1
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
2
|
Berdugo S, Cohen E, Davis AJ, Matsuzawa T, Carvalho S. Reliable long-term individual variation in wild chimpanzee technological efficiency. Nat Hum Behav 2025; 9:472-480. [PMID: 39715870 PMCID: PMC11936830 DOI: 10.1038/s41562-024-02071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/23/2024] [Indexed: 12/25/2024]
Abstract
Variation in the efficiency of extracting calorie-rich and nutrient-dense resources directly impacts energy expenditure and potentially has important repercussions for cultural transmission where social learning strategies are used. Assessing variation in efficiency is key to understanding the evolution of complex behavioural traits in primates. Here we examine evidence for individual-level differences beyond age- and sex-class in non-human primate extractive foraging efficiency. We used 25 years (1992-2017) of video of 21 chimpanzees aged ≥6 years in Bossou, Guinea, to longitudinally investigate individual-level differences in stone tool use efficiency. Data from 3,882 oil-palm nut-cracking bouts from >800 h of observation were collected. We found reliability in relative efficiency across four measures of nut-cracking efficiency, as well as a significant effect of age. Our findings highlight the importance of longitudinal data from long-term field sites when investigating underlying cognitive and behavioural diversity across individual lifespans and between populations.
Collapse
Grants
- 12002009 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16002001 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20002001 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24000001 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06283 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 07102010 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- University of Oxford’s Clarendon Fund Scholarship (SFF1920_CB2_SSD_1153789) and the Boise Trust Fund (University of Oxford, UK).
- Junior Research Fellowship (Wadham College, University of Oxford).
Collapse
Affiliation(s)
- S Berdugo
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK.
- Centre for the Study of Social Cohesion, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK.
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution of Human Behaviour FCHS, Universidade do Algarve, Faro, Portugal.
| | - E Cohen
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
- Centre for the Study of Social Cohesion, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - A J Davis
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
- Centre for the Study of Social Cohesion, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
- Wadham College, University of Oxford, Oxford, UK
| | - T Matsuzawa
- Department of Pedagogy, Chubu Gakuin University, Gifu, Japan
- College of Life Science, Northwest University, Xi'an, China
| | - S Carvalho
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution of Human Behaviour FCHS, Universidade do Algarve, Faro, Portugal
- Department of Science, Gorongosa National Park, Sofala, Mozambique
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
3
|
Pontzer H. The energetics of movement, from exercise to ecology and evolution. J Exp Biol 2025; 228:JEB247988. [PMID: 39973189 DOI: 10.1242/jeb.247988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Movement is energetically costly, requiring muscle activity to support and propel the animal as it walks, runs, climbs, swims or flies. In this Review, I examine the metabolic impact of locomotion over different timescales. During locomotion, whole-body energy expenditure can rise by more than an order of magnitude above resting, and these costs arise from activating muscle to exert force as well as the work that muscles perform. Over hours or days, locomotion can dominate daily energy expenditure (i.e. field metabolic rate), particularly when provisioning young, migrating, or during other periods of intense activity. The relationship between muscle force and metabolic cost means that locomotor costs and daily expenditures can be tracked using wearable accelerometers. Over longer timescales, however, the relationship between locomotion and daily expenditure becomes more tenuous. Compensatory trade-offs with other physiological activity, including thermoregulation, growth, maintenance and reproduction, obscure the relationship between daily locomotor activity and daily energy expenditure. Over evolutionary timeframes, variation in daily locomotor activity does not predict variation in daily expenditure. The apparent trade-offs between locomotor expenditure and other physiological tasks suggests that, over long timescales, the cost of locomotion might be best measured by its effects on other systems. The impact of locomotion on growth, reproduction and maintenance should be incorporated into ecological and evolutionary assessments of the costs of movement.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology and Duke Global Health Institute, Duke University, 211 Biological Sciences, Durham, NC 27708, USA
| |
Collapse
|
4
|
Yegian AK, Heymsfield SB, Castillo ER, Müller MJ, Redman LM, Lieberman DE. Metabolic scaling, energy allocation tradeoffs, and the evolution of humans' unique metabolism. Proc Natl Acad Sci U S A 2024; 121:e2409674121. [PMID: 39556743 PMCID: PMC11621513 DOI: 10.1073/pnas.2409674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
All organisms use limited energy to grow, survive, and reproduce, necessitating energy allocation tradeoffs, but there is debate over how selection impacted metabolic budgets and tradeoffs in primates, including humans. Here, we develop a method to compare metabolic rates as quotients of observed relative to expected values for mammals corrected for size, body composition, environmental temperature, and phylogenetic relatedness. Contrary to previous analyses, these quotients reveal that nonhuman primates have total metabolic rates expected for similar-sized mammals in similar environments. In addition, data from several small-scale societies show that humans evolved exceptionally high resting, activity, and total metabolic rates apparently by overcoming tradeoffs between resting and active energy expenditures that constrain other primates. Enhanced metabolic rates help humans fuel expanded brains, faster reproductive rates, extended longevity, and high percentage of body fat.
Collapse
Affiliation(s)
- Andrew K. Yegian
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Steven B. Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA70808
| | - Eric R. Castillo
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Manfred J. Müller
- Institute of Human Nutrition and Food Science, Department of Nutrition, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - Leanne M. Redman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA70808
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Sánchez-Vidal RO, Rangel-Negrín A, Briseño-Jaramillo M, Sosa-López JR, Dias PAD. Acoustic recognition of predators by mantled howler monkeys (Alouatta palliata): A playback experiment with naïve and experienced subjects. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25013. [PMID: 39139025 DOI: 10.1002/ajpa.25013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES When the production of antipredator behaviors is costly, prey is expected to stop displaying such behaviors and lose the ability to recognize extirpated predators. However, the loss or maintenance of predator recognition abilities is conditional on the eco-evolutionary context of prey. Here, we examined the behavioral responses of naïve and experienced mantled howler monkeys (Alouatta palliata) to simulated acoustic cues from natural predators. METHODS We studied experienced individuals in the Uxpanapa Valley and naïve individuals in Los Tuxtlas (Veracruz, México). Jaguars (Panthera onca) and harpy eagles (Harpia harpyja), the main predators of howler monkeys, are extant in the Uxpanapa Valley but have been extirpated in Los Tuxtlas for approximately 70 and 45 years, respectively. We exposed six naïve and six experienced groups to playbacks of acoustic stimuli from the two predators and a non-predator control species (plain chachalacas, Ortalis vetula), and recorded the latency, frequency, and duration of antipredation behaviors (n = 127 trials). RESULTS In contrast with experienced mantled howler monkeys, naïve subjects did not respond to trials from harpy eagles. However, response patterns were generally similar between naïve and experienced individuals when exposed to jaguar stimuli. DISCUSSION Our findings suggest that naïve mantled howler monkeys do not recognize harpy eagle calls, but they respond to jaguar calls in a manner consistent with experienced individuals. These results illustrate how different mechanisms for the recognition of extirpated predators operate within a single species according to evolutionary and ecological experience.
Collapse
Affiliation(s)
- Rafael Omar Sánchez-Vidal
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, Mexico
| | - Ariadna Rangel-Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, Mexico
| | | | - J Roberto Sosa-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca (CIIDIR), Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, Mexico
| | - Pedro A D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
6
|
Keeney JG, Astling D, Andries V, Vandepoele K, Anderson N, Davis JM, Lopert P, Vandenbussche J, Gevaert K, Staes A, Paukovich N, Vögeli B, Jones KL, van Roy F, Patel M, Sikela JM. Olduvai domain expression downregulates mitochondrial pathways: implications for human brain evolution and neoteny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619278. [PMID: 39484454 PMCID: PMC11526873 DOI: 10.1101/2024.10.21.619278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Encoded by the NBPF gene family, Olduvai (formerly DUF1220) protein domains have undergone the largest human lineage-specific copy number expansion of any coding region in the genome. Olduvai copy number shows a linear relationship with several brain size-related measures and cortical neuron number among primates and with normal and disease-associated (micro- and macrocephaly) variation in brain size in human populations. While Olduvai domains have been shown to promote proliferation of neural stem cells, the mechanism underlying such effects has remained unclear. Here, we investigate the function of Olduvai by transcriptome and proteome analyses of cells overexpressing NBPF1, a gene encoding 7 Olduvai domains. Our results from both RNAseq and mass spectrometry approaches suggest a potential downregulation of mitochondria. In our proteomics study, a Gene Ontology (GO) enrichment analysis for the downregulated proteins revealed a striking overrepresentation of the biological process related to the mitochondrial electron transport chain (p value: 1.81e-11) and identified deregulation of the NADH dehydrogenase activity (p value: 2.43e-11) as the primary molecular function. We verify the reduction of apparent mitochondria via live-cell imaging experiments. Given these and previous Olduvai findings, we suggest that the Olduvai-mediated, dosage-dependent reduction in available energy via mitochondrial downregulation may have resulted in a developmental slowdown such that the neurogenic window among primates, and most extremely in humans, was expanded over a greater time interval, allowing for production of greater numbers of neurons and a larger brain. We further suggest that such a slowdown may extend to other developmental processes that also exhibit neotenic features.
Collapse
Affiliation(s)
- Jonathon G. Keeney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanessa Andries
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karl Vandepoele
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nathan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pamela Lopert
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Vandenbussche
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth l. Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Frans van Roy
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Neuroscience Programs, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Simmen B, Quintard B, Lefaux B, Tarnaud L, Correa-Pimpao G, Ibanez R, Blanc S, Zahariev A. Thermal and morphometric correlates of the extremely low rate of energy use in a wild frugivorous primate, the Mayotte lemur. Sci Rep 2024; 14:21700. [PMID: 39289438 PMCID: PMC11408505 DOI: 10.1038/s41598-024-72189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Primates spend on average half as much energy as other placental mammals while expressing a wide range of lifestyles. However, little is known about how primates adapt their rate of energy use in the context of natural environmental variations. Using doubly labelled water, behavioral and accelerometric methods, we measured the total energy expenditure (TEE) and body composition of a population of Eulemur fulvus (N = 12) living in an agroforest in Mayotte. We show that the TEE of this medium-sized cathemeral primate is one of the lowest recorded to date in eutherians. Regression models show that individual variation in the rate of energy use is predicted by fat-free mass, body size, thigh thickness and maximum temperature. TEE is positively correlated with increasing temperature, suggesting that thermoregulation is an important component of the energy budget of this frugivorous species. Mass-specific TEE is only 10% lower than that of a closely related species previously studied in a gallery forest, consistent with the assertion that TEE varies within narrow physiological limits. As lemur communities include many species with unique thermoregulatory adaptations, circadian and/or seasonal temperature variations may have constituted a major selective pressure on the evolution of lemur metabolic strategies.
Collapse
Affiliation(s)
- B Simmen
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France.
| | - B Quintard
- Parc Zoologique et Botanique de Mulhouse, 68100, Mulhouse, France
| | - B Lefaux
- Parc Zoologique et Botanique de Mulhouse, 68100, Mulhouse, France
| | - L Tarnaud
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - G Correa-Pimpao
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - R Ibanez
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - S Blanc
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | - A Zahariev
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
8
|
Estrada GR, Marshall AJ. Terrestriality across the primate order: A review and analysis of ground use in primates. Evol Anthropol 2024; 33:e22032. [PMID: 38736241 DOI: 10.1002/evan.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Terrestriality is relatively rare in the predominantly arboreal primate order. How frequently, and when, terrestriality appears in primate evolution, and the factors that influence this behavior, are not well understood. To investigate this, we compiled data describing terrestriality in 515 extant nonhuman primate taxa. We describe the geographic and phylogenetic distribution of terrestriality, including an ancestral state reconstruction estimating the frequency and timing of evolutionary transitions to terrestriality. We review hypotheses concerning the evolution of primate terrestriality and test these using data we collected pertaining to characteristics including body mass and diet, and ecological factors including forest structure, food availability, weather, and predation pressure. Using Bayesian analyses, we find body mass and normalized difference vegetation index are the most reliable predictors of terrestriality. When considering subsets of taxa, we find ecological factors such as forest height and rainfall, and not body mass, are the most reliable predictors of terrestriality for platyrrhines and lemurs.
Collapse
Affiliation(s)
- Gene R Estrada
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- School of Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
- Program in the Environment, University of Michigan, Ann Arbor, Michigan, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Maya Lastra N, Rangel Negrín A, Coyohua Fuentes A, Dias PAD. Mantled howler monkey males assess their rivals through formant spacing of long-distance calls. Primates 2024; 65:183-190. [PMID: 38381271 DOI: 10.1007/s10329-024-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Formant frequency spacing of long-distance vocalizations is allometrically related to body size and could represent an honest signal of fighting potential. There is, however, only limited evidence that primates use formant spacing to assess the competitive potential of rivals during interactions with extragroup males, a risky context. We hypothesized that if formant spacing of long-distance calls is inversely related to the fighting potential of male mantled howler monkeys (Alouatta palliata), then males should: (1) be more likely and (2) faster to display vocal responses to calling rivals; (3) be more likely and (4) faster to approach calling rivals; and have higher fecal (5) glucocorticoid and (6) testosterone metabolite concentrations in response to rivals calling at intermediate and high formant spacing than to those with low formant spacing. We studied the behavioral responses of 11 adult males to playback experiments of long-distance calls from unknown individuals with low (i.e., emulating large individuals), intermediate, and high (i.e., small individuals) formant spacing (n = 36 experiments). We assayed fecal glucocorticoid and testosterone metabolite concentrations (n = 174). Playbacks always elicited vocal responses, but males responded quicker to intermediate than to low formant spacing playbacks. Low formant spacing calls were less likely to elicit approaches whereas high formant spacing calls resulted in quicker approaches. Males showed stronger hormonal responses to low than to both intermediate and high formant spacing calls. It is possible that males do not escalate conflicts with rivals with low formant spacing calls if these are perceived as large, and against whom winning probabilities should decrease and confrontation costs increase; but are willing to escalate conflicts with rivals of high formant spacing. Formant spacing may therefore be an important signal for rival assessment in this species.
Collapse
Affiliation(s)
- Natalia Maya Lastra
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N, CP 91190, Xalapa, México
| | - Ariadna Rangel Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N, CP 91190, Xalapa, México
| | - Alejandro Coyohua Fuentes
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N, CP 91190, Xalapa, México
| | - Pedro A D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N, CP 91190, Xalapa, México.
| |
Collapse
|
10
|
Dittus W, Baker A. Maternal care in wild toque macaques (Macaca sinica) involves prolonged lactation and interbirth intervals as adaptations to reduce maternal depletion and infant mortality in harsh environments. Am J Primatol 2024; 86:e23584. [PMID: 38095045 DOI: 10.1002/ajp.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Weaning age in primates has been challenging to measure and new methods, involving molecular biomarkers in feces, tissue, or teeth have contributed to a solution. Here, we used a direct approach by briefly anesthetizing 442 female toque macaques (Macaca sinica) of Sri Lanka (over a 17-year period) and manually testing their mammary tissue for the presence or absence of milk. Milk tests were related to known offspring ages and maternal care behaviors and indicated that older infants suckled milk well past the weaning age of 7 months that is often reported for food-provisioned primates. Mothers strongly rejected their infants' nursing attempts in two phases, the first at 7 months as an honest signal "giving notice" promoting a shift to greater independence from milk to solid food, and when "shutting down" at final weaning after 12-18 months. The shift to supplementary lactation coincided also with the cessation of mothers carrying their infants and a resumption of cycling. All infants up to 7.2 months suckled milk, 91% of them did up to 18 months, this continued for 42% of infants beyond 18 months, and normally none received milk after 22 months. Lactation extended into 2.2% of cycling and 10.7% of pregnant females (up to 50% of gestation). The interbirth interval was prolonged by factors predicted to draw on female metabolic energy reserves and included the duration of lactation, growth among primiparas, and dietary limitations. The last also increased menarche. Females offset the metabolic costs of lactation with increased foraging and catabolism, but infants died when lactation costs seemingly compromised maternal condition. The prolonged lactation and slowed reproduction are considered adaptations to promote infant survival and growth in an environment where the natural food supply limits population growth and competition for food and water impacts the mortality of the youngest the most.
Collapse
Affiliation(s)
- Wolfgang Dittus
- Conservation Ecology Center, Smithsonian's Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
- Primate Biology, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Association for the Conservation of Primate Diversity, Polonnaruwa, Sri Lanka
| | - Anne Baker
- Conservation Ecology Center, Smithsonian's Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
- Association for the Conservation of Primate Diversity, Polonnaruwa, Sri Lanka
| |
Collapse
|
11
|
Zintel TM, Pizzollo J, Claypool CG, Babbitt CC. Astrocytes Drive Divergent Metabolic Gene Expression in Humans and Chimpanzees. Genome Biol Evol 2024; 16:evad239. [PMID: 38159045 PMCID: PMC10829071 DOI: 10.1093/gbe/evad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type-specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
Collapse
Affiliation(s)
- Trisha M Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christopher G Claypool
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
12
|
Glick VJ, Power ML. Macronutrient composition of milk from captive southern pig-tailed macaques (Macaca nemestrina). Am J Primatol 2024; 86:e23570. [PMID: 37876290 DOI: 10.1002/ajp.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Milk composition is a fundamental aspect of mammalian reproduction. Differences in milk composition between species may reflect phylogeny, dietary ecology, lactation strategy, and infant growth patterns, but may also vary within a species due to maternal body condition. This study presents the first published data on milk macronutrient composition of southern pig-tailed macaques (Macaca nemestrina) and compares the results with data on two other Cercopithecine species. Milk samples were obtained from five dams at 10- and 14-weeks postparturition. Macronutrient composition was determined at the Smithsonian's National Zoo and Conservation Biology Institute using proven methods developed over 30 years. On average (±SEM), the milk contained 83.9 ± 0.4% water, 6.7 ± 0.4% fat, 7.6 ± 0.1% sugar, 1.8 ± 0.1% protein, and 0.22 ± 0.01% mineral content. The Ca:P ratio was 1.8; concentrations of Ca and protein were correlated. Mean gross energy was 1.02 ± 0.03 kcal/g with most of the energy coming from fat (59.6 ± 1.5%), followed by sugar (29.9 ± 1.4%) and protein (10.5 ± 0.5%). The milks at 14 weeks of infant age were higher in energy than the milks at 10 weeks, with an increase in energy from fat (p = 0.005) and decrease in energy from sugar (p = 0.018). The energy from protein did not change (p = 0.272). Compared to captive rhesus macaque (Macaca mulatta) and olive baboon (Papio anubis) milk assayed by identical methods, captive pig-tailed macaque milk was higher in energy, but after accounting for the higher milk energy there was no difference in the proportions of milk energy from protein, fat, and sugar. The captive pig-tailed dams were significantly heavier than reported values for wild pig-tailed macaques, suggesting high body condition. High body condition in captive Cercopithecines appears to result in milk higher in energy, with more energy coming from fat and less from sugar. However, variation in the proportion of milk energy from protein in captive Cercopithecine milks appears relatively constrained.
Collapse
Affiliation(s)
- Virginia J Glick
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Michael L Power
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Dias PAD, Gómez Espinosa EE, Chavira Ramírez DR, Rangel Negrín A. Noise intensity modulates the responses of mantled howler monkeys to anthropophony. Am J Primatol 2024; 86:e23568. [PMID: 37850516 DOI: 10.1002/ajp.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/26/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Anthropogenic noise is a major global pollutant but its effects on primates are poorly understood, limiting our ability to develop mitigation actions that favor their welfare and conservation. In this study, we used an experimental approach to determine the impact of variation in noise intensity on mantled howler monkeys (Alouatta palliata). We conducted the study at Los Tuxtlas (México), where we studied the physiological stress (proxied via fecal glucocorticoid metabolites, fGCM) and behavioral responses of 16 males. We played back chainsaw noise at two intensities (40 and 80 dB) and used days in which groups were not exposed to noise as matched controls. With increased noise intensity fGCM increased, vigilance and vocalizations were longer, and vigilance, vocalizations, and flight occurred quicker. Physiological and behavioral responses occurred even after low-intensity noise playbacks (i.e., 40 dB). Therefore, noise intensity is a significant factor explaining the responses of mantled howler monkeys to anthropogenic noise. These results imply that management actions aimed at eradicating anthropogenic noise are required for the conservation and welfare of mantled howler monkeys at Los Tuxtlas.
Collapse
Affiliation(s)
- Pedro A D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, México
| | | | - David Roberto Chavira Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Ariadna Rangel Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
14
|
Raubenheimer D, Hou R, Dong Y, Ren C, Cui Z. Towards an integrated understanding of dietary phenotypes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220545. [PMID: 37839453 PMCID: PMC10577033 DOI: 10.1098/rstb.2022.0545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 10/17/2023] Open
Abstract
Diet and nutrition comprise a complex, multi-faceted interface between animal biology and food environments. With accumulating information on the many facets of this association arises a need for systems-based approaches that integrate dietary components and their links with ecology, feeding, post-ingestive processes and the functional and ecological consequences of these interactions. We briefly show how a modelling approach, nutritional geometry, has used the experimental control afforded in laboratory studies to begin to unravel these links. Laboratory studies, however, have limited ability to establish whether and how the feeding and physiological mechanisms interface with realistic ecological environments. We next provide an overview of observational field studies of free-ranging primates that have examined this, producing largely correlative data suggesting that similar feeding mechanisms operate in the wild as in the laboratory. Significant challenges remain, however, in establishing causal links between feeding, resource variation and physiological processes in the wild. We end with a more detailed account of two studies of temperate primates that have capitalized on the discrete variation provided by seasonal environments to strengthen causal inference in field studies and link patterns of intake to dynamics of nutrient processing. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Rong Hou
- Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yunlong Dong
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Cuiru Ren
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhenwei Cui
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
15
|
Pontzer H. The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220218. [PMID: 37661747 PMCID: PMC10475869 DOI: 10.1098/rstb.2022.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Stensel DJ. How can physical activity facilitate a sustainable future? Reducing obesity and chronic disease. Proc Nutr Soc 2023; 82:286-297. [PMID: 36892103 DOI: 10.1017/s0029665123002203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This review examines the ways in which physical activity can contribute to a sustainable future by addressing significant public health issues. The review begins by identifying obesity and ageing as two major challenges facing societies around the world due to the association of both with the risk of chronic disease. Recent developments in the understanding and treatment of obesity are examined followed by an appraisal of the role of exercise alone and in combination with other therapies in preventing and managing obesity. The review then addresses the interaction between exercise and appetite due to the central role appetite plays in the development of overweight and obesity. The final section of the review examines the potential of physical activity to combat age-related chronic disease risk including CVD, cancer and dementia. It is concluded that while bariatric surgery and pharmacotherapy are the most effective treatments for severe obesity, physical activity has a role to play facilitating and enhancing weight loss in combination with other methods. Where weight/fat reduction via exercise is less than expected this is likely due to metabolic adaptation induced by physiological changes facilitating increased energy intake and decreased energy expenditure. Physical activity has many health benefits independent of weight control including reducing the risk of developing CVD, cancer and dementia and enhancing cognitive function in older adults. Physical activity may also provide resilience for future generations by protecting against the more severe effects of global pandemics and reducing greenhouse gas emissions via active commuting.
Collapse
Affiliation(s)
- David J Stensel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR), Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service (NHS) Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
17
|
Glazier DS. The Relevance of Time in Biological Scaling. BIOLOGY 2023; 12:1084. [PMID: 37626969 PMCID: PMC10452035 DOI: 10.3390/biology12081084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Various phenotypic traits relate to the size of a living system in regular but often disproportionate (allometric) ways. These "biological scaling" relationships have been studied by biologists for over a century, but their causes remain hotly debated. Here, I focus on the patterns and possible causes of the body-mass scaling of the rates/durations of various biological processes and life-history events, i.e., the "pace of life". Many biologists have regarded the rate of metabolism or energy use as the master driver of the "pace of life" and its scaling with body size. Although this "energy perspective" has provided valuable insight, here I argue that a "time perspective" may be equally or even more important. I evaluate various major ways that time may be relevant in biological scaling, including as (1) an independent "fourth dimension" in biological dimensional analyses, (2) a universal "biological clock" that synchronizes various biological rates/durations, (3) a scaling method that uses various biological time periods (allochrony) as scaling metrics, rather than various measures of physical size (allometry), as traditionally performed, (4) an ultimate body-size-related constraint on the rates/timing of biological processes/events that is set by the inevitability of death, and (5) a geological "deep time" approach for viewing the evolution of biological scaling patterns. Although previously proposed universal four-dimensional space-time and "biological clock" views of biological scaling are problematic, novel approaches using allochronic analyses and time perspectives based on size-related rates of individual mortality and species origination/extinction may provide new valuable insights.
Collapse
|
18
|
Yan H, An F, Liu Q, Chi Q, Wang K, Xu X, Kuang Y, Zhang Z, Hua Y. Energy budgets of captive Chinese pangolins ( Manis pentadactyla). CONSERVATION PHYSIOLOGY 2023; 11:coad049. [PMID: 37457902 PMCID: PMC10348091 DOI: 10.1093/conphys/coad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/10/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The Chinese pangolin is an endangered species, and ex situ conservation and captive rescue are important conservation measures. This requires reliable information on nutritional energy requirements and expenditure characteristics. However, we lack sufficient knowledge of their energy physiology to determine their energy requirements for maintenance and growth. An open-flow respirometry system was used to measure the resting metabolic rate (RMR) and the daily energy expenditure (DEE) of Chinese pangolins (Manis pentadactyla), and the dietary digestive energy was measured. The average RMR in Chinese pangolins was 3.23 ml O2 kg-1 min-1 at an ambient temperature (Ta) of 24.5-30°C, which was only 73.0% of the expected value based on body mass (BM). The average DEE values were 744.9 kJ day-1 in animals with BM >3 kg and 597.3 kJ day-1 in those with BM <3 kg, which were only 52.4% and 60.6% of the predicted values, respectively. The RMR and DEE levels of the Chinese pangolin were lower than those of similar-sized eutherian mammals and close to those of anteaters. These characteristics suggest that the Chinese pangolin has a low demand for energy in its diet. Although metabolic level data alone cannot be used to calculate the energy requirements of each Chinese pangolin, we believe they can provide a tangible reference for the relocation of Chinese pangolins. These results provide a scientific basis for future research on the physiology and ecology of endangered wildlife such as the Chinese pangolin.
Collapse
Affiliation(s)
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510520, China
| | - Qingsheng Chi
- College of Biology and Agriculture, Zunyi Normal University, Ping'an Avenue, Xinpu New District, Zunyi 563006, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| | - Xuelin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| | - Yingjie Kuang
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| | - Zhidong Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, 233 Guang Shan Yi Road, Tian He District, Guangzhou 510520, China
| |
Collapse
|
19
|
McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226:297166. [PMID: 36916459 DOI: 10.1242/jeb.245272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Total energy expenditure (TEE) represents the total energy allocated to growth, reproduction and body maintenance, as well as the energy expended on physical activity. Early experimental work in animal energetics focused on the costs of specific tasks (basal metabolic rate, locomotion, reproduction), while determination of TEE was limited to estimates from activity budgets or measurements of subjects confined to metabolic chambers. Advances in recent decades have enabled measures of TEE in free-living animals, challenging traditional additive approaches to understanding animal energy budgets. Variation in lifestyle and activity level can impact individuals' TEE on short time scales, but interspecific differences in TEE are largely shaped by evolution. Here, we review work on energy expenditure across the animal kingdom, with a particular focus on endotherms, and examine recent advances in primate energetics. Relative to other placental mammals, primates have low TEE, which may drive their slow pace of life and be an evolved response to the challenges presented by their ecologies and environments. TEE variation among hominoid primates appears to reflect adaptive shifts in energy throughput and allocation in response to ecological pressures. As the taxonomic breadth and depth of TEE data expand, we will be able to test additional hypotheses about how energy budgets are shaped by environmental pressures and explore the more proximal mechanisms that drive intra-specific variation in energy expenditure.
Collapse
Affiliation(s)
- Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Durham, NC 27708, USA
| |
Collapse
|
20
|
Nurmi NO, Sonnweber R, Schülke O, Moscovice LR, Deschner T, Hohmann G. Bonobo mothers have elevated urinary cortisol levels during early but not mid or late lactation. Primates 2023; 64:215-225. [PMID: 36565402 PMCID: PMC10006042 DOI: 10.1007/s10329-022-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
In mammals, the costs of reproduction are biased towards females. Lactation is particularly energetically expensive, and behavioral and physiological data indicate that maternal effort during lactation induces energetic stress. Another source of stress in females is male aggression directed towards them when they are cycling. Evaluating the costs of reproduction in wild and mobile animals can be a challenging task, and requires detailed information on state-dependent parameters such as hormone levels. Glucocorticoid (GC) levels are indicative of nutritional and social stress, and are widely used to assess the costs of reproduction. We investigated variation in urinary levels of cortisol, the main GC in female bonobos (Pan paniscus), between and within reproductive stages. Female chimpanzees (Pan troglodytes), the closest living relative of the bonobos, are often exposed to intense aggression from males, which causes a significant rise in their cortisol levels during the phase of their maximum fecundity. In bonobos, males compete for access to fertile females, but aggressive male mating strategies are absent in this species. Therefore, we expected that GC levels of cycling female bonobos would be lower than those of lactating females. Due to the long period of offspring care in bonobos, we expected that GC levels would remain elevated into the late stage of lactation, when immatures gain body weight but may still be nursed and carried by their mothers. We found elevated urinary GC levels only during the early stage of lactation. The GC levels of cycling females did not differ from those in the mid or late lactation stage. Behavioral strategies of female bonobos may allow them to compensate for the elevated energetic demands of lactation and prolonged maternal care.
Collapse
Affiliation(s)
- Niina O Nurmi
- Department of Behavioral Ecology, JFB Institute for Zoology/Anthropology, University of Goettingen, Göttingen, Germany.,Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ruth Sonnweber
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Oliver Schülke
- Department of Behavioral Ecology, JFB Institute for Zoology/Anthropology, University of Goettingen, Göttingen, Germany.,Research Group Social Evolution in Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Liza R Moscovice
- Institute of Behavioral Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
21
|
Characterization of sinoatrial automaticity in Microcebus murinus to study the effect of aging on cardiac activity and the correlation with longevity. Sci Rep 2023; 13:3054. [PMID: 36810863 PMCID: PMC9944915 DOI: 10.1038/s41598-023-29723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to β-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.
Collapse
|
22
|
Hejtmanek KR, Ocobock C. "I feel terrible and need to exercise to find any sort of joy": What COVID stay-at-home orders tell us about exercise as vitality politics and entertainment in the United States. ETHOS (BERKELEY, CALIF.) 2022; 50:ETHO12373. [PMID: 36721636 PMCID: PMC9880612 DOI: 10.1111/etho.12373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/14/2022] [Indexed: 06/18/2023]
Abstract
During COVID-19 stay-at-home orders (SaHOs), people faced drastic shifts in their work and home lives. These shifts, in combination with the temporary closure of gyms and fitness centers, led to exercise-routine disruption. We conducted a survey to assess how people were affected by SaHOs in terms of exercise-routine change, feelings about exercise, perceived physical and mental health, as well as exercise-routine plans once SaHOs were lifted. In this article, we examine why affluent white American women exercised before and during COVID-19 SaHOs. The article focuses on the role of pleasure and entertainment as key components of exercise practices for these women. We found that changes in motivation reveal that exercise regimens are part of contemporary vitality politics, or current cultural and subjective desires and abilities to manipulate and optimize biological human processes, that include both health and entertainment. Therefore, we argue that exercise is a meaningful cultural, entertainment, and biopolitical activity.
Collapse
Affiliation(s)
- Katie Rose Hejtmanek
- CUNY Brooklyn College ‐ Anthropology2900 Bedford Ave 3307 James Hall, 11210–2889BrooklynNew YorkUnited States
| | - Cara Ocobock
- University of Notre Dame296 Corbett Family Hall Albany, Notre Dame, Indiana, 46556United States
| |
Collapse
|
23
|
Gerstner KF, Pruetz JD. Wild Chimpanzee Welfare: A Focus on Nutrition, Foraging and Health to Inform Great Ape Welfare in the Wild and in Captivity. Animals (Basel) 2022; 12:ani12233370. [PMID: 36496890 PMCID: PMC9735707 DOI: 10.3390/ani12233370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Adequate nutrition is essential for individual well-being, survival and reproductive fitness. Yet, in wild animals, including great apes, scoring nutrition or health comes with many challenges. Here, we have two aims: first, broadly review the scientific literature regarding nutritional data on wild chimpanzee foods to get a better understanding what nutrients foods comprise of, and second, highlight important findings on wild chimpanzee nutrition and welfare pertaining to diet. We discuss variation in macro and micronutrients in food items consumed and their role in chimpanzee health across chimpanzee subspecies from multiple study sites. We found a lack of information pertaining to nutritional consumption rates of daily diets. Second, we call for a fresh, in-depth discussion on wild chimpanzee welfare issues is of foremost importance to inform conservation projects and particularly settings where humans and chimpanzees may interact, because such conversation can reveal how specific or general welfare measures can (a) inform our knowledge of an individual's, group's, and population's welfare, (b) provide additional measures from the study of wild chimpanzee ecology that can guide the welfare of captive chimpanzees, and (c) can enable comparative study of welfare across wild populations. A summary of the current literature on approaches to measuring wild chimpanzee health and welfare status, to our knowledge, has yet to be done.
Collapse
|
24
|
Anzà S, Berghänel A, Ostner J, Schülke O. Growth trajectories of wild Assamese macaques (Macaca assamensis) determined from parallel laser photogrammetry. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00262-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSocioecological factors are associated with life-history patterns and growth trajectories among primates. Under certain conditions, selection may favor a temporal decoupling of growth and major life-history events such as sexual maturation or natal dispersal. Yet, empirical tests of these associations in wild populations remain scarce owing to the lack of non-invasive methods to capture growth trajectories. In this study, we first compared two non-invasive methods of digital photogrammetry. Then, we used parallel laser photogrammetry to investigate forearm growth of wild Assamese macaque males and females in their natural habitat at Phu Khieo Wildlife Sanctuary, Thailand to test life-history and socio-ecological hypotheses. Across 48 males and 44 females, we estimated growth trajectories and pseudo-velocity curves by applying quadratic plateau models and non-parametric LOESS regressions. We assessed the development of sexual dimorphism by comparing the sexes at five different ages. Females had completed 96% of their growth at the age at first birth (5.9 years) and ceased growing at 7.1 years of age. Males, in contrast, grew until well after their average age of natal dispersal: they reached 81% of their size at the age of natal dispersal (4.0 years), and ceased growing only at 9.0 years of age, much later than females. Sexual dimorphism in forearm length was driven by an extended growth period in males, which is expected for males dispersing between multimale and multifemale groups and not facing the risk of being ousted by other larger males. Our results contradict the neonatal investment hypothesis that predicts a desynchronization of investment in growth and reproduction only in female baboons, but not other papionins producing cheaper neonates. Furthermore, male Assamese macaques do not delay natal dispersal until they are fully grown, in accordance with predictions of the male-career-framework for species with low to medium level of direct competition.
Collapse
|
25
|
Dunham NT, Koester DC, Dierenfeld ES, Rimbach R, Pontzer H. Balancing the scales: Preliminary investigation of total energy expenditure and daily metabolizable energy intake in Matschie’s tree kangaroo (Dendrolagus matschiei). PLoS One 2022; 17:e0270570. [PMID: 35759501 PMCID: PMC9236236 DOI: 10.1371/journal.pone.0270570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Matschie’s tree kangaroo (Dendrolagus matschiei) is an endangered arboreal marsupial native to Papua New Guinea. Detailed field studies of its behavior and ecology are scarce due largely to its occupation of remote cloud forests and cryptic nature. Although this species has been in human care since the 1950s, much of its biology is still unknown. The current ex situ population is not sustainable due to health and reproductive problems, believed to stem largely from issues with diet and obesity. To better assess potential discrepancies between energy requirements and energy intake, we sought to 1) quantify total energy expenditure (TEE) of two zoo-housed Matschie’s tree kangaroos (body mass = 9.0–9.7 kg) on a diet composed largely of leafy browse; 2) quantify food and macronutrient intake, apparent dry matter macronutrient digestibility, and metabolizable energy (ME) intake over a 14-month period; and 3) test for seasonal changes in ME intake due to seasonal differences in the varieties of leafy browse offered. Using the doubly labeled water method, we determined TEE for the female (288 kcal day -1) and male (411 kcal day -1). Resulting mean TEE was well below the expected value for marsupials and macropods (i.e., ~60% of the expected value based on body mass). The mean calculated ME intakes for the female and male were 307 kcal day-1 and 454 kcal day-1, respectively. There were significant seasonal differences in ME intakes, driven by reduced intake in the autumn. These results demonstrate that Matschie’s tree kangaroos can be maintained at healthy body weights and conditions on fiber-rich and browse-heavy diets. Our findings contribute important insights into tree kangaroo energetics and physiology and can be applied to help reformulate the diet of Matschie’s tree kangaroos at captive facilities to improve population health and sustainability.
Collapse
Affiliation(s)
- Noah T. Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail:
| | - Diana C. Koester
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ellen S. Dierenfeld
- Ellen S. Dierenfeld, LLC, St. Louis, MO, United States of America
- Nottingham Trent University, Southwell, United Kingdom
| | - Rebecca Rimbach
- Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, United States of America
- Duke Global Health Institute, Duke University, Durham, NC, United States of America
| |
Collapse
|
26
|
Pontzer H, McGrosky A. Balancing growth, reproduction, maintenance, and activity in evolved energy economies. Curr Biol 2022; 32:R709-R719. [PMID: 35728556 DOI: 10.1016/j.cub.2022.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Economic models predominate in life history research, which investigates the allocation of an organism's resources to growth, reproduction, and maintenance. These approaches typically employ a heuristic Y model of resource allocation, which predicts trade-offs among tasks within a fixed budget. The common currency among tasks is not always specified, but most models imply that metabolic energy, either from food or body stores, is the critical resource. Here, we review the evidence for metabolic energy as the common currency of growth, reproduction, and maintenance, focusing on studies in humans and other vertebrates. We then discuss the flow of energy to competing physiological tasks (physical activity, maintenance, and reproduction or growth) and its effect on life history traits. We propose a Ψ model of energy flow to these tasks, which provides an integrative framework for examining the influence of environmental factors and the expansion and contraction of energy budgets in the evolution of life history strategies.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
27
|
The Use of Live Action, Animation, and Computer-Generated Imagery in the Depiction of Non-Human Primates in Film. Animals (Basel) 2022; 12:ani12121576. [PMID: 35739912 PMCID: PMC9219458 DOI: 10.3390/ani12121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
For over 100 years, non-human primates (primates) have been a part of the now hundred-billion-dollar global film industry in a variety of capacities. Their use in the film industry is of concern due to the negative welfare effects on individuals, the potential for increased pet trade, and the conservation impacts of public perception. While the effects on human perception of using live primates in film have been studied, little research has been performed on their appearance in animation and none in computer-generated imagery (CGI). We aimed to investigate how the portrayal of primates varied between depiction medium types and how this related to the films’ performance with critics and in the box office. We observed 151 primates in 101 different English-speaking films that debuted between 2000 and 2019. For each appearance we recorded aspects of primate portrayals based on accuracy, anthropomorphism, environment, and agency displayed, along with the depiction medium. We used structural equation models to depict the highest likelihood of the portrayal aspects on the medium’s relationship to the films gross profit worldwide and film critic consensus scores. We found that over the 20-year time frame, use of live primates has decreased, CGI has increased, and animations have remained relatively steady. While animation had no significant relationship to gross profit or critic consensus, both were significantly lower for films that used live primates and were significantly higher for films that used CGI primates. Due to the steady increase in the use of the CGI medium and its positive relationship with gross profit and critic consensus, it could have great effects on people’s perceptions of primates and implications for conservation efforts.
Collapse
|
28
|
Gildner TE, Cepon-Robins TJ, Urlacher SS. Cumulative host energetic costs of soil-transmitted helminth infection. Trends Parasitol 2022; 38:629-641. [DOI: 10.1016/j.pt.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
29
|
A milk-sharing economy allows placental mammals to overcome their metabolic limits. Proc Natl Acad Sci U S A 2022; 119:e2114674119. [PMID: 35238685 PMCID: PMC8915790 DOI: 10.1073/pnas.2114674119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we demonstrate that a naturally evolving behavior (allonursing) has greater effect on reproductive power (mass per unit of time) and output (litter mass at birth) than does artificial selection (domestication). Additionally, we demonstrate the importance of resource optimization afforded by sociality (rather than resource abundance per se) in shaping a species’ life history profile and its ability to overcome its own physiological constraints. Maternal resource availability and metabolism have a strong limiting effect on reproductive output. Allomaternal care and domestication increase the energy available to the mother and should correlate with an increase in reproductive output. Here, we take a comparative approach to understand how this increase is accomplished (e.g., litter mass, reproductive frequency, etc.) and the strength of the effect among different forms of external energetic supplementation. We find that domestication and all forms of allocare correlate with increased fertility. All forms of provisioning correlate with larger litters without compromising offspring size. The greatest increase we observe in reproductive power is in species that practice allonursing. Our results suggest that the ultimate factor limiting reproductive output in placental mammals is maternal metabolic power rather than resource availability.
Collapse
|
30
|
DeCasien AR, Barton RA, Higham JP. Understanding the human brain: insights from comparative biology. Trends Cogn Sci 2022; 26:432-445. [DOI: 10.1016/j.tics.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
|
31
|
Zeng N, Capelle CM, Baron A, Kobayashi T, Cire S, Tslaf V, Leonard C, Coowar D, Koseki H, Westendorf AM, Buer J, Brenner D, Krüger R, Balling R, Ollert M, Hefeng FQ. DJ-1 depletion prevents immunoaging in T-cell compartments. EMBO Rep 2022; 23:e53302. [PMID: 35037711 PMCID: PMC8892345 DOI: 10.15252/embr.202153302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Decline in immune function during aging increases susceptibility to different aging-related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here, we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson's disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Christophe M Capelle
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Alexandre Baron
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Takumi Kobayashi
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Severine Cire
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Vera Tslaf
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
| | - Cathy Leonard
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
| | - Haruhiko Koseki
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
- AMED‐CRESTJapanese Agency for Medical Research and DevelopmentYokohamaJapan
| | - Astrid M Westendorf
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Jan Buer
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Dirk Brenner
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
| | - Rejko Krüger
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
- Centre Hospitalier de Luxembourg (CHL)LuxembourgLuxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
- Present address:
Institute of Molecular PsychiatryUniversity of BonnBonnGermany
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Department of Dermatology and Allergy CenterOdense Research Center for Anaphylaxis (ORCA)University of Southern DenmarkOdenseDenmark
| | - Feng Q Hefeng
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
32
|
Kraft TS, Venkataraman VV, Wallace IJ, Crittenden AN, Holowka NB, Stieglitz J, Harris J, Raichlen DA, Wood B, Gurven M, Pontzer H. The energetics of uniquely human subsistence strategies. Science 2021; 374:eabf0130. [PMID: 34941390 DOI: 10.1126/science.abf0130] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Thomas S Kraft
- Department of Anthropology, University of California, Santa Barbara, CA, USA.,Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Vivek V Venkataraman
- Institute for Advanced Study in Toulouse, Toulouse, France.,Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | - Jacob Harris
- Department of Anthropology, University of California, Los Angeles, CA, USA.,Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brian Wood
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
33
|
Malalaharivony HS, Kappeler PM, Fichtel C. Infant Development and Maternal Care in Wild Verreaux’s Sifaka (Propithecus verreauxi). INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Abstract
AbstractThe received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than Western populations living in labor-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans-we do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role, if any, of basal metabolic rate (BMR) or low-level activity such as fidgeting play, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
Collapse
|
35
|
Rimbach R, Amireh A, Allen A, Hare B, Guarino E, Kaufman C, Salomons H, Pontzer H. Total energy expenditure of bottlenose dolphins (Tursiops truncatus) of different ages. J Exp Biol 2021; 224:271194. [PMID: 34350948 DOI: 10.1242/jeb.242218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Marine mammals are thought to have an energetically expensive lifestyle because endothermy is costly in marine environments. However, measurements of total energy expenditure (TEE; kcal day-1) are available only for a limited number of marine mammals, because large body size and inaccessible habitats make TEE measurements expensive and difficult to obtain for many taxa. We measured TEE in 10 adult common bottlenose dolphins (Tursiops truncatus) living in natural seawater lagoons at two facilities (Dolphin Research Center and Dolphin Quest) using the doubly labeled water method. We assessed the relative effects of body mass, age and physical activity on TEE. We also examined whether TEE of bottlenose dolphins, and more generally of marine mammals, differs from that expected for their body mass compared with other eutherian mammals, using phylogenetic least squares (PGLS) regressions. There were no differences in body mass or TEE (unadjusted TEE and TEE adjusted for fat-free mass) between dolphins from the two facilities. Our results show that adjusted TEE decreased and fat mass increased with age. Different measures of activity were not related to age, body fat or adjusted TEE. Both PGLS and the non-phylogenetic linear regression indicate that marine mammals have an elevated TEE compared with that of terrestrial mammals. However, bottlenose dolphins expended 17.1% less energy than other marine mammals of similar body mass. The two oldest dolphins (>40 years) showed a lower TEE, similar to the decline in TEE seen in older humans. To our knowledge, this is the first study to show an age-related metabolic decline in a large non-human mammal.
Collapse
Affiliation(s)
- Rebecca Rimbach
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Ahmad Amireh
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Austin Allen
- Duke University Marine Lab, Beaufort, NC 28516, USA
| | - Brian Hare
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - Chana Kaufman
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Hannah Salomons
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
36
|
The energy allocation trade-offs underlying life history traits in hypometabolic strepsirhines and other primates. Sci Rep 2021; 11:14196. [PMID: 34244546 PMCID: PMC8270931 DOI: 10.1038/s41598-021-93764-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Life history, brain size and energy expenditure scale with body mass in mammals but there is little conclusive evidence for a correlated evolution between life history and energy expenditure (either basal/resting or daily) independent of body mass. We addressed this question by examining the relationship between primate free-living daily energy expenditure (DEE) measured by doubly labeled water method (n = 18 species), life history variables (maximum lifespan, gestation and lactation duration, interbirth interval, litter mass, age at first reproduction), resting metabolic rate (RMR) and brain size. We also analyzed whether the hypometabolic primates of Madagascar (lemurs) make distinct energy allocation tradeoffs compared to other primates (monkeys and apes) with different life history traits and ecological constraints. None of the life-history traits correlated with DEE after controlling for body mass and phylogeny. In contrast, a regression model showed that DEE increased with increasing RMR and decreasing reproductive output (i.e., litter mass/interbirth interval) independent of body mass. Despite their low RMR and smaller brains, lemurs had an average DEE remarkably similar to that of haplorhines. The data suggest that lemurs have evolved energy strategies that maximize energy investment to survive in the unusually harsh and unpredictable environments of Madagascar at the expense of reproduction.
Collapse
|
37
|
Meat eating by nonhuman primates: A review and synthesis. J Hum Evol 2020; 149:102882. [PMID: 33137551 DOI: 10.1016/j.jhevol.2020.102882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Most nonhuman primates prey on vertebrates. Meat-eating, defined as ingestion of vertebrate tissue, occurs in 12 families, ≥39 genera, and ≥89 species. It is most common in capuchins (Cebus and Sapajus spp.), baboons (Papio spp.), bonobos (Pan paniscus), and chimpanzees (Pan troglodytes) and modestly common in blue monkeys (Cercopithecus mitis), callitrichids (Callithrix spp. and Saguinus spp.), and squirrel monkeys (Saimiri spp.). It is uncommon in other cercopithecines, rare in other haplorhines and in lemurs, and virtually absent in colobines. Birds are the prey class eaten by the most species (≥53), followed by reptiles (≥48), amphibians (≥38), mammals (≥35), and fish (≥7). Major hypotheses for the importance of meat eating are that it is (1) mainly an energy source, especially (1a) when plant-source foods (PSFs) with high energy return rates are scarce (energy shortfall hypothesis); (2) mainly a protein source; and (3) mainly a source of micronutrients scarce in PSFs. Meat eating bouts sometimes provide substantial energy and protein, and some chimpanzees gain substantial protein from meat monthly or annually. However, meat typically accounts for only small proportions of feeding time and of total energy and protein intake, and quantitative data are inconsistent with the energy shortfall hypothesis. PSFs and/or invertebrates are presumably the main protein sources, even for chimpanzees. Support is strongest for the micronutrient hypothesis. Most chimpanzees eat far less meat than recorded for hunter-gatherers, but the highest chimpanzee estimates approach the lowest for African hunter-gatherers. In fundamental contrast to the human predatory pattern, other primates only eat vertebrates much smaller than they are, tool-assisted predation is rare except in some capuchins and chimpanzees, and tool use in carcass processing is virtually absent. However, harvesting of small prey deserves more attention with reference to the archaeological and ethnographic record.
Collapse
|
38
|
Best AW. Why does strength training improve endurance performance? Am J Hum Biol 2020; 33:e23526. [PMID: 33089638 DOI: 10.1002/ajhb.23526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The specificity of training principle holds that adaptations to exercise training closely match capacity to the specific demands of the stimulus. Improvements in endurance sport performance gained through strength training are a notable exception to this principle. While the proximate mechanisms for how strength training produces muscular adaptations beneficial to endurance sports are increasingly well understood, the ultimate causes of this phenomenon remain unexplored. METHODS Using a holistic approach tying together exercise physiology and evolution, I argue that we can reconcile the apparent "endurance training specificity paradox." RESULTS AND CONCLUSIONS Competing selective pressures, inherited mammalian biology, and millennia of living in energy-scarce environments constrained our evolution as endurance athletes, but also imparted high muscular plasticity which can be exploited to improve endurance performance beyond what was useful in our evolutionary past.
Collapse
Affiliation(s)
- Andrew W Best
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
39
|
Shuert CR, Halsey LG, Pomeroy PP, Twiss SD. Energetic limits: Defining the bounds and trade-offs of successful energy management in a capital breeder. J Anim Ecol 2020; 89:2461-2472. [PMID: 32895978 PMCID: PMC7693042 DOI: 10.1111/1365-2656.13312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Judicious management of energy can be invaluable for animal survival and reproductive success. Capital breeding mammals typically transfer energy to their young at extremely high rates while undergoing prolonged fasting, making lactation a tremendously energy demanding period. Effective management of the competing demands of the mother's energy needs and those of her offspring is presumably fundamental to maximizing lifetime reproductive success. How does the mother maximize her chances of successfully rearing her pup, by ensuring that both her pup and herself have sufficient energy during this 'energetic fast'? While energy management models were first discussed in the 1990s, application of this analytical technique is still very much in its infancy. Recent work suggests that a broad range of species exhibits 'energy compensation'; during periods when they expend more energy on activity, their bodies partially compensate by reducing background (basal) metabolic rate as an adaptation to limit overall energy expenditure. However, the value of energy management models in understanding animal ecology is presently unclear. We investigate whether energy management models provide insights into the breeding strategy of phocid seals. Not only do we expect lactating seals to display energy compensation because of their breeding strategy of high energy transfer while fasting, but we anticipate that mothers exhibiting a lack of energy compensation are less likely to rear offspring successfully. On the Isle of May in Scotland, we collected heart rate data as a proxy for energy expenditure in 52 known individual grey seal (Halichoerus grypus) mothers, repeatedly across 3 years of breeding. We provide evidence that grey seal mothers typically exhibit energy compensation during lactation by downregulating their background metabolic rate to limit daily energy expenditure during periods when other energy costs are relatively high. However, individuals that fail to energy compensate during the lactation period are more likely to end lactation earlier than expected. Our study is the first to demonstrate the importance of energy compensation to an animal's reproductive expenditure. Moreover, our multi-seasonal data indicate that environmental stressors may reduce the capacity of some individuals to follow the energy compensation strategy.
Collapse
Affiliation(s)
| | - Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London, UK
| | - Patrick P Pomeroy
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Sean D Twiss
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
40
|
Kurihara Y, Kinoshita K, Shiroishi I, Hanya G. Seasonal variation in energy balance of wild Japanese macaques (Macaca fucata yakui) in a warm-temperate forest: a preliminary assessment in the coastal forest of Yakushima. Primates 2020; 61:427-442. [PMID: 32048082 DOI: 10.1007/s10329-020-00797-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
Food scarcity is a major challenge for primates living in temperate forests, where food availability varies markedly among seasons. In Japanese macaques, which are exclusively distributed in temperate zones, the fat accumulation ability has been highlighted as an adaptation for survival during the lean season and for reproductive success. However, the knowledge of energetic strategies of Japanese macaques has been mainly derived from data on cool-temperate forests, where fallback foods comprise winter buds and bark. Data on Japanese macaques in warm-temperate forests where fallback foods comprise mature leaves are still lacking. We aimed to identify seasonal variations in energy balance and the relative importance of ingestion rates (dry matter intake per feeding time), energy content of the food, and feeding time in energy intake of Japanese macaques in the coastal forest of Yakushima. We estimated energy balance of 6-12 adult females from October 2012 to October 2013. We estimated energy intake based on the data on feeding behavior and energy content of the diet and calculated energy expenditure based on the previously established relationship between body mass and total energy expenditure. We also quantified urinary C-peptide, which is a non-invasive biomarker of energetic conditions. We demonstrated that energy balance was more positive in the fruit/seed-feeding period than in the mature-leaf-feeding and fruit/fungi-feeding periods and that ingestion rates were the most important component of energy intake. The present study suggests that the fat accumulation ability is an essential adaptation in Japanese macaques even in warm-temperate forests.
Collapse
Affiliation(s)
- Yosuke Kurihara
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan. .,Faculty of Agriculture, Shizuoka University, Nishifujidaira 1623-1, Tenryu, Hamamatsu, Shizuoka, 431-3532, Japan.
| | | | - Izumi Shiroishi
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan
| | - Goro Hanya
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
41
|
Differential responses of non-human primates to seasonal temperature fluctuations. Primates 2020; 61:455-464. [PMID: 32034535 DOI: 10.1007/s10329-020-00801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Non-human primates (NHPs) can adapt to conditions outside of their natural habitat and climatic ranges but this can be influenced by inherent evolutionary traits or plasticity of species that evolved in diverse environmental conditions. In this study, we investigated how five species of NHPs that have natural distributions across a range of climatic conditions responded to seasonal temperature changes in a captive environment. The activity levels of NHPs were affected by temperature changes over the season, where activity levels were generally reduced at the lower and higher temperature ranges. Species that are naturally found within narrower and warmer climatic ranges, compared to those found in colder environments with wider fluctuations in temperature, showed more marked changes in activity levels in response to temperature changes. In lower temperature conditions, three out of five species showed significantly lower activity levels; whereas in higher temperature conditions, the activity levels of all species did not significantly decrease. The frequency of thermoregulation behaviours was higher, and use of artificial thermoregulatory sources lower, for species that did not substantially adjust their activity levels in different temperature conditions. Our results suggest that NHPs largely retained the evolutionary traits related to thermoregulation, according to the different ambient conditions they evolved in and may have low behavioural plasticity in adapting to conditions outside of their natural ranges. These results provide insights for improving conservation and captive management and may have implications for understanding NHP resilience to the increasing impact of global climate change.
Collapse
|
42
|
Hochberg Z, Konner M. Emerging Adulthood, a Pre-adult Life-History Stage. Front Endocrinol (Lausanne) 2020; 10:918. [PMID: 31993019 PMCID: PMC6970937 DOI: 10.3389/fendo.2019.00918] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 01/20/2023] Open
Abstract
The duration of human maturation has been underestimated; an additional 4-6-year pre-adult period of "emerging adulthood," should be included in models of human maturation. It is a period of brain maturation, learning about intimacy and mutual support, intensification of pre-existing friendships, family-oriented socialization, and the attainment of those social skills that are needed for mating and reproduction. We propose that emerging adulthood is a life-history stage that is a foundation of the high reproductive success of human beings. The period of emerging adulthood has an evolutionary context and developmental markers, and we present evidence that supports the idea that emerging adults require protection because they are still learning and maturing.
Collapse
Affiliation(s)
- Ze′ev Hochberg
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Melvin Konner
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
43
|
Melby CL, Paris HL, Sayer RD, Bell C, Hill JO. Increasing Energy Flux to Maintain Diet-Induced Weight Loss. Nutrients 2019; 11:nu11102533. [PMID: 31640123 PMCID: PMC6835968 DOI: 10.3390/nu11102533] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term maintenance of weight loss requires sustained energy balance at the reduced body weight. This could be attained by coupling low total daily energy intake (TDEI) with low total daily energy expenditure (TDEE; low energy flux), or by pairing high TDEI with high TDEE (high energy flux). Within an environment characterized by high energy dense food and a lack of need for movement, it may be particularly difficult for weight-reduced individuals to maintain energy balance in a low flux state. Most of these individuals will increase body mass due to an inability to sustain the necessary level of food restriction. This increase in TDEI may lead to the re-establishment of high energy flux at or near the original body weight. We propose that following weight loss, increasing physical activity can effectively re-establish a state of high energy flux without significant weight regain. Although the effect of extremely high levels of physical activity on TDEE may be constrained by compensatory reductions in non-activity energy expenditure, moderate increases following weight loss may elevate energy flux and encourage physiological adaptations favorable to weight loss maintenance, including better appetite regulation. It may be time to recognize that few individuals are able to re-establish energy balance at a lower body weight without permanent increases in physical activity. Accordingly, there is an urgent need for more research to better understand the role of energy flux in long-term weight maintenance.
Collapse
Affiliation(s)
- Christopher L Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, CA 90263, USA.
| | - R Drew Sayer
- Department of Nutrition Sciences, University of Alabama-Birmingham, Birmingham, AL 35294, USA.
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA.
| | - James O Hill
- Department of Nutrition Sciences, University of Alabama-Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
44
|
Does Juvenile Play Programme the Equine Musculoskeletal System? Animals (Basel) 2019; 9:ani9090646. [PMID: 31484397 PMCID: PMC6770595 DOI: 10.3390/ani9090646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Locomotor play is a common behaviour expressed across a diverse range of species. As a cursorial animal, the horse is capable of locomotor activity within a relatively short time after birth. In the foal, spontaneous locomotor play occurs early in life and has an obvious role in the development of locomotor skills. The intensity and vigour of locomotor play increases with age and this, in turn, provides cumulative increases in the loads the musculoskeletal system experiences. These progressive cumulative loading cycles (bouts of locomotor play), in both the timing and magnitude, reflect the microstrain required to stimulate bone development based on the mechanostat theorem. Data from the published literature were presented to provide empirical support for this hypothesis. Thus, spontaneous locomotor play may be vital to ensure optimal bone development in the horse. Modern production systems need to provide appropriate opportunities for foals to perform spontaneous locomotor play to optimise bone development and reduce the risk of future musculoskeletal injury later in life. Abstract In mammals, play behaviour appears innate and, because of this, may provide insight into the frequency and intensity of load that is required to stimulate positive musculoskeletal development. The objective of this review was to explore the interaction between play and tissue (bone) development at a molecular through to whole-animal level, with specific focus on the horse as a model. The basis of our understanding of the response of bone to loading is the mechanostat theorem. This assumes that at a tissue level, bone attempts to keep localised strain within the physiological range of 1500–2500 microstrain. Loads above this range result in a modelling response to reduce strain, and strain below this threshold results in remodelling to maintain the localised physiological range. In foals, locomotor play is dramatic and vigorous, with cumulative increases in both intensity and complexity. Based on published literature describing locomotor play in foals and the microstrain at different gaits in the horse, it was proposed that locomotor play in foal aligns with the mechanostat theorem in both the magnitude and frequency of load cycles applied. The cumulative increases in the complexity and intensity of locomotor play as the foal develops, in turn, ensure the strain rates associated with play remain above the local physiological range and promote material and architectural changes in the distal limb bones. Thus, spontaneous locomotor play may be vital to ensure optimal bone development in the horse. Modern management systems need to provide appropriate opportunities for foals to perform spontaneous locomotor play to optimise bone development and reduce the risk of future musculoskeletal injury later in life.
Collapse
|
45
|
Thurber C, Dugas LR, Ocobock C, Carlson B, Speakman JR, Pontzer H. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. SCIENCE ADVANCES 2019; 5:eaaw0341. [PMID: 31183404 PMCID: PMC6551185 DOI: 10.1126/sciadv.aaw0341] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The limits on maximum sustained energy expenditure are unclear but are of interest because they constrain reproduction, thermoregulation, and physical activity. Here, we show that sustained expenditure in humans, measured as maximum sustained metabolic scope (SusMS), is a function of event duration. We compiled measurements of total energy expenditure (TEE) and basal metabolic rate (BMR) from human endurance events and added new data from adults running ~250 km/week for 20 weeks in a transcontinental race. For events lasting 0.5 to 250+ days, SusMS decreases curvilinearly with event duration, plateauing below 3× BMR. This relationship differs from that of shorter events (e.g., marathons). Incorporating data from overfeeding studies, we find evidence for an alimentary energy supply limit in humans of ~2.5× BMR; greater expenditure requires drawing down the body's energy stores. Transcontinental race data suggest that humans can partially reduce TEE during long events to extend endurance.
Collapse
Affiliation(s)
- Caitlin Thurber
- Department of Anthropology, Hunter College, New York, NY 10065, USA
| | - Lara R. Dugas
- Public Health Sciences, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Cara Ocobock
- Department of Anthropology, University at Albany, SUNY, Albany, NY 12222, USA
| | - Bryce Carlson
- Department of Anthropology, Purdue University, West Lafayette, IN 47907, USA
| | - John R. Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | - Herman Pontzer
- Department of Anthropology, Hunter College, New York, NY 10065, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
46
|
Pontzer H. Energy Constraint as a Novel Mechanism Linking Exercise and Health. Physiology (Bethesda) 2019; 33:384-393. [PMID: 30303776 DOI: 10.1152/physiol.00027.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humans and other species adapt dynamically to changes in daily physical activity, maintaining total energy expenditure within a narrow range. Chronic exercise thus suppresses other physiological activity, including immunity, reproduction, and stress response. This exercise-induced downregulation improves health at moderate levels of physical activity but can be detrimental at extreme workloads.
Collapse
Affiliation(s)
- Herman Pontzer
- Evolutionary Anthropology, Duke University , Durham, North Carolina
| |
Collapse
|
47
|
Xiang Z, Fan P, Chen H, Liu R, Zhang B, Yang W, Yao H, Grueter CC, Garber PA, Li M. Routine allomaternal nursing in a free-ranging Old World monkey. SCIENCE ADVANCES 2019; 5:eaav0499. [PMID: 30801014 PMCID: PMC6382398 DOI: 10.1126/sciadv.aav0499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
While regular allomaternal nursing (suckling) has been documented in a number of rodent and carnivore species, as well as in some prosimians, New World monkeys, and humans, it is not common in Old World monkeys and apes. Here, we present a detailed field study of allomaternal nursing in golden snub-nosed monkeys (Rhinopithecus roxellana, Colobinae). We found that more than 87% of infants were nursed by females other than their mothers. Allomaternal nursing was largely confined to the first 3 months of an infant's life and occurred predominantly between related females who nursed each other's offspring in a reciprocal manner. Allomaternal nursing enhanced infant survivorship and did not have a negative impact on the future reproductive success of allonursers. Our findings expand the taxonomic distribution of allomaternal nursing and provide fresh insight into the possible factors driving evolution of allomaternal nursing behavior in primates, including humans.
Collapse
Affiliation(s)
- Zuofu Xiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Evolutionary Ecology and Conservation Biology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Penglai Fan
- Institute of Evolutionary Ecology and Conservation Biology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haochun Chen
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruoshuang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bo Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wanji Yang
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Hubei Province, Shennongjia Forest District, Hubei 442411, China
| | - Hui Yao
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Hubei Province, Shennongjia Forest District, Hubei 442411, China
| | - Cyril C. Grueter
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Paul A. Garber
- Department of Anthropology Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
48
|
Winward JD, Ragan CM, Jimenez AG. Cellular metabolic rates and oxidative stress profiles in primary fibroblast cells isolated from virgin females, reproductively experienced females, and male Sprague-Dawley rats. Physiol Rep 2018; 6:e13909. [PMID: 30350353 PMCID: PMC6198133 DOI: 10.14814/phy2.13909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Life-history theory posits that differences in reproductive strategies may dictate lifespans of organisms. Animals that have higher investments in reproduction in terms of litter size and frequency of litters tend to have shorter lifespans. The accumulation of oxidative stress damage has been proposed to be a cost of reproduction and a mediator of life-histories among animals, however, the implications of reproduction on oxidative stress still remain unclear. We tested physiological consequences of reproduction on metabolism and oxidative stress of Sprague-Dawley Rats (Rattus norvegicus) with various reproductive experiences at the cell level. We grew primary dermal fibroblasts from Sprague-Dawley rats which have the potential of having large litters frequently. Cells were isolated from virgin females, primiparous females, multiparous females, and reproductively-experienced males. We measured basal oxygen consumption (OCR), proton leak, ATP production, spare respiratory capacity, coupling efficiency and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of RS (reactive species) production, reduced glutathione (GSH), mitochondrial content, and lipid peroxidation (LPO) damage to quantify oxidative stress. There were no significant differences in any OCR or glycolytic parameters across any of our groups. However, reproductively-experienced females had significantly lower rates of LPO damage as compared with virgin females and males, as well as nonsignificant decreases in GSH concentration. Decreases in LPO damage and GSH indicate that reproductively-experienced females potentially use their endogenous antioxidant system to combat delirious effects of increased metabolism during reproduction. Our results suggest that reproduction may, in fact, have a protective effect in females.
Collapse
Affiliation(s)
- Joshua D. Winward
- Department of BiologyColgate UniversityHamiltonNew York
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
| | - Christina M. Ragan
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
- Present address:
Psychology DepartmentPurdue University NorthwestWestvilleIndiana
| | | |
Collapse
|
49
|
Cliffe RN, Scantlebury DM, Kennedy SJ, Avey-Arroyo J, Mindich D, Wilson RP. The metabolic response of the Bradypus sloth to temperature. PeerJ 2018; 6:e5600. [PMID: 30258712 PMCID: PMC6151113 DOI: 10.7717/peerj.5600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/17/2018] [Indexed: 11/21/2022] Open
Abstract
Poikilotherms and homeotherms have different, well-defined metabolic responses to ambient temperature (T a ), but both groups have high power costs at high temperatures. Sloths (Bradypus) are critically limited by rates of energy acquisition and it has previously been suggested that their unusual departure from homeothermy mitigates the associated costs. No studies, however, have examined how sloth body temperature and metabolic rate vary with T a . Here we measured the oxygen consumption (VO2) of eight brown-throated sloths (B. variegatus) at variable T a 's and found that VO2 indeed varied in an unusual manner with what appeared to be a reversal of the standard homeotherm pattern. Sloth VO2 increased with T a , peaking in a metabolic plateau (nominal 'thermally-active zone' (TAZ)) before decreasing again at higher T a values. We suggest that this pattern enables sloths to minimise energy expenditure over a wide range of conditions, which is likely to be crucial for survival in an animal that operates under severe energetic constraints. To our knowledge, this is the first evidence of a mammal provisionally invoking metabolic depression in response to increasing T a 's, without entering into a state of torpor, aestivation or hibernation.
Collapse
Affiliation(s)
- Rebecca Naomi Cliffe
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
- The Sloth Sanctuary of Costa Rica, Limon, Costa Rica
- Research Center, The Sloth Conservation Foundation, Preston, Lancashire, United Kingdom
| | - David Michael Scantlebury
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, Northern Ireland
| | - Sarah Jane Kennedy
- Research Center, The Sloth Conservation Foundation, Preston, Lancashire, United Kingdom
| | | | | | - Rory Paul Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
50
|
Hawkes K, Finlay BL. Mammalian brain development and our grandmothering life history. Physiol Behav 2018; 193:55-68. [DOI: 10.1016/j.physbeh.2018.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/28/2022]
|