1
|
Hartwell AM, Wheat AE, Dijkstra JA. Natural warming differentiates communities and increases diversity in deep-sea Ridge Flank Hydrothermal Systems. Commun Biol 2024; 7:379. [PMID: 38548927 PMCID: PMC10978836 DOI: 10.1038/s42003-024-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Ridge Flank Hydrothermal Systems have discrete pockets of fluid discharge that mimic climate-induced ocean warming. Unlike traditional hydrothermal fluids, those discharged by Ridge Flank Hydrothermal Systems have a chemical composition indistinguishable from background water, enabling evaluation of the effect of warming temperature. Here we link temperature and terrain variables to community composition and biodiversity by combining remotely operated vehicle images of vent and non-vent zone communities with associated environmental variables. We show overall differences in composition, family richness, and biodiversity between zones, though richness and diversity were only significantly greater in vent zones at one location. Temperature was a contributing factor to observed greater biodiversity near vent zones. Overall, our results suggest that warming in the deep sea will affect species composition and diversity. However, due to the diverse outcomes projected for ocean warming, additional research is necessary to forecast the impacts of ocean warming on deep-sea ecosystems.
Collapse
Affiliation(s)
- Anne M Hartwell
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA.
| | - Anna E Wheat
- Oregon State University, 1500 SW Jefferson Ave, Corvallis, OR, 97331, USA
| | - Jennifer A Dijkstra
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA
| |
Collapse
|
2
|
Peoples LM, Gerringer ME, Weston JNJ, León-Zayas R, Sekarore A, Sheehan G, Church MJ, Michel APM, Soule SA, Shank TM. A deep-sea isopod that consumes Sargassum sinking from the ocean's surface. Proc Biol Sci 2024; 291:20240823. [PMID: 39255840 PMCID: PMC11387067 DOI: 10.1098/rspb.2024.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | | | | | - Abisage Sekarore
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | - Grace Sheehan
- Biology Department, Willamette University, Salem, OR, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - S. Adam Soule
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
3
|
Wang Z, Fang C, Yang C, Zhang G, Sun D. Latitudinal gradient and influencing factors of deep-sea particle export along the Kyushu-Palau Ridge in the Philippine Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167460. [PMID: 37797769 DOI: 10.1016/j.scitotenv.2023.167460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The export of particulate organic matter (POM) to deep-sea is crucial for deep-sea ecosystems. However, in situ measurements of large-scale POM export flux are scarce in the tropical and subtropical western Pacific, leading to reliance on biogeochemical models or sediment trap data from a few stations. To address this gap, the underwater vision profiler was used to measure particulate density and to calculate particulate organic carbon (POC) fluxes along the Kyushu-Palau Ridge (KPR) in the Philippine Sea. The results revealed a significant latitudinal gradient of POC fluxes: 37 % of the POC output from 200 m depth was preserved to 2000 m in the Western Pacific Warm Pool and up to 51 % was preserved in the North Pacific Subtropical Gyre. The near-bottom POC fluxes north of 25°N (1.64 ± 0.80 mg m-2 d-1) were significantly higher than the average near-bottom value of the entire transect (0.60 ± 0.43 mg m-2 d-1). Multiple linear regression analysis showed that the chlorophyll concentration had a significant positive effect on the POC fluxes at all depths, except near the bottom, while local factors such as mesoscale eddies and the interaction effect between the topography and current velocity only had significant effects on the POC fluxes at depths of >2000 m. Particle size spectrum analysis revealed that particles ranging from 64 to 323 μm in size exerted a dominant influence on the increase in the POC fluxes in the near-bottom layers situated north of 25°N. These findings indicated that the spatial heterogeneity of POC fluxes in the western Pacific was governed not only by upper ocean primary productivity but also by mesoscale processes, current velocity, and topography. These results provided crucial fundamental information for cartography of the distribution and simulation of the dynamics of deep-sea organisms along the KPR in the Philippine Sea.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China
| | - Chen Fang
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chenghao Yang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Guoyin Zhang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
4
|
Eduardo LN, Lucena-Frédou F, Lanco Bertrand S, Lira AS, Mincarone MM, Nunes GT, Frédou T, Soares A, Le Loc'h F, Pelage L, Schwamborn R, Travassos P, Martins K, Lira SMA, Figueiredo GAA, Júnior TV, Ménard F, Bertrand A. From the light blue sky to the dark deep sea: Trophic and resource partitioning between epipelagic and mesopelagic layers in a tropical oceanic ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163098. [PMID: 36996984 DOI: 10.1016/j.scitotenv.2023.163098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
The connection between epipelagic and deep-sea mesopelagic realms controls a variety of ecosystem processes including oceanic carbon storage and the provision of harvestable fish stocks. So far, these two layers have been mostly addressed in isolation and the ways they connect remain poorly understood. Furthermore, both systems are affected by climate change, exploitation of resources, and increasing pervasion of pollutants. Here we use bulk isotopes of δ13C and δ15N of 60 ecosystem components to evaluate the trophic linkage between epipelagic and mesopelagic ecosystems in warm oligotrophic waters. Additionally, we we conducted a comparison of isotopic niche sizes and overlaps across multiple species to evaluate how environmental gradients between epipelagic and mesopelagic ecosystems shape ecological patterns of resource use and competition between species. Our database comprises siphonophores, crustaceans, cephalopods, salpas, fishes, and seabirds. It also includes five zooplankton size classes, two groups of fish larvae, and particulate organic matter collected at different depths. Through this wide taxonomic and trophic variety of epipelagic and mesopelagic species, we show that pelagic species access resources originating from different food sources, mostly autotrophic-based (epipelagics) and microbial heterotrophic-based (mesopelagics). This leads to a sharp trophic dissimilarity between vertical layers. Additionally, we show that trophic specialization increases in deep-sea species and argue that food availability and environmental stability are among the main drivers of this pattern. Finally, we discuss how the ecological traits of pelagic species highlighted in this study can respond to human impacts and increase their vulnerability in the Anthropocene.
Collapse
Affiliation(s)
- Leandro Nolé Eduardo
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France; Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil.
| | - Flávia Lucena-Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | | | - Alex Souza Lira
- Universidade Federal de Sergipe (UFS), Departamento de Pesca e Aquicultura, Aracajú, SE, Brazil
| | - Michael Maia Mincarone
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade, Macaé, RJ, Brazil; Chapman University, Schmid College of Science and Technology, Orange, CA, USA
| | - Guilherme Tavares Nunes
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de Estudos Costeiros, Limnológicos e Marinhos, Imbé, RS, Brazil
| | - Thierry Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | - Andrey Soares
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | - François Le Loc'h
- Institut de Recherche pour le Développement (IRD), Univ. Brest, CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France
| | - Latifa Pelage
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | - Ralf Schwamborn
- Universidade Federal de Pernambuco (UFPE), Departamento de Oceanografia, Recife, PE, Brazil
| | - Paulo Travassos
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | - Karla Martins
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| | - Simone M A Lira
- Universidade Federal de Pernambuco (UFPE), Departamento de Oceanografia, Recife, PE, Brazil
| | | | - Teodoro Vaske Júnior
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, São Vicente, SP, Brazil
| | - Frédéric Ménard
- Aix Marseille Univ., Université de Toulon, CNRS, UM110 Marseille, IRD, MIO, France
| | - Arnaud Bertrand
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France; Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, PE, Brazil
| |
Collapse
|
5
|
Girard F, Litvin SY, Sherman A, McGill P, Gannon A, Lovera C, DeVogelaere A, Burton E, Graves D, Schnittger A, Barry J. Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proc Biol Sci 2022; 289:20221033. [PMID: 36259212 PMCID: PMC9579760 DOI: 10.1098/rspb.2022.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biological rhythms are widely known in terrestrial and marine systems, where the behaviour or function of organisms may be tuned to environmental variation over periods from minutes to seasons or longer. Although well characterized in coastal environments, phenology remains poorly understood in the deep sea. Here we characterized intra-annual dynamics of feeding activity for the deep-sea octocoral Paragorgia arborea. Hourly changes in polyp activity were quantified using a time-lapse camera deployed for a year on Sur Ridge (1230 m depth; Northeast Pacific). The relationship between feeding and environmental variables, including surface primary production, temperature, acoustic backscatter, current speed and direction, was evaluated. Feeding activity was highly seasonal, with a dormancy period identified between January and early April, reflecting seasonal changes in food availability as suggested by primary production and acoustic backscatter data. Moreover, feeding varied with tides, which likely affected food delivery through cyclic oscillation in current speed and direction. This study provides the first evidence of behavioural rhythms in a coral species at depth greater than 1 km. Information on the feeding biology of this cosmopolitan deep-sea octocoral will contribute to a better understanding of how future environmental change may affect deep-sea coral communities and the ecosystem services they provide.
Collapse
Affiliation(s)
- Fanny Girard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Steven Y Litvin
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Alana Sherman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Paul McGill
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Amanda Gannon
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Christopher Lovera
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Erica Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Dale Graves
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Aaron Schnittger
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Jim Barry
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
6
|
Smith KL, Sherman AD, McGill PR, Henthorn RG, Ferreira J, Connolly TP, Huffard CL. Abyssal Benthic Rover, an autonomous vehicle for long-term monitoring of deep-ocean processes. Sci Robot 2021; 6:eabl4925. [PMID: 34731026 DOI: 10.1126/scirobotics.abl4925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- K L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - A D Sherman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - P R McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - R G Henthorn
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - J Ferreira
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - T P Connolly
- Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA
| | - C L Huffard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
7
|
From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts Involved with Particle Flux in the Ocean. Gels 2021; 7:gels7030114. [PMID: 34449609 PMCID: PMC8395865 DOI: 10.3390/gels7030114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Marine gels (nano-, micro-, macro-) and marine snow play important roles in regulating global and basin-scale ocean biogeochemical cycling. Exopolymeric substances (EPS) including transparent exopolymer particles (TEP) that form from nano-gel precursors are abundant materials in the ocean, accounting for an estimated 700 Gt of carbon in seawater. This supports local microbial communities that play a critical role in the cycling of carbon and other macro- and micro-elements in the ocean. Recent studies have furthered our understanding of the formation and properties of these materials, but the relationship between the microbial polymers released into the ocean and marine snow remains unclear. Recent studies suggest developing a (relatively) simple model that is tractable and related to the available data will enable us to step forward into new research by following marine snow formation under different conditions. In this review, we synthesize the chemical and physical processes. We emphasize where these connections may lead to a predictive, mechanistic understanding of the role of gels in marine snow formation and the biogeochemical functioning of the ocean.
Collapse
|
8
|
Role of internal tide mixing in keeping the deep Andaman Sea warmer than the Bay of Bengal. Sci Rep 2020; 10:11982. [PMID: 32686742 PMCID: PMC7371704 DOI: 10.1038/s41598-020-68708-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/11/2022] Open
Abstract
Vertical profiles of temperature obtained from various hydrographic datasets show that deep waters (below 1,200 m) in the Andaman Sea are warmer (about 2 °C) than that of the Bay of Bengal. As a result, the biochemical properties in the deep waters also exhibit significant differences between these two basins. Higher temperature in the deep waters of Andaman Sea compared to the BoB had been widely attributed to the enclosed nature of the Andaman Sea. In this study, we show that strong tidal energy dissipation in the Andaman Sea also plays an important role in maintaining the higher temperatures in the deep waters. Dissipation rates inferred from the hydrographic data and internal tide energy budget suggests that the rate of vertical mixing in the Andaman Sea is about two-orders of magnitude larger than that in the Bay of Bengal. This elevated internal tide induced vertical mixing results in the efficient transfer of heat into the deeper layers, which keeps the deep Andaman Sea warm. Numerical experiments conducted using a high-resolution setup of Regional Ocean Modelling System (ROMS) further confirm the effect of tidal mixing in the Andaman Sea.
Collapse
|
9
|
Cunha M, Génio L, Pradillon F, Clavel Henry M, Beaulieu S, Birch J, Campuzano F, Carretón M, De Leo F, Gula J, Laming S, Lindsay D, Matos F, Metaxas A, Meyer-Kaiser K, Mills S, Queiroga H, Rodrigues C, Sarrazin J, Watanabe H, Young R, Young C. Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e54284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent advances in technology have enabled an unprecedented development of underwater research, extending from near shore to the deepest regions of the globe. However, monitoring of biodiversity is not fully implemented in political agendas and biological observations in the deep ocean have been even more limited in space and time.
The Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton was convened to to foster advances in the knowledge on deep-ocean invertebrate larval distributions and improve our understanding of fundamental deep-ocean ecological processes such as connectivity and resilience of benthic communities to natural and human-induced disturbance. This Meroplankton Observations Workshop had two specific goals: 1) review the state-of-the-art instrumentation available for meroplankton observations; 2) develop a strategy to implement technological innovations for in-situ meroplankton observation. Presentations and discussions are summarised in this report covering: i) key challenges and priorities for advancing the knowledge of deep-sea larval diversity and distribution: ii) recent developments in technology and future needs for plankton observation, iii) data integration and oceanographic modelling; iv) synergies and added value of a sustained observation system for meroplankton; v) steps for developing a sustained observation system for deep-ocean meroplankton and plans to maximise collaborative opportunities.
Collapse
|
10
|
Milligan RJ, Scott EM, Jones DOB, Bett BJ, Jamieson AJ, O'Brien R, Pereira Costa S, Rowe GT, Ruhl HA, Smith KL, de Susanne P, Vardaro MF, Bailey DM. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic? J Anim Ecol 2020; 89:1593-1603. [PMID: 32198925 DOI: 10.1111/1365-2656.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5-year record of photographic data from the Deep-ocean Environmental Long-term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra-annual) migratory behaviours in a deep-sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra-annual changes in demersal fish abundance at 1,400 m depth and satellite-derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom-up trophic structuring in deep-sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep-sea demersal fish abundances over a 7-year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems.
Collapse
Affiliation(s)
- Rosanna J Milligan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - E Marian Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | | | | | - Alan J Jamieson
- School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert O'Brien
- BP Exploration Operating Company Limited, Sunbury on Thames, UK
| | - Sofia Pereira Costa
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - Henry A Ruhl
- National Oceanography Centre, Southampton, UK.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ken L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Philippe de Susanne
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol 2020; 4:181-192. [PMID: 32015428 DOI: 10.1038/s41559-019-1091-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
Abstract
The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.
Collapse
|
12
|
Ashford OS, Kenny AJ, Barrio Froján CRS, Horton T, Rogers AD. Investigating the environmental drivers of deep-seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecol Evol 2019; 9:14167-14204. [PMID: 31938511 PMCID: PMC6953587 DOI: 10.1002/ece3.5852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 11/14/2022] Open
Abstract
The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.
Collapse
Affiliation(s)
- Oliver S. Ashford
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
- Present address:
Scripps Institution of OceanographyLa JollaCAUSA
| | - Andrew J. Kenny
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | | | - Tammy Horton
- National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
| | | |
Collapse
|
13
|
Durden JM, Bett BJ, Huffard CL, Ruhl HA, Smith KL. Abyssal deposit-feeding rates consistent with the metabolic theory of ecology. Ecology 2019; 100:e02564. [PMID: 30601573 PMCID: PMC6850628 DOI: 10.1002/ecy.2564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
The Metabolic Theory of Ecology (MTE) posits that metabolic rate controls ecological processes, such as the rate of resource uptake, from the individual‐ to the ecosystem‐scale. Metabolic rate has been found empirically to be an exponential function of whole organism body mass. We test a fundamental assumption of MTE, whether resource uptake scales to metabolism, by examining detritivores accessing a single common resource pool, an ideal study case. We used an existing empirical model of ingestion for aquatic deposit feeders adjusted for temperature to test whether ingestion by abyssal deposit feeders conforms to MTE‐predicted feeding rates. We estimated the sediment deposit‐feeding rates of large invertebrates from two abyssal study sites using time‐lapse photography, and related those rates to body mass, environmental temperature, and sediment organic matter content using this framework. Ingestion was significantly related to individual wet mass, with a mass‐scaling coefficient of 0.81, with 95% confidence intervals that encompass the MTE‐predicted value of 0.75, and the same pattern determined in other aquatic systems. Our results also provide insight into the potential mechanism through which this fundamental assumption operates. After temperature correction, both deep‐ and shallow‐water taxa might be summarized into a single mass‐scaled ingestion rate.
Collapse
Affiliation(s)
- Jennifer M Durden
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.,National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Brian J Bett
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Christine L Huffard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| | - Henry A Ruhl
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Kenneth L Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| |
Collapse
|
14
|
Henson S, Le Moigne F, Giering S. Drivers of Carbon Export Efficiency in the Global Ocean. GLOBAL BIOGEOCHEMICAL CYCLES 2019; 33:891-903. [PMID: 32063666 PMCID: PMC7006809 DOI: 10.1029/2018gb006158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 05/09/2023]
Abstract
The export of organic carbon from the surface ocean forms the basis of the biological carbon pump, an important planetary carbon flux. Typically, only a small fraction of primary productivity (PP) is exported (quantified as the export efficiency: export/PP). Here we assemble a global data synthesis to reveal that very high export efficiency occasionally occurs. These events drive an apparent inverse relationship between PP and export efficiency, which is opposite to that typically used in empirical or mechanistic models. At the global scale, we find that low PP, high export efficiency regimes tend to occur when macrozooplankton and bacterial abundance are low. This implies that a decoupling between PP and upper ocean remineralization processes can result in a large fraction of PP being exported, likely as intact cells or phytoplankton-based aggregates. As the proportion of PP being exported declines, macrozooplankton and bacterial abundances rise. High export efficiency, high PP regimes also occur infrequently, possibly associated with nonbiologically mediated export of particles. A similar analysis at a biome scale reveals that the factors affecting export efficiency may be different at regional and global scales. Our results imply that the whole ecosystem structure, rather than just the phytoplankton community, is important in setting export efficiency. Further, the existence of low PP, high export efficiency regimes imply that biogeochemical models that parameterize export efficiency as increasing with PP may underestimate export flux during decoupled periods, such as at the start of the spring bloom.
Collapse
Affiliation(s)
| | - Fred Le Moigne
- GEOMAR Helmholtz Center for Ocean Research KielKielGermany
- Now at Mediterranean Institute of Oceanography, UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRDMarseilleFrance
| | - Sarah Giering
- National Oceanography CenterEuropean WaySouthamptonUK
| |
Collapse
|
15
|
Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nat Commun 2019; 10:1895. [PMID: 31028256 PMCID: PMC6486601 DOI: 10.1038/s41467-019-09772-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/29/2019] [Indexed: 11/08/2022] Open
Abstract
The major biogeochemical cycles of marine ecosystems are driven by solar energy. Energy that is initially captured through photosynthesis is transformed and transported to great ocean depths via complex, yet poorly understood, energy flow networks. Herein we show that the chemical composition and specific energy (Joules per unit mass or organic carbon) of sinking particulate matter collected in the North Pacific Subtropical Gyre reveal dramatic changes in the upper 500 m of the water column as particles sink and age. In contrast to these upper water column processes, particles reaching the deep sea (4000 m) are energy-replete with organic carbon-specific energy values similar to surface phytoplankton. These enigmatic results suggest that the particles collected in the abyssal zone must be transported by rapid sinking processes. These fast-sinking particles control the pace of deep-sea benthic communities that live a feast-or-famine existence in an otherwise energy-depleted habitat.
Collapse
|
16
|
Smith KL, Ruhl HA, Huffard CL, Messié M, Kahru M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc Natl Acad Sci U S A 2018; 115:12235-12240. [PMID: 30429327 PMCID: PMC6275536 DOI: 10.1073/pnas.1814559115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by ∼80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle.
Collapse
Affiliation(s)
- Kenneth L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039;
| | - Henry A Ruhl
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039
- National Oceanography Centre, University of Southampton, SO14 3ZH Southampton, United Kingdom
| | | | - Monique Messié
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039
- Aix Marseille Université, Université de Toulon, CNRS, Institut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO), Unité Mixte 110, 13288 Marseille, France
| | - Mati Kahru
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
17
|
Wang Y, Chen X, Guo W, Zhou H. Distinct bacterial and archaeal diversities and spatial distributions in surface sediments of the Arctic Ocean. FEMS Microbiol Lett 2018; 365:5184458. [DOI: 10.1093/femsle/fny273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005 Xiamen, P.R. China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005 Xiamen, P.R. China
- College of Animal Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, P.R. China
| | - Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005 Xiamen, P.R. China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, 410083 Changsha, P.R. China
| |
Collapse
|
18
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Brown A, Hauton C, Stratmann T, Sweetman A, van Oevelen D, Jones DOB. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172162. [PMID: 29892403 PMCID: PMC5990736 DOI: 10.1098/rsos.172162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200-4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Tanja Stratmann
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Andrew Sweetman
- The Sir Charles Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Daniel O. B. Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
20
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
21
|
Snelgrove PVR, Soetaert K, Solan M, Thrush S, Wei CL, Danovaro R, Fulweiler RW, Kitazato H, Ingole B, Norkko A, Parkes RJ, Volkenborn N. Global Carbon Cycling on a Heterogeneous Seafloor. Trends Ecol Evol 2017; 33:96-105. [PMID: 29248328 DOI: 10.1016/j.tree.2017.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Diverse biological communities mediate the transformation, transport, and storage of elements fundamental to life on Earth, including carbon, nitrogen, and oxygen. However, global biogeochemical model outcomes can vary by orders of magnitude, compromising capacity to project realistic ecosystem responses to planetary changes, including ocean productivity and climate. Here, we compare global carbon turnover rates estimated using models grounded in biological versus geochemical theory and argue that the turnover estimates based on each perspective yield divergent outcomes. Importantly, empirical studies that include sedimentary biological activity vary less than those that ignore it. Improving the relevance of model projections and reducing uncertainty associated with the anticipated consequences of global change requires reconciliation of these perspectives, enabling better societal decisions on mitigation and adaptation.
Collapse
Affiliation(s)
- Paul V R Snelgrove
- Department of Ocean Sciences and Biology Department, Memorial University of Newfoundland, St John's NL A1C 5S7, Canada.
| | - Karline Soetaert
- Estuarine and Delta Systems, Netherlands Institute of Sea Research and Utrecht University, Yerseke, The Netherlands
| | - Martin Solan
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Simon Thrush
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand
| | - Chih-Lin Wei
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Robinson W Fulweiler
- Departments of Earth and Environment and Biology, Boston University, Boston, MA, USA
| | - Hiroshi Kitazato
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Baban Ingole
- National Institute of Oceanography, Dona Paula, Goa 403004 , India
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Stockholm University Baltic Sea Centre, 106 91 Stockholm
| | - R John Parkes
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Nils Volkenborn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| |
Collapse
|
22
|
Durden JM, Luo JY, Alexander H, Flanagan AM, Grossmann L. Integrating “Big Data” into Aquatic Ecology: Challenges and Opportunities. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/lob.10213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Danovaro R, Aguzzi J, Fanelli E, Billett D, Gjerde K, Jamieson A, Ramirez-Llodra E, Smith CR, Snelgrove PVR, Thomsen L, Dover CLV. An ecosystem-based deep-ocean strategy. Science 2017; 355:452-454. [PMID: 28154032 DOI: 10.1126/science.aah7178] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- R Danovaro
- Polytechnic University of Marche, 60121 Ancona, Italy. .,Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - J Aguzzi
- Instituto de Ciencias del Mar (CSIC), 08003 Barcelona, Spain
| | - E Fanelli
- Marine Environment Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 19100 Pozzuolo di Lerici, Italy
| | - D Billett
- National Oceanography Centre, Southampton SO14 3ZH, UK
| | - K Gjerde
- Wycliffe Management, 02-123 Warsaw, Poland.,IUCN, 1196 Gland, Switzerland
| | - A Jamieson
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - E Ramirez-Llodra
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway
| | - C R Smith
- University of Hawaii at Mano'a, Honolulu, HI 96822, USA
| | - P V R Snelgrove
- Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada
| | - L Thomsen
- Jacobs University, 28759 Bremen, Germany
| | | |
Collapse
|
24
|
Drazen JC, Sutton TT. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:337-366. [PMID: 27814034 DOI: 10.1146/annurev-marine-010816-060543] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deep-sea fishes inhabit ∼75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.
Collapse
Affiliation(s)
- Jeffrey C Drazen
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004;
| |
Collapse
|
25
|
Smith KL, Huffard CL, Sherman AD, Ruhl HA. Decadal Change in Sediment Community Oxygen Consumption in the Abyssal Northeast Pacific. AQUATIC GEOCHEMISTRY 2016; 22:401-417. [PMID: 32355451 PMCID: PMC7175715 DOI: 10.1007/s10498-016-9293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/30/2016] [Indexed: 06/11/2023]
Abstract
Long time-series studies are critical to assessing impacts of climate change on the marine carbon cycle. A 27-year time-series study in the abyssal northeast Pacific (Sta. M, 4000 m depth) has provided the first concurrent measurements of sinking particulate organic carbon supply (POC flux) and remineralization by the benthic community. Sediment community oxygen consumption (SCOC), an estimate of organic carbon remineralization, was measured in situ over daily to interannual periods with four different instruments. Daily averages of SCOC ranged from a low of 5.0 mg C m-2 day-1 in February 1991 to a high of 31.0 mg C m-2 day-1 in June 2012. POC flux estimated from sediment trap collections at 600 and 50 m above bottom ranged from 0.3 mg C m-2 day-1 in October 2013 to 32.0 mg C m-2 day-1 in June 2011. Monthly averages of SCOC and POC flux correlated significantly with no time lag. Over the long time series, yearly average POC flux accounted for 63 % of the estimated carbon demand of the benthic community. Long time-series studies of sediment community processes, particularly SCOC, have shown similar fluctuations with the flux of POC reaching the abyssal seafloor. SCOC quickly responds to changes in food supply and tracks POC flux. Yet, SCOC consistently exceeds POC flux as measured by sediment traps alone. The shortfall of ~37 % could be explained by sediment trap sampling artifacts over decadal scales including undersampling of large sinking particles. High-resolution measurements of SCOC are critical to developing a realistic carbon cycle model for the open ocean. Such input is essential to evaluate the impact of climate change on the oceanic carbon cycle, and the long-term influences on the sedimentation record.
Collapse
Affiliation(s)
- K. L. Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - C. L. Huffard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - A. D. Sherman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - H. A. Ruhl
- National Oceanography Centre, Southampton, UK
| |
Collapse
|
26
|
Basher Z, Costello MJ. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 2016; 4:e1713. [PMID: 26925334 PMCID: PMC4768674 DOI: 10.7717/peerj.1713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.
Collapse
Affiliation(s)
- Zeenatul Basher
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| | - Mark J. Costello
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Abstract
The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.
Collapse
Affiliation(s)
- Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0218, USA.
| | - Nadine Le Bris
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
28
|
van der Grient JMA, Rogers AD. Body Size Versus Depth: Regional and Taxonomical Variation in Deep-Sea Meio- and Macrofaunal Organisms. ADVANCES IN MARINE BIOLOGY 2015; 71:71-108. [PMID: 26320616 DOI: 10.1016/bs.amb.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Body size (weight per individual) is an important concept in ecology. It has been studied in the deep sea where a decrease in size with increasing depth has often been found. This has been explained as an adaptation to food limitation where size reduction results in a lowered metabolic rate and a decreased energetic requirement. However, observations vary, with some studies showing an increase in size with depth, and some finding no depth correlation at all. Here, we collected data from peer-reviewed studies on macro- and meiofaunal abundance and biomass, creating two datasets allowing statistical comparison of factors expected to influence body size in meio- and macrofaunal organisms. Our analyses examined the influence of region, taxonomic group and sampling method on the body size of meiofauna and macrofauna in the deep sea with increasing depth, and the resulting models are presented. At the global scale, meio- and macrofaunal communities show a decrease in body size with increasing depth as expected with the food limitation hypothesis. However, at the regional scale there were differences in trends of body size with depth, either showing a decrease (e.g. southwest Pacific Ocean; meio- and macrofauna) or increase (e.g. Gulf of Mexico; meiofauna only) compared to a global mean. Taxonomic groups also showed differences in body size trends compared to total community average (e.g. Crustacea and Bivalvia). Care must be taken when conducting these studies, as our analyses indicated that sampling method exerts a significant influence on research results. It is possible that differences in physiology, lifestyle and life history characteristics result in different responses to an increase in depth and/or decrease in food availability. This will have implications in the future as food supply to the deep sea changes as a result of climate change (e.g. increased ocean stratification at low to mid latitudes and reduced sea ice duration at high latitudes).
Collapse
Affiliation(s)
| | - Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Sweetman AK, Smith CR, Dale T, Jones DOB. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proc Biol Sci 2015; 281:20142210. [PMID: 25320167 DOI: 10.1098/rspb.2014.2210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagic-benthic coupling.
Collapse
Affiliation(s)
- Andrew K Sweetman
- International Research Institute of Stavanger, Mekjarvik 12, Randaberg 4070, Norway
| | - Craig R Smith
- University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI 96822, USA
| | - Trine Dale
- Norwegian Institute for Water Research (NIVA), Thormøhlensgate 53D, Bergen 5006, Norway
| | - Daniel O B Jones
- National Oceanography Center, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
30
|
Laguionie-Marchais C, Kuhnz LA, Huffard CL, Ruhl HA, Smith KL. Spatial and temporal variation in sponge spicule patches at Station M, northeast Pacific. MARINE BIOLOGY 2015; 162:617-624. [PMID: 25705055 PMCID: PMC4325134 DOI: 10.1007/s00227-014-2609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/30/2014] [Indexed: 05/19/2023]
Abstract
Changes in habitat-forming organisms can have complex consequences for associated species. Sessile epibenthic glass "plate" sponges (Porifera: Hexactinellida) are conspicuous inhabitants of soft-sediment abyssal areas and their siliceous spicules create persistent spicule patches on the seafloor. Sponge spicule patch density, spatial dispersion, and percent cover were examined over a seven-year period (2006-2013) using remotely operated vehicle videos from Station M in the abyssal northeast Pacific (50˚00N, 123˚00W, ~4,000 m depth). There was an apparent large increase in newly dead plate sponges in February 2007 compared with December 2006, with this trend continuing through June 2007 (mean 0.03 % cover increasing to 0.33 %). A second increase in mean percent cover of dead plate sponges occurred from May 2011 (0.24 %) through June 2012 (0.60 %). Among the 28 megafaunal taxa occurring in association with the patches, the distributions of three taxa [two sponge taxa (Porifera) and brittle stars (Ophiuroidea)] suggested selectivity for the sponge spicule patches. The community structure of visible megafauna within sponge spicule patches was different when compared with that outside the patches suggesting that the sponges, after death, provide preferred habitat patches for certain benthic megafauna. These findings indicate that sponge spicule patches contribute to habitat heterogeneity in space and time.
Collapse
Affiliation(s)
- C. Laguionie-Marchais
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3HZ UK
- Department of Zoology (Polychaete Group), Natural History Museum, London, SW7 5BD UK
| | - L. A. Kuhnz
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| | - C. L. Huffard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| | - H. A. Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3HZ UK
| | - K. L. Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| |
Collapse
|
31
|
|
32
|
Jones DOB, Yool A, Wei CL, Henson SA, Ruhl HA, Watson RA, Gehlen M. Global reductions in seafloor biomass in response to climate change. GLOBAL CHANGE BIOLOGY 2014; 20:1861-72. [PMID: 24382828 PMCID: PMC4261893 DOI: 10.1111/gcb.12480] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/20/2013] [Indexed: 05/06/2023]
Abstract
Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
Collapse
Affiliation(s)
- Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | | | | | | | | | | | | |
Collapse
|