conclusion, we accomplish the in silico design, synthesis, and biological evaluation of hydroxamic acid derivatives with neuroprotective effect as suggested by an in vitro model. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
17
|
Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers (Basel) 2022; 14:cancers14236014. [PMID: 36497494 PMCID: PMC9737972 DOI: 10.3390/cancers14236014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.
Collapse
|
18
|
Liu X, Wang S, Shi X, Lu M, Wang C, Li X, Zhang Y, Jia Q, Liu H. Do biological activities of selective histone deacetylase 6 (HDAC6) inhibitors rely on the modification of cap group? J Mol Recognit 2022; 35:e2988. [PMID: 36054561 DOI: 10.1002/jmr.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023]
Abstract
Nowadays, significant progress has been made in the development of selective histone deacetylase 6 (HDAC6) inhibitors, exerting great potential in the treatment of various malignant tumors and neurodegenerative diseases. Previously, selective inhibitory activities of HDAC inhibitors were generally considered sensitive to the interactions between the Cap group and the binding site of HDAC6, and a large number of selective HDAC6 inhibitors have been designed and synthesized based on the strategy. However, some inhibitors without Cap group could also exhibit excellent potency and selective inhibition towards HDAC6, and in this study, BRD9757 and compound 8, as capless selective HDAC6 inhibitors, were selected as molecular probes to explore the difference of their binding interactions in HDAC1&6. Through the analysis of binding-free energies and conformational rearrangements after 1 μs molecular dynamics simulation, it could be learned that although the residues in the binding site remained highly consistent, the binding mechanisms of BRD9757 and compound 8 in HDAC1&6 were different, which will provide valuable hints for the discovery of novel selective HDAC6 inhibitors.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Songsong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Ming Lu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chengzhao Wang
- Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuedong Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qingzhong Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Haisheng Liu
- Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
20
|
Singh T, Kaur P, Singh P, Singh S, Munshi A. Differential molecular mechanistic behavior of HDACs in cancer progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:171. [PMID: 35972597 DOI: 10.1007/s12032-022-01770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs' role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
21
|
Gu X, Zhang H, Jiao M, Han B, Zhang Z, Li J, Zhang Q. Histone deacetylase 6 inhibitors with blood-brain barrier penetration as a potential strategy for CNS-Disorders therapy. Eur J Med Chem 2022; 229:114090. [PMID: 34992037 DOI: 10.1016/j.ejmech.2021.114090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Histone deacetylase 6 inhibitors (HDAC6is) have been applied to certain cancer diseases and more recently to central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. Brain penetrance is the major challenge for the development of HDAC6is as potential therapeutics for CNS disorders due in part to the polarity of hydroxamate ZBG. Hence, only a handful of brain-penetrant HDAC6is have been reported and a few display appropriate in vitro and in vivo activities in models of neurological diseases in last decades. This review summarizes the contemporary research being done on HADC6is with brain penetration both the biological pathways involved and the structural modification attempts.
Collapse
Affiliation(s)
- Xiu Gu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hao Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Zixue Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
22
|
The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines 2022; 10:biomedicines10020254. [PMID: 35203463 PMCID: PMC8869605 DOI: 10.3390/biomedicines10020254] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Kruppel like factor 2 (KLF2) is a mechanosensitive transcription factor participating in the regulation of vascular endothelial cells metabolism. Activating KLF2 in endothelial cells induces eNOS (endothelial nitric oxide synthase) expression, subsequent NO (nitric oxide) release, and vasodilatory effect. In addition, many KLF2-regulated genes participate in the anti-thrombotic, antioxidant, and anti-inflammatory activities, thereby preventing atherosclerosis development and progression. In this review, we summarise recent evidence suggesting that KLF2 plays a major role in regulating atheroprotective effects in endothelial cells. We also discuss several recently identified repurposed drugs and natural plant-based bioactive compounds with KLF2-mediated atheroprotective activities. Herein, we present a comprehensive overview of the role of KLF2 in atherosclerosis and as a pharmacological target for different drugs and natural compounds and highlight the potential application of these phytochemicals for the treatment of atherosclerosis.
Collapse
|
23
|
Quaas CE, Long DT. Targeting (de)acetylation: A Diversity of Mechanism and Disease. COMPREHENSIVE PHARMACOLOGY 2022:469-492. [DOI: 10.1016/b978-0-12-820472-6.00076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Curty C, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Alwan WS, Suri V, Hotchkiss PJ, Ghanei M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021; 463:152967. [PMID: 34619302 DOI: 10.1016/j.tox.2021.152967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Blister agents damage the skin, eyes, mucous membranes and subcutaneous tissues. Other toxic effects may occur after absorption. The response of the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) to a request from the OPCW Director-General in 2013 on the status of medical countermeasures and treatments to blister agents is updated through the incorporation of the latest information. The physical and toxicological properties of sulfur mustard and clinical effects and treatments are summarised. The information should assist medics and emergency responders who may be unfamiliar with the toxidrome of sulfur mustard and its treatment.
Collapse
Affiliation(s)
- Christopher M Timperley
- Chair of the OPCW SAB from 2015-2018, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, United Kingdom.
| | - Jonathan E Forman
- Science Policy Adviser and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands, from 2015-2018
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Augustin Baulig
- Secrétariat Général de la Défense et de la Sécurité Nationale (SGDSN), Paris, France
| | - Djafer Benachour
- LMPMP, Faculty of Technology, Ferhat Abbas University, Setif-1, Algeria
| | - Veronica Borrett
- La Trobe Institute for Agriculture and Food, La Trobe University, Victoria, 3086, Australia
| | | | | | | | - David Gonzalez
- Facultad De Química, Universidad de la República, Montevideo, Uruguay
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | - Syed K Raza
- Chairperson Accreditation Committee, National Accreditation Board for Testing and Calibration Laboratories (NABL), India
| | - Valentin Rubaylo
- State Scientific Research Institute of Organic Chemistry and Technology (GosNIIOKhT), Moscow, Russian Federation
| | - Alejandra Graciela Suárez
- Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Koji Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Cheng Tang
- Office for the Disposal of Japanese Abandoned Chemical Weapons, Ministry of National Defence, Beijing, China
| | - Ferruccio Trifirò
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | - Paula S Vanninen
- VERIFIN, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Stian Holen
- Head of Strategy and Policy at the OPCW from 2009 to 2015
| | - Wesam S Alwan
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Vivek Suri
- Intern in the OPCW Office of Strategy and Policy, Summer 2018
| | - Peter J Hotchkiss
- Senior Science Policy Officer and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
25
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
26
|
Bae D, Lee JY, Ha N, Park J, Baek J, Suh D, Lim HS, Ko SM, Kim T, Som Jeong D, Son WC. CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep 2021; 11:14466. [PMID: 34262061 PMCID: PMC8280216 DOI: 10.1038/s41598-021-93232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea.
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Hee Seon Lim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Soo Min Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taehee Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
27
|
Park JK, Shon S, Yoo HJ, Suh DH, Bae D, Shin J, Jun JH, Ha N, Song H, Choi YI, Pap T, Song YW. Inhibition of histone deacetylase 6 suppresses inflammatory responses and invasiveness of fibroblast-like-synoviocytes in inflammatory arthritis. Arthritis Res Ther 2021; 23:177. [PMID: 34225810 PMCID: PMC8256575 DOI: 10.1186/s13075-021-02561-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the effects of inhibiting histone deacetylase (HDAC) 6 on inflammatory responses and tissue-destructive functions of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). Methods FLS from RA patients were activated with interleukin (IL)-1β in the presence of increasing concentrations of M808, a novel specific HDAC6 inhibitor. Production of ILs, chemokines, and metalloproteinases (MMPs) was measured in ELISAs. Acetylation of tubulin and expression of ICAM-1 and VCAM-1 were assessed by Western blotting. Wound healing and adhesion assays were performed. Cytoskeletal organization was visualized by immunofluorescence. Finally, the impact of HDAC6 inhibition on the severity of arthritis and joint histology was examined in a murine model of adjuvant-induced arthritis (AIA). Results HDAC6 was selectively inhibited by M808. The HDAC6 inhibitor suppressed the production of MMP-1, MMP-3, IL-6, CCL2, CXCL8, and CXCL10 by RA-FLS in response to IL-1β. Increased acetylation of tubulin was associated with decreased migration of RA-FLS. Inhibiting HDAC6 induced cytoskeletal reorganization in RA-FLS by suppressing the formation of invadopodia following activation with IL-1β. In addition, M808 tended to decrease the expression of ICAM-1 and VCAM-1. In the AIA arthritis model, M808 improved the clinical arthritis score in a dose-dependent manner. Also, HDAC6 inhibition was associated with less severe synovial inflammation and joint destruction. Conclusion Inhibiting HDAC6 dampens the inflammatory and destructive activity of RA-FLS and reduces the severity of arthritis. Thus, targeting HDAC6 has therapeutic potential.
Collapse
Affiliation(s)
- Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sehui Shon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyun Jung Yoo
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Dong-Hyeon Suh
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Daekwon Bae
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Jieun Shin
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Jae Hyun Jun
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Nina Ha
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Hyeseung Song
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Young Il Choi
- CKD Research Institute, Yongin-si, Gyeonggido, South Korea
| | - Thomas Pap
- Division of Mol Medicine of Musculoskeletal Tissue, University Munster, Munster, Germany
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea. .,Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
28
|
Zhang XH, Kang HQ, Tao YY, Li YH, Zhao JR, Ya-Gao, Ma LY, Liu HM. Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem 2021; 218:113392. [PMID: 33831778 DOI: 10.1016/j.ejmech.2021.113392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hui-Qin Kang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Yuan Tao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jun-Ru Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ya-Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, Zhumadian, 463000, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
29
|
Binding Free Energy (BFE) Calculations and Quantitative Structure-Activity Relationship (QSAR) Analysis of Schistosoma mansoni Histone Deacetylase 8 ( smHDAC8) Inhibitors. Molecules 2021; 26:molecules26092584. [PMID: 33925246 PMCID: PMC8125515 DOI: 10.3390/molecules26092584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/02/2023] Open
Abstract
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.
Collapse
|
30
|
Skwarska A, Calder EDD, Sneddon D, Bolland H, Odyniec ML, Mistry IN, Martin J, Folkes LK, Conway SJ, Hammond EM. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chem Biol 2021; 28:1258-1270.e13. [PMID: 33910023 PMCID: PMC8460716 DOI: 10.1016/j.chembiol.2021.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Tumor hypoxia is associated with therapy resistance and poor patient prognosis. Hypoxia-activated prodrugs, designed to selectively target hypoxic cells while sparing normal tissue, represent a promising treatment strategy. We report the pre-clinical efficacy of 1-methyl-2-nitroimidazole panobinostat (NI-Pano, CH-03), a novel bioreductive version of the clinically used lysine deacetylase inhibitor, panobinostat. NI-Pano was stable in normoxic (21% O2) conditions and underwent NADPH-CYP-mediated enzymatic bioreduction to release panobinostat in hypoxia (<0.1% O2). Treatment of cells grown in both 2D and 3D with NI-Pano increased acetylation of histone H3 at lysine 9, induced apoptosis, and decreased clonogenic survival. Importantly, NI-Pano exhibited growth delay effects as a single agent in tumor xenografts. Pharmacokinetic analysis confirmed the presence of sub-micromolar concentrations of panobinostat in hypoxic mouse xenografts, but not in circulating plasma or kidneys. Together, our pre-clinical results provide a strong mechanistic rationale for the clinical development of NI-Pano for selective targeting of hypoxic tumors.
Collapse
Affiliation(s)
- Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ewen D D Calder
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Deborah Sneddon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Maria L Odyniec
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ishna N Mistry
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jennifer Martin
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Lisa K Folkes
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
31
|
Yussuf Khamis M, Wu HP, Ma Q, Li YH, Ma LY, Zhang XH, Liu HM. Overcome the tumor immunotherapy resistance by combination of the HDAC6 inhibitors with antitumor immunomodulatory agents. Bioorg Chem 2021; 109:104754. [PMID: 33677416 DOI: 10.1016/j.bioorg.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Tumor immunotherapy is currently subject of intense scientific and clinical developments. In previous decade, therapists used natural immune system from the human body to treat several diseases. Although tumor immune disease is a big challenge, combinatorial therapeutic strategy has been succeeded to show the clinical significance. In this context, we discuss the HDAC6 and tumor immune diseases relationship. Also, we summarized the current state of knowledge that based on the combination treatments of the HDAC6 inhibitors (HDAC6is) with antitumor immunomodulatory agents. We observed that, the combination therapies slow down the tumor immune diseases by blocking the aggresome and proteasome pathway. The combination therapy was able to reduce M2 macrophage and increasing PD-L1 blockade sensitivity. Most importantly, multiple combinations of HDAC6is with other agents may consider as potential strategies to treat tumor immune diseases, by reducing the side effects and improve efficacy for the future clinical development.
Collapse
Affiliation(s)
- Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; China Meheco Topfond PharmaceuticalCo., Ltd., Zhumadian 463000, PR China
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
32
|
Osseni A, Ravel-Chapuis A, Thomas JL, Gache V, Schaeffer L, Jasmin BJ. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2021; 219:151966. [PMID: 32697819 PMCID: PMC7401804 DOI: 10.1083/jcb.201901099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubules (MTs) are known to be post-translationally modified at the neuromuscular junction (NMJ), hence increasing their stability. To date however, the function(s) of the dynamic MT network and its relative stability in the formation and maintenance of NMJs remain poorly described. Stabilization of the MT is dependent in part on its acetylation status, and HDAC6 is capable of reversing this post-translational modification. Here, we report that HDAC6 preferentially accumulates at NMJs and that it contributes to the organization and the stability of NMJs. Indeed, pharmacological inhibition of HDAC6 protects against MT disorganization and reduces the size of acetylcholine receptor (AChR) clusters. Moreover, the endogenous HDAC6 inhibitor paxillin interacts with HDAC6 in skeletal muscle cells, colocalizes with AChR aggregates, and regulates the formation of AChR. Our findings indicate that the focal insertion of AChRs into the postsynaptic membrane is regulated by stable MTs and highlight how an MT/HDAC6/paxillin axis participates in the regulation of AChR insertion and removal to control the structure of NMJs.
Collapse
Affiliation(s)
- Alexis Osseni
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Luc Thomas
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Laurent Schaeffer
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France.,Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Melesina J, Simoben CV, Praetorius L, Bülbül EF, Robaa D, Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021; 16:1336-1359. [PMID: 33428327 DOI: 10.1002/cmdc.202000934] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/15/2022]
Abstract
This review classifies drug-design strategies successfully implemented in the development of histone deacetylase (HDAC) inhibitors, which have many applications including cancer treatment. Our focus is on especially demanded selective HDAC inhibitors and their structure-activity relationships in relation to corresponding protein structures. The main part of the paper is divided into six subsections each narrating how optimization of one of six structural features can influence inhibitor selectivity. It starts with the impact of the zinc binding group on selectivity, continues with the optimization of the linker placed in the substrate binding tunnel as well as the adjustment of the cap group interacting with the surface of the protein, and ends with the addition of groups targeting class-specific sub-pockets: the side-pocket-, lower-pocket- and foot-pocket-targeting groups. The review is rounded off with a conclusion and an outlook on the future of HDAC inhibitor design.
Collapse
Affiliation(s)
- Jelena Melesina
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Conrad V Simoben
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Lucas Praetorius
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Emre F Bülbül
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| |
Collapse
|
34
|
Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021; 64:1362-1391. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC6 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC6 inhibitors have been effectively used to treat cancers, neurodegenerative diseases, and autoimmune disorders without exerting significant toxic effects. Progress has been made in defining the crystal structures of HDAC6 catalytic domains which has influenced the structure-based drug design of HDAC6 inhibitors. This review summarizes recent literature on HDAC6 inhibitors with particular reference to structural specificity and functional diversity. It may provide up-to-date guidance for the development of HDAC6 inhibitors and perspectives for optimization of therapeutic applications.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin-Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- China Meheco Topfond Pharmaceutical Co., Ltd., Zhumadian, 463000, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
35
|
Bae D, Choi Y, Lee J, Ha N, Suh D, Baek J, Park J, Son W. M-134, a novel HDAC6-selective inhibitor, markedly improved arthritic severity in a rodent model of rheumatoid arthritis when combined with tofacitinib. Pharmacol Rep 2020; 73:185-201. [PMID: 33188511 DOI: 10.1007/s43440-020-00188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although tofacitinib has shown highly significant efficacy for rheumatoid arthritis (RA), there are still a considerable number of patients that are non-responders owing to its limited effectiveness and various adverse effects. Thus, alternative options with better efficacy and lower toxicity are desired. Here, M-134, a recently developed HDAC6 inhibitor, was examined for its therapeutic potential when combined with tofacitinib in a rat model of RA. METHODS The single or combined administration of M-134 and tofacitinib was examined in complete Freund's adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA) rodent models. To evaluate the therapeutic and adverse effects, the following factors were observed: macroscopic or microscopic scoring of all four paws; the expression of ICAM-1, VCAM-1, and IP-10 in the joints and that of various cytokines and chemokines in the plasma; the weight of the thymus and the liver; and changes in hematological enzymes. RESULTS Combination treatment showed strong synergistic effects as measured by the clinical score and histological changes, without adverse effects such as weight loss in the thymus and increased liver enzymes (ALT and AST). Additionally, it also reduced ICAM-1, VCAM-1, and IP-10 expression in the joints, and M-134 increased the efficacy of tofacitinib by regulating various cytokines, such as interleukin (IL)-1β, IL-17, and TNF-α, in the serum of AIA rats. Differences in the cytokine expression for each drug were found in the CIA model. CONCLUSIONS M-134 and tofacitinib combination therapy is a potential option for the treatment of RA through the regulation of cytokines, chemokines, and adhesion molecules.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Youngil Choi
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyoung Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Woochan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
36
|
Wu D, Qiu Y, Jiao Y, Qiu Z, Liu D. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy. Front Oncol 2020; 10:560487. [PMID: 33262941 PMCID: PMC7686570 DOI: 10.3389/fonc.2020.560487] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence for research over the past decade shows that epigenetic regulation mechanisms run through the development and prognosis of tumors. Therefore, small molecular compounds targeting epigenetic regulation have become a research hotspot in the development of cancer therapeutic drugs. According to the obvious abnormality of histone acetylation when tumors occur, it suggests that histone acetylation modification plays an important role in the process of tumorigenesis. Currently, as a new potential anti-cancer therapeutic drugs, many active small molecules that target histone acetylation regulatory enzymes or proteins such as histone deacetylases (HDACs), histone acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore abnormal histone acetylation levels to normal. In this review, we will focus on summarizing the changes of histone acetylation levels during tumorigenesis, as well as the possible pharmacological mechanisms of small molecules that target histone acetylation in cancer treatment.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Ye Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yunshuang Jiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
37
|
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res 2020; 163:105274. [PMID: 33171304 DOI: 10.1016/j.phrs.2020.105274] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
38
|
Phimmachanh M, Han JZR, O'Donnell YEI, Latham SL, Croucher DR. Histone Deacetylases and Histone Deacetylase Inhibitors in Neuroblastoma. Front Cell Dev Biol 2020; 8:578770. [PMID: 33117806 PMCID: PMC7575710 DOI: 10.3389/fcell.2020.578770] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in regulating gene expression by remodeling chromatin structure. An imbalance of histone acetylation caused by deregulated HDAC expression and activity is known to promote tumor progression in a number of tumor types, including neuroblastoma, the most common solid tumor in children. Consequently, the inhibition of HDACs has emerged as a potential strategy to reverse these aberrant epigenetic changes, and several classes of HDAC inhibitors (HDACi) have been shown to inhibit tumor proliferation, or induce differentiation, apoptosis and cell cycle arrest in neuroblastoma. Further, the combined use of HDACi with other chemotherapy agents, or radiotherapy, has shown promising pre-clinical results and various HDACi have progressed to different stages in clinical trials. Despite this, the effects of HDACi are multifaceted and more work needs to be done to unravel their specific mechanisms of actions. In this review, we discuss the functional role of HDACs in neuroblastoma and the potential of HDACi to be optimized for development and use in the clinic for treatment of patients with neuroblastoma.
Collapse
Affiliation(s)
- Monica Phimmachanh
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jeremy Z R Han
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Yolande E I O'Donnell
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sharissa L Latham
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Recent advances in small molecular modulators targeting histone deacetylase 6. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique isozyme in the HDAC family with various distinguished characters. HDAC6 is predominantly localized in the cytoplasm and has several specific nonhistone substrates, such as α-tubulin, cortactin, Hsp90, tau and peroxiredoxins. Accumulating evidence reveals that targeting HDAC6 may serve as a promising therapeutic strategy for the treatment of cancers, neurological disorders and immune diseases, making the development of HDAC6 inhibitors particularly attractive. Recently, multitarget drug design and proteolysis targeting chimera technology have also been applied in the discovery of novel small molecular modulators targeting HDAC6. In this review, we briefly describe the structural features and biological functions of HDAC6 and discuss the recent advances in HDAC6 modulators, including selective inhibitors, chimeric inhibitors and proteolysis targeting chimeras for multiple therapeutic purposes.
Collapse
|
40
|
Agnew-Francis KA, Williams CM. Squaramides as Bioisosteres in Contemporary Drug Design. Chem Rev 2020; 120:11616-11650. [DOI: 10.1021/acs.chemrev.0c00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kylie A. Agnew-Francis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
41
|
Song H, Hwang YJ, Ha JW, Boo YC. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N-(2-hydroxyethyl)- N-Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independently of Epigenetic Mechanisms. Int J Mol Sci 2020; 21:ijms21134589. [PMID: 32605171 PMCID: PMC7370187 DOI: 10.3390/ijms21134589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify novel antimelanogenic drugs from an epigenetic screening library containing various modulators targeting DNA methyltransferases, histone deacetylases, and other related enzymes/proteins. Of 141 drugs tested, K8 (4-((hydroxyamino)carbonyl)-N-(2-hydroxyethyl)-N-phenyl-benzeneacetamide; HPOB) was found to effectively inhibit the α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16-F10 murine melanoma cells without accompanying cytotoxicity. Additional experiments showed that K8 did not significantly reduce the mRNA and protein level of tyrosinase (TYR) or microphthalmia-associated transcription factor (MITF) in cells, but it potently inhibited the catalytic activity TYR in vitro (IC50, 1.1-1.5 µM) as compared to β-arbutin (IC50, 500-700 µM) or kojic acid (IC50, 63 µM). K8 showed copper chelating activity similar to kojic acid. Therefore, these data suggest that K8 inhibits cellular melanin synthesis not by downregulation of TYR protein expression through an epigenetic mechanism, but by direct inhibition of TYR catalytic activity through copper chelation. Metal chelating activity of K8 is not surprising because it is known to inhibit histone deacetylase (HDAC) 6 through zinc chelation. This study identified K8 as a potent inhibitor of cellular melanin synthesis, which may be useful for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yun Jeong Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
42
|
Demyanenko SV, Dzreyan VA, Uzdensky AB. Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate. Brain Res Bull 2020; 162:151-165. [PMID: 32592806 DOI: 10.1016/j.brainresbull.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Epigenetic processes play important roles in brain responses to ischemic injury. We studied effects of photothrombotic stroke (PTS, a model of ischemic stroke) on the intracellular level and cellular localization of histone deacetylases HDAC3, HDAC4 and HDAC6 in the rat brain cortex, and tested the potential neuroprotector ability of their inhibitors. The background level of HDAC3, HDAC4 and HDAC6 in the rat cerebral cortex was relatively low. HDAC3 localized in the nuclei of some neurons and few astrocytes. HDAC4 was found in the neuronal cytoplasm. After PTS, their levels in penumbra did not change, but HDAC4 appeared in the nuclei of some cells. Its level in the cytoplasmic, but not nuclear fraction of penumbra decreased at 24, but not 4 h after PTS. HDAC6 was upregulated in neurons and astrocytes in the PTS-induced penumbra, especially in the nuclear fraction. Unlike HDAC3 and HDAC4, HDAC6 co-localized with TUNEL-positive apoptotic cells. Inhibitory analysis confirmed the involvement of HDAC6, but not HDAC3 and HDAC4 in neurodegeneration. HDAC6 inhibitor HPOB, HDAC2/8 inhibitor α-phenyl tropolone, and non-specific histone deacetylase inhibitor sodium valproate, but not HDAC3 inhibitor BRD3308, or HDAC4 inhibitor LMK235, decreased PTS-induced infarction volume in the mouse brain, reduced apoptosis, and recovered the motor behavior. HPOB also restored PTS-impaired acetylation of α-tubulin. α-phenyl tropolone restored acetylation of histone H4 in penumbra cells. These results suggest that histone deacetylases HDAC6 and HDAC2 are the possible molecular targets for anti-ischemic therapy, and their inhibitors α-phenyl tropolone, HBOP and sodium valproate can be considered as promising neuroprotectors.
Collapse
Affiliation(s)
- S V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - A B Uzdensky
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia.
| |
Collapse
|
43
|
Yan G, Li D, Zhong X, Liu G, Wang X, Lu Y, Qin F, Guo Y, Duan S, Li D. Identification of HDAC6 selective inhibitors: pharmacophore based virtual screening, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:1928-1939. [PMID: 32178584 DOI: 10.1080/07391102.2020.1743760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HDAC6 regulates the expression and activity of various tumor-related proteins, but currently there is no selective inhibitor targeting HDAC6 for clinical application. In order to discover novel HDAC6 inhibitors, virtual screening methods comprised of pharmacophore based virtual screening, molecular docking and molecular dynamics (MD) simulations were employed. 15 molecules were obtained after virtual screening. After in vitro bioassays, two of the hits showed inhibition activity against HDAC6, among which the inhibition activity of G1 to HDAC6 reached 81% at concentration of 20 μM. In addition, the inhibitory activity against HDAC1 and HDAC10 demonstrated that G1 and G10 were highly selective to HDAC6. The analysis of the binding modes of G1 and G10 provides a reference for further development of highly active HDAC6 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guoyi Yan
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Ge Liu
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xueqin Wang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yuanxiang Lu
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Deyu Li
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
44
|
HDAC6-an Emerging Target Against Chronic Myeloid Leukemia? Cancers (Basel) 2020; 12:cancers12020318. [PMID: 32013157 PMCID: PMC7072136 DOI: 10.3390/cancers12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Imatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer. This protein effectively intervenes in cellular activities by its primarily cytoplasmic localization. In this review, we will discuss the molecular characteristics of the HDAC6 protein, as well as its overexpression in CML leukemic stem cells, which make it a promising therapeutic target for the treatment of CML.
Collapse
|
45
|
Chu H, He QX, Wang J, Hu Y, Wang YQ, Lin ZH. In silico design of novel benzohydroxamate-based compounds as inhibitors of histone deacetylase 6 based on 3D-QSAR, molecular docking, and molecular dynamics simulations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04704j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In silico design of benzohydroxamate-based selective HDAC6 inhibitors.
Collapse
Affiliation(s)
- Han Chu
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| | - Qing-xiu He
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| | - Juan Wang
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| | - Yong Hu
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| | - Yuan-qiang Wang
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| | - Zhi-hua Lin
- Department of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing
- P. R. China
- Key Laboratory of Screening and Activity Evaluation of Targeted Drugs
| |
Collapse
|
46
|
Chen X, Chen X, Steimbach RR, Wu T, Li H, Dan W, Shi P, Cao C, Li D, Miller AK, Qiu Z, Gao J, Zhu Y. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur J Med Chem 2019; 187:111950. [PMID: 31865013 DOI: 10.1016/j.ejmech.2019.111950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023]
Abstract
Histone deacetylase 6 (HDAC6) has gained popular attention for its wide participation in various pathological process recently. In this paper, a series of novel derivatives containing 2, 5-diketopiperazine (DKP) skeleton were developed as potent selective HDAC6 inhibitors (sHDAC6is). Most of these compounds exhibited low nanomolar IC50 values toward HDAC6, and the best compound was 21b (IC50 = 0.73 nM) which had 144-10941-fold selectivity over other HDAC isoforms. Western blot assay further validated these compounds to be sHDAC6is. Molecular simulation of 21b was conducted to rationalize the high binding affinity for HDAC6. In the cytotoxicity experiment, 18a, 18b and 18d gave superior or comparable influence on the growth of two multiple myeloma cells U266 and RPMI-8226 compared to ACY-1215. Moreover, the combination of 18a and adriamycin showed synergistic effect against non-small cell lung cancer cell A549. 18a and 18b also demonstrated appropriate drug metabolism in human liver microsome (HLM).
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xinyang Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Tong Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wenjia Dan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Peidong Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Chenyu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Zhixia Qiu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
47
|
Soumyanarayanan U, Ramanujulu PM, Mustafa N, Haider S, Fang Nee AH, Tong JX, Tan KS, Chng WJ, Dymock BW. Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor. Eur J Med Chem 2019; 184:111755. [DOI: 10.1016/j.ejmech.2019.111755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
|
48
|
Vergani B, Sandrone G, Marchini M, Ripamonti C, Cellupica E, Galbiati E, Caprini G, Pavich G, Porro G, Rocchio I, Lattanzio M, Pezzuto M, Skorupska M, Cordella P, Pagani P, Pozzi P, Pomarico R, Modena D, Leoni F, Perego R, Fossati G, Steinkühler C, Stevenazzi A. Novel Benzohydroxamate-Based Potent and Selective Histone Deacetylase 6 (HDAC6) Inhibitors Bearing a Pentaheterocyclic Scaffold: Design, Synthesis, and Biological Evaluation. J Med Chem 2019; 62:10711-10739. [DOI: 10.1021/acs.jmedchem.9b01194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Vergani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giovanni Sandrone
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Mattia Marchini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Chiara Ripamonti
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Edoardo Cellupica
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Elisabetta Galbiati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Caprini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianfranco Pavich
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giulia Porro
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Ilaria Rocchio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Maria Lattanzio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Marcello Pezzuto
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Malgorzata Skorupska
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paola Cordella
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paolo Pagani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Pietro Pozzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Roberta Pomarico
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Daniela Modena
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Flavio Leoni
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Raffaella Perego
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Christian Steinkühler
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Andrea Stevenazzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| |
Collapse
|
49
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
50
|
Peng X, Liao G, Sun P, Yu Z, Chen J. An Overview of HDAC Inhibitors and their Synthetic Routes. Curr Top Med Chem 2019; 19:1005-1040. [DOI: 10.2174/1568026619666190227221507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Epigenetics play a key role in the origin, development and metastasis of cancer. Epigenetic processes include DNA methylation, histone acetylation, histone methylation, and histone phosphorylation, among which, histone acetylation is the most common one that plays important roles in the regulation of normal cellular processes, and is controlled by histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDACs are involved in the regulation of many key cellular processes, such as DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function, and can lead to oncogene activation. As a result, HDACs are considered to be an excellent target for anti-cancer therapeutics like histone deacetylase inhibitors (HDACi) which have attracted much attention in the last decade. A wide-ranging knowledge of the role of HDACs in tumorigenesis, and of the action of HDACi, has been achieved. The primary purpose of this paper is to summarize recent HDAC inhibitors and the synthetic routes as well as to discuss the direction for the future development of new HDAC inhibitors.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|