1
|
Christoforou M, Charalambous A, Sfakianakis D, Skourides PA. Targeting the hydrophobic pockets of FAK/PYK2 FAT domain: a highly effective inhibitory strategy suppressing tumor growth and eliminating metastasis. Cell Commun Signal 2025; 23:231. [PMID: 40390029 PMCID: PMC12087225 DOI: 10.1186/s12964-025-02203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND FAK is a non-receptor tyrosine kinase and an adaptor protein commonly overexpressed in cancer. It regulates multiple tumorigenic pathways through both kinase-dependent and kinase-independent scaffolding functions and thus represents a promising therapeutic target for various cancers. Several FAK kinase inhibitors shown to be effective in preclinical studies advanced to clinical trials, however none produced objective clinical responses. These results are in part attributed to drug resistance and the inability to simultaneously target kinase-dependent and kinase-independent functions of the protein, both of which have been shown to promote tumorigenesis. This has led to the development of scaffold inhibitors that could be used as adjuvants, none of which have so far reached the clinical stage. Importantly, FAK's closely related paralogue, PYK2, compensates for the loss of FAK thus it is also important to target both kinases. In the present study, we evaluate a novel strategy for the inhibition of kinase-dependent and kinase-independent functions of FAK and PYK2 through the expression of the FAT HP-site-specific LD2-LD4 peptide that leads to their displacement from focal adhesions. METHODS The impact of LD2-LD4 expression on FAK and PYK2 was assessed through co-immunoprecipitation experiments, Western Blot analysis and quantitative immunofluorescence. In vitro investigation of the effects of LD2-LD4 expression on tumor cell migration and proliferation was carried out using 2D migration, 3D invasion and proliferation assays. The preclinical experiments of this study were carried out using an orthotopic xenograft model, followed by immunohistochemical analysis. RESULTS We show that LD2-LD4 expression leads to the displacement of FAK and PYK2 from focal adhesions, blocking both enzymatic and non-enzymatic activities. It also dramatically inhibits 2D cell migration, as well as invasion in vitro. Importantly, LD2-LD4 exerts promising anti-tumor effects and nearly abolishes the appearance of metastatic foci. Finally, we show that an LD monomer can also displace both FAK and PYK2 from FAs suggesting that organic molecules with high affinity for the FAT HPs could mimic the LD2-LD4 activity. CONCLUSIONS Targeting the FAT domain hydrophobic patches of FAK/PYK2 is a highly effective inhibitory strategy that can overcome the limitations of existing ATP competitive inhibitors and lead to the development of novel inhibitors with strong antitumor and antimetastatic activity.
Collapse
Affiliation(s)
- Maria Christoforou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Anna Charalambous
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| | - Dimitrios Sfakianakis
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | | |
Collapse
|
2
|
Diaz-Palacios K, López Navajas P, Rodrigo Martín B, Matesanz R, Luque-Ortega JR, Echarri A, Lietha D. Phospho-regulated tethering of focal adhesion kinase to vinculin links force transduction to focal adhesion signaling. Cell Commun Signal 2025; 23:190. [PMID: 40259376 PMCID: PMC12013189 DOI: 10.1186/s12964-025-02201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Focal Adhesion Kinase (FAK) is a key signaling molecule in focal adhesions (FAs) orchestrating the formation, maturation and turnover of the FA complex. A controlled FA lifecycle is essential for various cellular processes requiring mesenchymal cell migration and is harnessed by advanced cancers to initiate cancer invasion and metastasis. The mechanical force for migration is transmitted from actin stress fibers to FAs via specialized force transduction components in FAs. These forces are known to activate FA signaling, suggesting a communication between FA force transduction and FA signaling components, yet how this occurs mechanistically is unknown. Here we demonstrate that paxillin can act as an adaptor protein to connect FAK with the force transduction component vinculin. Our data show that this connection forms inefficient in the basal state but suggest Y925 phosphorylation in FAK as a key mechanism for optimal formation of the FAK:paxillin:vinculin linkage. This is achieved by switching binding of the paxillin LD2 motif from FAK to vinculin while keeping paxillin LD4 tethered to FAK. We further provide the first high-resolution crystal structure of LD2 bound to the vinculin tail domain, which importantly shows that vinculin can simultaneously link to actin. This therefore ensures an intact force transduction role of vinculin while tethered via paxillin to the signaling apparatus in FAs. With this data, all interactions of the force transmitting tether to FAK are structurally defined and we provide an atomic model for FAK force activation. In summary, we propose a phospho-regulated connection between signaling and force transduction components in FAs allowing for force induced activation of FA signaling.
Collapse
Affiliation(s)
- Karen Diaz-Palacios
- Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Pilar López Navajas
- Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Bárbara Rodrigo Martín
- Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ruth Matesanz
- Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan R Luque-Ortega
- Molecular Interactions Facility, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Asier Echarri
- Biomedicine, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Lietha
- Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Hsu CP, Hordeichyk A, Aretz J, Fässler R, Bausch AR. Synergistic effect of PIP 2 and PIP 3 on membrane-induced phase separation of integrin complexes. Biophys J 2025:S0006-3495(25)00238-3. [PMID: 40235120 DOI: 10.1016/j.bpj.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
The assembly of integrin adhesion complexes at the inner leaflet of the plasma membrane regulates cell adhesion to the extracellular matrix. The multivalent protein interactions within the complexes and with the cell membrane display characteristics of membrane-associated biomolecular condensates driven by liquid-liquid phase separation. The composition of lipids and the distribution of the cell membrane are crucial for forming integrin adhesion complexes. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in the model membrane synergistically regulate the formation of membrane-induced integrin adhesion condensates, which consist of β1 tails, kindlin, talin, paxillin, and focal adhesion kinase. We show that the preferential bindings of kindlin to PIP3 and talin to PIP2 enhance their recruitment to the membrane, which in turn increases the probability of membrane-associated phase separation. Our results indicate that modulating the intricate balance of membrane composition is a strategy to localize integrin adhesion complexes and optimize their density on lipid membranes.
Collapse
Affiliation(s)
- Chiao-Peng Hsu
- Heinz Nixdorf Chair for Cellular Biophysics, Center for Functional Protein Assemblies, Center for Organoid Systems, Department of Bioscience, Technical University of Munich, Technical University of Munich School of Natural Sciences, Garching, Germany
| | - Arsenii Hordeichyk
- Heinz Nixdorf Chair for Cellular Biophysics, Center for Functional Protein Assemblies, Center for Organoid Systems, Department of Bioscience, Technical University of Munich, Technical University of Munich School of Natural Sciences, Garching, Germany; Max Planck School Matter to Life, Heidelberg, Germany
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas R Bausch
- Heinz Nixdorf Chair for Cellular Biophysics, Center for Functional Protein Assemblies, Center for Organoid Systems, Department of Bioscience, Technical University of Munich, Technical University of Munich School of Natural Sciences, Garching, Germany; Max Planck School Matter to Life, Heidelberg, Germany.
| |
Collapse
|
4
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
5
|
Moreland ZG, Jiang F, Aguilar C, Barzik M, Gong R, Behnammanesh G, Park J, Shams A, Faaborg-Andersen C, Werth JC, Harley R, Sutton DC, Heidings JB, Cole SM, Parker A, Morse S, Wilson E, Takagi Y, Sellers JR, Brown SDM, Friedman TB, Alushin GM, Bowl MR, Bird JE. Myosin-based nucleation of actin filaments contributes to stereocilia development critical for hearing. Nat Commun 2025; 16:947. [PMID: 39843411 PMCID: PMC11754657 DOI: 10.1038/s41467-025-55898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism. Here, we show that MYO15A is itself an actin nucleation-promoting factor. Moreover, a deafness-causing mutation in the MYO15A actin-binding interface inhibits nucleation activity but still preserves some movement on filaments in vitro and partial trafficking on stereocilia in vivo. Stereocilia fail to elongate correctly in this mutant mouse, providing evidence that MYO15A-driven actin nucleation contributes to hair bundle biogenesis. Our work shows that in addition to generating force and motility, the ATPase domain of MYO15A can directly regulate actin polymerization and that disrupting this activity can promote cytoskeletal disease, such as hearing loss.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
- UCL Ear Institute, University College London, London, UK
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Ghazaleh Behnammanesh
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Christian Faaborg-Andersen
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jesse C Werth
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Randall Harley
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Sutton
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stacey M Cole
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Susan Morse
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK.
- UCL Ear Institute, University College London, London, UK.
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Tam SW, Cheung AKL, Qin P, Zhang S, Huang Z, Yung KKL. Extracellular Silica Nanomatrices Promote In Vitro Maturation of Anti-tumor Dendritic Cells via Activation of Focal Adhesion Kinase. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2314358. [PMID: 39268785 PMCID: PMC11733713 DOI: 10.1002/adma.202314358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The efficacy of dendritic cell (DC)-based cancer vaccines is critically determined by the functionalities of in vitro maturated DCs. The maturation of DCs typically relies on chemicals that are cytotoxic or hinder the ability of DCs to efficiently activate the antigen-specific cytotoxic T-lymphocytes (CTLs) against tumors. Herein, the maturation chemicals are replaced with extracellular silica nanomatrices, fabricated by glancing angle deposition, to promote in vitro maturation of murine bone marrow-derived DCs (mBMDCs). The extracellular nanomatrices composed of silica nanozigzags (NZs) enable the generation of mature mBMDCs with upregulated levels of co-stimulatory molecules, C-C chemokine receptor type-7, X-C motif chemokine recetpor-1, DC-specific ICAM-3 grabbing nonintegrin, and enhanced endocytic capacity. The in vitro maturation is partially governed by focal adhesion kinase (FAK) that is mechanically activated in the curved cell adhesions formed at the DC-NZ interfaces. The NZ-maturated mBMDCs can prime the antigen-specific CTLs into programmed cell death protein-1 (PD-1)lowCD44high memory phenotypes in vitro and suppress the growth of tumors in vivo. Meanwhile, the NZ-mediated beneficial effects are also observed in human monocyte-derived DCs. This work demonstrates that the silica NZs promote the anti-tumor capacity of in vitro maturated DCs via the mechanoactivation of FAK, supporting the potential of silica NZs being a promising biomaterial for cancer immunotherapy.
Collapse
Affiliation(s)
- Sze Wah Tam
- Department of BiologyHong Kong Baptist UniversityKowloonHong Kong SARChina
- Golden Meditech Center for NeuroRegeneration SciencesHong Kong Baptist UniversityKowloonHong Kong SARChina
| | | | - Ping Qin
- Department of BiologyHong Kong Baptist UniversityKowloonHong Kong SARChina
- Golden Meditech Center for NeuroRegeneration SciencesHong Kong Baptist UniversityKowloonHong Kong SARChina
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug ResearchCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong Kong SARChina
- Shenzhen Research Institute of CUHKNo. 10, 2nd Yuexing Road, NanshanShenzhenGuangdong518057China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studiesthe Education University of Hong KongN.T.Hong Kong SARChina
| |
Collapse
|
7
|
Torsilieri HM, Upchurch CM, Leitinger N, Casanova JE. Salmonella-induced cholesterol accumulation in infected macrophages suppresses autophagy via mTORC1 activation. Mol Biol Cell 2025; 36:ar3. [PMID: 39602284 PMCID: PMC11742112 DOI: 10.1091/mbc.e24-06-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy. Previous studies indicate that Salmonella infection induces dramatic accumulation of cholesterol in macrophages, a fraction of which localizes to Salmonella containing vacuoles (SCVs). We previously reported that the bacterial effector protein SseJ triggers cholesterol accumulation through a signaling cascade involving focal adhesion kinase (FAK) and Akt. Here we show that mTORC1 is recruited to SCVs and is hyperactivated in a cholesterol-dependent manner. If cholesterol accumulation is prevented pharmacologically or through mutation of sseJ, autophagy is induced and bacterial survival is attenuated. Notably, the host lipid transfer protein OSBP (oxysterol binding protein 1) is also recruited to SCVs and its activity is necessary for both cholesterol transfer to SCVs and mTORC1 activation during infection. Finally, lipidomic analysis of Salmonella-infected macrophages revealed new insights into how Salmonella may manipulate lipid homeostasis to benefit its survival. We propose that S. Typhimurium induces cholesterol accumulation through SseJ to activate mTORC1, preventing autophagic clearance of bacteria.
Collapse
Affiliation(s)
- Holly M. Torsilieri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - James E. Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
8
|
Deng Y, Huang X, Yang Y, Zhang Y, Zeng B, Bao Y, Cao L, Wang X, Ma L, Wang J. MFAP2 upregulation promotes ESCC metastasis via FAK-AKT signaling pathway. FASEB J 2024; 38:e70266. [PMID: 39698924 DOI: 10.1096/fj.202402411r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Metastasis is the leading cause of mortality from esophageal squamous cell carcinoma (ESCC). By the time of diagnosis, most ESCC tumors have already invaded the lymph nodes or distant organs; however, it has been challenging to identify and confirm genes with a crucial role in ESCC metastasis. The microfibrillar-associated protein 2 (MFAP2) is upregulated in human ESCC, and its expression level was positively associated with poor overall and disease-free survival. Consistently, upregulation of MFAP2 promoted the metastasis and invasion of ESCC cells in vitro and in vivo. Conversely, these processes were reduced by MFAP2 knockdown. Mechanistically, MFAP2 was shown to bind to the FERM domain of focal adhesion kinase (FAK) and to alleviate FAK intramolecular inhibition, resulting in the enhanced binding affinity between FAK and integrin beta 4 (ITGB4) and activation of the FAK-AKT signaling pathway. Treatment of ESCC cells with the FAK inhibitor PND-1186 reduced MFAP2, induced the activation of the FAK-AKT pathway in vitro, and suppressed lung metastasis in a mouse model of ESCC. These findings support a major role for MFAP2 in promoting ESCC metastasis, in part via the activation of FAK-AKT signaling, and highlight the potential of MFAP2 as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yiran Deng
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xu Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yiran Yang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingcong Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bingjie Zeng
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yunxia Bao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Leiqun Cao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xianzhao Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiayi Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Wang R, Yu H, Li A, Wang T, Wang Q, Qi H, Wang C, Zhang J. Maslinic acid prevented lipopolysaccharide-induced injury of IPEC-J2 cells through regulating PTEN-FAK signaling pathway. J Cell Physiol 2024; 239:e31446. [PMID: 39311471 DOI: 10.1002/jcp.31446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 12/18/2024]
Abstract
Intestinal epithelial injury is one of the typical symptoms associated with intestinal inflammation and diarrhea, and the repair of the intestinal epithelium intricately linked to cell migration. Here, we test the hypothesis that maslinic acid (MA) regulates porcine intestinal epithelial cell migration by inhibiting focal adhesion kinase (FAK)/AKT signaling pathway. In this experiment, the optimal concentration of MA (0.5 μg/mL) on IPEC-J2 cell viability was selected to investigate the effect under low-dose lipopolysaccharide (LPS) (1 μg/mL) conditions. Transcriptome sequencing and polymerase chain reaction array results revealed that MA could alleviate LPS-induced the gene expressions decreasing in focal adhesion signaling pathway. From the pathway map analysis and western blot analysis results, MA alleviated the LPS-induced decrease in FAK protein expression mainly by promoting FAK protein phosphorylation, which in turn alleviated the decrease in cell migration and formation of cytoskeleton protein Vinculin and F-actin, the above results were verified by FAK phosphorylation inhibitors Defactinib. The molecular docking and immunoprecipitation further verified that MA could bind to PTEN protein and significantly inhibit its interaction with FAK protein, blocking the function of PTEN to inhibit FAK phosphorylation finally shown to promote the level of FAK phosphorylation, meanwhile LPS inhibited FAK protein expression and its binding to PKC and PTEN proteins. Our study revealed the role of MA and LPS in FAK protein, and increased understanding of MA anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Qiyuan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Huiyu Qi
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jing Zhang
- College of Animal Sciences, Jilin University, Changchun, China
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
10
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Guan X, Liu Y, An Y, Wang X, Wei L, Qi X. FAK Family Kinases: A Potential Therapeutic Target for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:3151-3161. [PMID: 39220801 PMCID: PMC11363942 DOI: 10.2147/dmso.s465755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Atherosclerosis (AS) is a chronic progressive inflammatory disease of the vascular wall and the primary pathological basis of cardiovascular and cerebrovascular disease. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2), two highly homologous members of the FAK family kinases, play critical roles in integrin signaling. They also serve as scaffolding proteins that contribute to the assembly of cellular signaling complexes that regulate cell survival, cell cycle progression, and cell motility. Research indicates that the FAK family kinases is involved in the gene regulation of vascular cells and that aberrant expression of this family is associated with pathological changes in vascular disease. These findings establish the FAK family kinases as a critical signaling mediator in atherosclerotic lesions and inhibition of its activity has the potential to attenuate the pathological progression of AS. This review highlights the indispensable role of the FAK family kinases in abnormal vascular smooth muscle cell proliferation, endothelial cell dysfunction, inflammation, and lipid metabolism associated with AS. We also summarize therapeutic targets against the FAK family kinases, providing valuable insights into therapeutic strategies for AS.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
13
|
Murai T. Transmembrane signaling through single-spanning receptors modulated by phase separation at the cell surface. Eur J Cell Biol 2024; 103:151413. [PMID: 38631097 DOI: 10.1016/j.ejcb.2024.151413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
A wide variety of transmembrane signals are transduced by cell-surface receptors that activate intracellular signaling molecules. In particular, receptor clustering in the plasma membrane plays a critical role in these processes. Single-spanning or single-pass transmembrane proteins are among the most significant types of membrane receptors, which include adhesion receptors, such as integrins, CD44, cadherins, and receptor tyrosine kinases. Elucidating the molecular mechanisms underlying the regulation of the activity of these receptors is of great significance. Liquid-liquid phase separation (LLPS) is a recently emerging paradigm in cellular physiology for the ubiquitous regulation of the spatiotemporal dynamics of various signaling pathways. This study describes the emerging features of transmembrane signaling through single-spanning receptors from the perspective of phase separation. Possible physicochemical modulations of LLPS-based transmembrane signaling are also discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Zanela TMP, Zangiabadi M, Zhao Y, Underbakke ES. Molecularly imprinted nanoparticles reveal regulatory scaffolding features in Pyk2 tyrosine kinase. RSC Chem Biol 2024; 5:447-453. [PMID: 38725907 PMCID: PMC11078204 DOI: 10.1039/d3cb00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.
Collapse
Affiliation(s)
- Tania M Palhano Zanela
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames IA 50011 USA
| |
Collapse
|
15
|
Truong TTT, Liu ZSJ, Panizzutti B, Kim JH, Dean OM, Berk M, Walder K. Network-based drug repurposing for schizophrenia. Neuropsychopharmacology 2024; 49:983-992. [PMID: 38321095 PMCID: PMC11039639 DOI: 10.1038/s41386-024-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
16
|
Shi Y, Muenzner P, Schanz-Jurinka S, Hauck CR. The phosphatidylinositol-5' phosphatase synaptojanin1 limits integrin-mediated invasion of Staphylococcus aureus. Microbiol Spectr 2024; 12:e0200623. [PMID: 38358281 PMCID: PMC10986543 DOI: 10.1128/spectrum.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The gram-positive bacterium Staphylococcus aureus can invade non-professional phagocytic cells by associating with the plasma protein fibronectin to exploit host cell integrins. Integrin-mediated internalization of these pathogens is facilitated by the local production of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) via an integrin-associated isoform of phosphatidylinositol-5' kinase. In this study, we addressed the role of PI-4,5-P2-directed phosphatases on internalization of S. aureus. ShRNA-mediated knockdown of individual phosphoinositide 5-phosphatases revealed that synaptojanin1 (SYNJ1) is counteracting invasion of S. aureus into mammalian cells. Indeed, shRNA-mediated depletion as well as genetic deletion of synaptojanin1 via CRISPR/Cas9 resulted in a gain-of-function phenotype with regard to integrin-mediated uptake. Surprisingly, the surface level of integrins was slightly downregulated in Synj1-KO cells. Nevertheless, these cells showed enhanced local accumulation of PI-4,5-P2 and exhibited increased internalization of S. aureus. While the phosphorylation level of the integrin-associated protein tyrosine kinase FAK was unaltered, the integrin-binding and -activating protein talin was enriched in the vicinity of S. aureus in synaptojanin1 knockout cells. Scanning electron microscopy revealed enlarged membrane invaginations in the absence of synaptojanin1 explaining the increased capability of these cells to internalize integrin-bound microorganisms. Importantly, the enhanced uptake by Synj1-KO cells and the exaggerated morphological features were rescued by the re-expression of the wild-type enzyme but not phosphatase inactive mutants. Accordingly, synaptojanin1 activity limits integrin-mediated invasion of S. aureus, corroborating the important role of PI-4,5-P2 during this process.IMPORTANCEStaphylococcus aureus, an important bacterial pathogen, can invade non-professional phagocytes by capturing host fibronectin and engaging integrin α5β1. Understanding how S. aureus exploits this cell adhesion receptor for efficient cell entry can also shed light on the physiological regulation of integrins by endocytosis. Previous studies have found that a specific membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), supports the internalization process. Here, we extend these findings and report that the local levels of PIP2 are controlled by the activity of the PIP2-directed lipid phosphatase Synaptojanin1. By dephosphorylating PIP2 at bacteria-host cell attachment sites, Synaptojanin1 counteracts the integrin-mediated uptake of the microorganisms. Therefore, our study not only generates new insight into subversion of cellular receptors by pathogenic bacteria but also highlights the role of host cell proteins acting as restriction factors for bacterial invasion at the plasma membrane.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | | | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Yu J, Boehr DD. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front Mol Biosci 2023; 10:1306483. [PMID: 38099197 PMCID: PMC10720463 DOI: 10.3389/fmolb.2023.1306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Recruitment of enzymes to intracellular membranes often modulates their catalytic activity, which can be important in cell signaling and membrane trafficking. Thus, re-localization is not only important for these enzymes to gain access to their substrates, but membrane interactions often allosterically regulate enzyme function by inducing conformational changes across different time and amplitude scales. Recent structural, biophysical and computational studies have revealed how key enzymes interact with lipid membrane surfaces, and how this membrane binding regulates protein structure and function. This review summarizes the recent progress in understanding regulatory mechanisms involved in enzyme-membrane interactions.
Collapse
Affiliation(s)
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
20
|
Yan L, Rui C, Zhuang B, Liu X, Luan T, Jiang L, Dong Z, Wang Q, Wu A, Li P, Wang X, Zeng X. 17β-Estradiol Mediates Staphylococcus aureus Adhesion in Vaginal Epithelial Cells via Estrogen Receptor α-Associated Signaling Pathway. Curr Microbiol 2023; 80:391. [PMID: 37884702 DOI: 10.1007/s00284-023-03488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Staphylococcus aureus, a major opportunistic pathogen in aerobic vaginitis (AV), can potentially invade the host and occasionally cause infections. Estrogen is associated with an altered immune response of vaginal epithelial cells and prevention of certain vaginal infectious diseases. However, the molecular mechanisms involving estrogen and S. aureus adhesion to vaginal epithelial cells remain unclear. Thus, here, VK2/E6E7 vaginal epithelial cells were infected with S. aureus, and the role of the estrogen receptor α-associated signaling pathway (ERα/FAK/Src/iNOS axis) in S. aureus adhesion was evaluated. The estrogen-associated phosphorylation status of ERα, FAK, and Src and the protein level of iNOS were assessed by western blotting. We used a specific ERα inhibitor to validate the involvement of the ERα-associated signaling pathway. The results showed that with exposure to 1 nM estrogen for 24 h, transient ERα-associated pathway activation was observed, and the protein expression upregulation was accompanied by a dose-dependent increase in 17-β-estradiol (E2) content and increased S. aureus adherence to vaginal epithelial cells. Estrogen-induced activation of the ERα/FAK/Src/iNOS axis was notably inhibited by the specific ERα inhibitor (ICI 182780). Simultaneously, a significant decrease in the number of adherent S. aureus was observed. However, this inhibitory effect diminished after inhibitor treatment for 24 h. Our findings suggested that the ERα-associated signaling pathway might be involved in S. aureus adherence to vaginal epithelial cells, which appeared to be linked to enhanced cell adhesion leading to AV.
Collapse
Affiliation(s)
- Lina Yan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China.
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, People's Republic of China.
| | - Can Rui
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Bin Zhuang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Lisha Jiang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Zhiyong Dong
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Aiwen Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Ping Li
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xinyan Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xin Zeng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| |
Collapse
|
21
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Geddes JW, Bondada V, Croall DE, Rodgers DW, Gal J. Impaired activity and membrane association of most calpain-5 mutants causal for neovascular inflammatory vitreoretinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166747. [PMID: 37207905 PMCID: PMC10332796 DOI: 10.1016/j.bbadis.2023.166747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on β-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these β-strands forming a β-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the β-strands, β-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.
Collapse
Affiliation(s)
- James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
24
|
Araya-Secchi R, Bugge K, Seiffert P, Petry A, Haxholm GW, Lindorff-Larsen K, Pedersen SF, Arleth L, Kragelund BB. The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate. eLife 2023; 12:e84645. [PMID: 37232489 PMCID: PMC10260020 DOI: 10.7554/elife.84645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/24/2023] [Indexed: 05/27/2023] Open
Abstract
Class 1 cytokine receptors transmit signals through the membrane by a single transmembrane helix to an intrinsically disordered cytoplasmic domain that lacks kinase activity. While specific binding to phosphoinositides has been reported for the prolactin receptor (PRLR), the role of lipids in PRLR signaling is unclear. Using an integrative approach combining nuclear magnetic resonance spectroscopy, cellular signaling experiments, computational modeling, and simulation, we demonstrate co-structure formation of the disordered intracellular domain of the human PRLR, the membrane constituent phosphoinositide-4,5-bisphosphate (PI(4,5)P2) and the FERM-SH2 domain of the Janus kinase 2 (JAK2). We find that the complex leads to accumulation of PI(4,5)P2 at the transmembrane helix interface and that the mutation of residues identified to interact specifically with PI(4,5)P2 negatively affects PRLR-mediated activation of signal transducer and activator of transcription 5 (STAT5). Facilitated by co-structure formation, the membrane-proximal disordered region arranges into an extended structure. We suggest that the co-structure formed between PRLR, JAK2, and PI(4,5)P2 locks the juxtamembrane disordered domain of the PRLR in an extended structure, enabling signal relay from the extracellular to the intracellular domain upon ligand binding. We find that the co-structure exists in different states which we speculate could be relevant for turning signaling on and off. Similar co-structures may be relevant for other non-receptor tyrosine kinases and their receptors.
Collapse
Affiliation(s)
- Raul Araya-Secchi
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
- Facultad de Ingenieria Arquitectura y Diseño, Universidad San SebastianSantiagoChile
| | - Katrine Bugge
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Amalie Petry
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Lise Arleth
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
25
|
Marker PC, Unterberger CJ, Swanson SM. GH-dependent growth of experimentally induced carcinomas in vivo. Endocr Relat Cancer 2023; 30:e220403. [PMID: 36826838 PMCID: PMC10140676 DOI: 10.1530/erc-22-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Interest in investigating the role of the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis in the initiation and progression of experimentally induced carcinomas has arisen due to several observations in the human population. First, subjects with Laron syndrome who lack GH signaling have significantly lower rates of cancer than people who have normal GH signaling. Second, epidemiologic studies have found strong associations between elevated circulating IGF-1 and the incidence of several common cancers. Third, women who bear children early in life have a dramatically reduced risk of developing breast cancer, which may be due to differences in hormone levels including GH. These observations have motivated multiple studies that have experimentally altered activity of the GH/IGF-1 axis in the context of experimental carcinoma models in mice and rats. Most of these studies have utilized carcinoma models for four organ systems that are also frequent sites of carcinomas in humans: the mammary gland, prostate gland, liver, and colon. This review focuses on these studies and describes some of the most common genetic models used to alter the activity of the GH/IGF-1 axis in experimentally induced carcinomas. A recurring theme that emerges from these studies is that manipulations that reduce the activity of GH or mediators of GH action also inhibit carcinogenesis in multiple model systems.
Collapse
Affiliation(s)
- Paul C. Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Christopher J. Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Steven M. Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
26
|
Ehret T, Heißenberg T, de Buhr S, Aponte-Santamaría C, Steinem C, Gräter F. FERM domains recruit ample PI(4,5)P 2s to form extensive protein-membrane attachments. Biophys J 2023; 122:1325-1333. [PMID: 36814382 PMCID: PMC10111351 DOI: 10.1016/j.bpj.2023.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The four-point-one ezrin-radixin-moesin homology (FERM) protein domain is a multifunctional protein-lipid binding site, constituting an integral part of numerous membrane-associated proteins. Its interaction with the lipid phosphatidylinositol-4,5-bisphosphate (PIP2), located at the inner leaflet of eukaryotic plasma membranes, is important for localization, anchorage, and activation of FERM-containing proteins. FERM-PIP2 complexes structurally determined so far exclusively feature a 1:1 binding stoichiometry of protein and lipid, with a few basic FERM residues neutralizing the -4 charge of the bound PIP2. Whether this picture from static crystal structures also applies to the dynamic interaction of FERM domains on PIP2 membranes is unknown. We here quantified the stoichiometry of FERM-PIP2 binding in a lipid bilayer using atomistic molecular dynamics simulations and experiments on solid supported membranes for the FERM domains of focal adhesion kinase and ezrin. In contrast to the structural data, we find much higher average stoichiometries of FERM-PIP2 binding, amounting to 1:3 or 1:4 ratios, respectively. In simulations, the full set of basic residues at the membrane interface, 7 and 15 residues for focal adhesion kinase and ezrin, respectively, engages in PIP2 interactions. In addition, Na ions enter the FERM-membrane binding interface, compensating negative PIP2 charges in case of high charge surpluses from bound PIP2. We propose the multivalent binding of FERM domains to PIP2 in lipid bilayers to significantly enhance the stability of FERM-membrane binding and to render the FERM-membrane linkage highly adjustable.
Collapse
Affiliation(s)
- Thomas Ehret
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Tim Heißenberg
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Max Planck School Matter to Life, Heidelberg and Göttingen, Germany
| | - Svenja de Buhr
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | | | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Max Planck School Matter to Life, Heidelberg and Göttingen, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Max Planck School Matter to Life, Heidelberg and Göttingen, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Palhano Zanela TM, Woudenberg A, Romero Bello KG, Underbakke ES. Activation loop phosphorylation tunes conformational dynamics underlying Pyk2 tyrosine kinase activation. Structure 2023; 31:447-454.e5. [PMID: 36870334 DOI: 10.1016/j.str.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Pyk2 is a multidomain non-receptor tyrosine kinase that undergoes a multistage activation mechanism. Activation is instigated by conformational rearrangements relieving autoinhibitory FERM domain interactions. The kinase autophosphorylates a central linker residue to recruit Src kinase. Pyk2 and Src mutually phosphorylate activation loops to confer full activation. While the mechanisms of autoinhibition are established, the conformational dynamics associated with autophosphorylation and Src recruitment remain unclear. We employ hydrogen/deuterium exchange mass spectrometry and kinase activity profiling to map the conformational dynamics associated with substrate binding and Src-mediated activation loop phosphorylation. Nucleotide engagement stabilizes the autoinhibitory interface, while phosphorylation deprotects both FERM and kinase regulatory surfaces. Phosphorylation organizes active site motifs linking catalytic loop with activation segment. Dynamics of the activation segment anchor propagate to EF/G helices to prevent reversion of the autoinhibitory FERM interaction. We employ targeted mutagenesis to dissect how phosphorylation-induced conformational rearrangements elevate kinase activity above the basal autophosphorylation rate.
Collapse
Affiliation(s)
- Tania M Palhano Zanela
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alexzandrea Woudenberg
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Karen G Romero Bello
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Kostow N, Welch MD. Manipulation of host cell plasma membranes by intracellular bacterial pathogens. Curr Opin Microbiol 2023; 71:102241. [PMID: 36442349 PMCID: PMC10074913 DOI: 10.1016/j.mib.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
Manipulation of the host cell plasma membrane is critical during infection by intracellular bacterial pathogens, particularly during bacterial entry into and exit from host cells. To manipulate host cells, bacteria deploy secreted proteins that modulate or modify host cell components. Here, we review recent advances that suggest common themes by which bacteria manipulate the host cell plasma membrane. One theme is that bacteria use diverse strategies to target or influence host cell plasma membrane composition and shape. A second theme is that bacteria take advantage of host cell plasma membrane-associated pathways such as signal transduction, endocytosis, and exocytosis. Future investigation into how bacterial and host factors contribute to plasma membrane manipulation by bacterial pathogens will reveal new insights into pathogenesis and fundamental principles of plasma membrane biology.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
30
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Le Coq J, Acebrón I, Rodrigo Martin B, López Navajas P, Lietha D. New insights into FAK structure and function in focal adhesions. J Cell Sci 2022; 135:277381. [PMID: 36239192 DOI: 10.1242/jcs.259089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time. However, a picture of how FAK integrates into larger assemblies in various cellular environments, including one of its main cellular locations, the focal adhesion (FA) complex, is only beginning to emerge. Nano-resolution data from cellular studies, as well as atomic structures from reconstituted systems, have provided first insights, but also point to challenges that remain for obtaining a full structural understanding of how FAK is integrated in the FA complex and the structural changes occurring at different stages of FA maturation. In this Review, we discuss the known structural features of FAK, the interactions with its partners within the FA environment on the cell membrane and propose how its initial assembly in nascent FAs might change during FA maturation under force.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Iván Acebrón
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
32
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
34
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
ATP allosterically stabilizes integrin-linked kinase for efficient force generation. Proc Natl Acad Sci U S A 2022; 119:e2106098119. [PMID: 35259013 PMCID: PMC8933812 DOI: 10.1073/pnas.2106098119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration. Focal adhesions link the actomyosin cytoskeleton to the extracellular matrix regulating cell adhesion, shape, and migration. Adhesions are dynamically assembled and disassembled in response to extrinsic and intrinsic forces, but how the essential adhesion component integrin-linked kinase (ILK) dynamically responds to mechanical force and what role adenosine triphosphate (ATP) bound to this pseudokinase plays remain elusive. Here, we apply force–probe molecular-dynamics simulations of human ILK:α-parvin coupled to traction force microscopy to explore ILK mechanotransducing functions. We identify two key salt-bridge–forming arginines within the allosteric, ATP-dependent force-propagation network of ILK. Disrupting this network by mutation impedes parvin binding, focal adhesion stabilization, force generation, and thus migration. Under tension, ATP shifts the balance from rupture of the complex to protein unfolding, indicating that ATP increases the force threshold required for focal adhesion disassembly. Our study proposes a role of ATP as an obligatory binding partner for structural and mechanical integrity of the pseudokinase ILK, ensuring efficient cellular force generation and migration.
Collapse
|
36
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
37
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
38
|
Chadelle L, Liu J, Choesmel-Cadamuro V, Karginov AV, Froment C, Burlet-Schiltz O, Gandarillas S, Barreira Y, Segura C, Van Den Berghe L, Czaplicki G, Van Acker N, Dalenc F, Franchet C, Hahn KM, Wang X, Belguise K. PKCθ-mediated serine/threonine phosphorylations of FAK govern adhesion and protrusion dynamics within the lamellipodia of migrating breast cancer cells. Cancer Lett 2022; 526:112-130. [PMID: 34826547 PMCID: PMC9019305 DOI: 10.1016/j.canlet.2021.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.
Collapse
Affiliation(s)
- Lucie Chadelle
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiaying Liu
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Valérie Choesmel-Cadamuro
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Andrei V. Karginov
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Gandarillas
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Yara Barreira
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Christele Segura
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Loïc Van Den Berghe
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Georges Czaplicki
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Van Acker
- CHU Toulouse, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’oncologie médicale,1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Camille Franchet
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse - Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Klaus M. Hahn
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| | - Karine Belguise
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| |
Collapse
|
39
|
Case LB, De Pasquale M, Henry L, Rosen MK. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. eLife 2022; 11:e72588. [PMID: 35049497 PMCID: PMC8791637 DOI: 10.7554/elife.72588] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Milagros De Pasquale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Lisa Henry
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
40
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
41
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
He Y, Tang R, Deng J, Cai T, He P, Wu J, Cao Y. Effects of oestrogen on vulvovaginal candidosis. Mycoses 2021; 65:4-12. [PMID: 34699636 DOI: 10.1111/myc.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
As a frequently occurring infectious disease mainly caused by Candida albicans, vulvovaginal candidosis (VVC) affects more than 100 million women worldwide every year. Multiple factors that influence C. albicans colonisation have been linked to the incidence of VVC, including high levels of circulating oestrogen due to pregnancy, the use of oral contraceptives, and hormone replacement therapy. This review provides an overview of the current understanding of the mechanism(s) by which oestrogen contributes to VVC, which might provide meaningful guidance to the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Yufei He
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoyu Tang
- Department of Immunology and Pathogen Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tongkai Cai
- Shanghai Diacart Biomedical Science and Technology Limited Company, Shanghai, China
| | - Ping He
- Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
González Wusener AE, González Á, Perez Collado ME, Maza MR, General IJ, Arregui CO. Protein tyrosine phosphatase 1B targets focal adhesion kinase and paxillin in cell-matrix adhesions. J Cell Sci 2021; 134:272564. [PMID: 34553765 DOI: 10.1242/jcs.258769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Collapse
Affiliation(s)
- Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - María E Perez Collado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Melina R Maza
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Ignacio J General
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
44
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
45
|
Shi Y, Berking A, Baade T, Legate KR, Fässler R, Hauck CR. PIP5KIγ90-generated phosphatidylinositol-4,5-bisphosphate promotes the uptake of Staphylococcus aureus by host cells. Mol Microbiol 2021; 116:1249-1267. [PMID: 34519119 DOI: 10.1111/mmi.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus, a Gram-positive pathogen, invades cells mainly in an integrin-dependent manner. As the activity or conformation of several integrin-associated proteins can be regulated by phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2 ), we investigated the roles of PI-4,5-P2 and PI-4,5-P2 -producing enzymes in cellular invasion by S. aureus. PI-4,5-P2 accumulated upon contact of S. aureus with the host cell, and targeting of an active PI-4,5-P2 phosphatase to the plasma membrane reduced bacterial invasion. Knockdown of individual phosphatidylinositol-4-phosphate 5-kinases revealed that phosphatidylinositol-4-phosphate 5-kinase γ (PIP5KIγ) plays an important role in bacterial internalization. Specific ablation of the talin and FAK-binding motif in PIP5KIγ90 reduced bacterial invasion, which could be rescued by reexpression of an active, but not inactive PIP5KIγ90. Furthermore, PIP5KIγ90-deficient cells showed normal basal PI-4,5-P2 levels in the plasma membrane but reduced the accumulation of PI-4,5-P2 and talin at sites of S. aureus attachment and overall lower levels of FAK phosphorylation. These results highlight the importance of local synthesis of PI-4,5-P2 by a focal adhesion-associated lipid kinase for integrin-mediated internalization of S. aureus.
Collapse
Affiliation(s)
- Yong Shi
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Anne Berking
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Timo Baade
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | | | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
46
|
Pollan SG, Teng PC, Jan YJ, Livingstone J, Huang C, Kim M, Mariscal J, Rodriguez M, Chen JF, You S, DiVizio D, Boutros PC, Chan KS, Rasorenova O, Cress A, Spassov D, Moasser M, Posadas EM, Freedland SJ, Freeman MR, Zheng JJ, Knudsen BS. Loss of CDCP1 triggers FAK activation in detached prostate cancer cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:350-366. [PMID: 34541033 PMCID: PMC8446766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
A major metastasis suppressing mechanism is the rapid apoptotic death of cancer cells upon detachment from extracellular matrix, a process called anoikis. Focal adhesion kinase (PTK2/FAK) is a key enzyme involved in evasion of anoikis. We show that loss of the Cub-domain containing protein-1 (CDCP1), paradoxically stimulates FAK activation in the detached state of prostate cancer cells. In CDCP1low DU145 and PC3 prostate cancer cells, detachment-activation of FAK occurs through local production of PI(4,5)P2. PI(4,5)P2 is generated by the PIP5K1c-201 splicing isoform of PIP5K1c, which contains a unique SRC phosphorylation site. In the detached state, reduced expression of CDCP1 and an alternative CDCP1-independent SRC activation mechanism triggers PIP5K1c-pY644 phosphorylation by SRC. This causes a switch of Talin binding from β1-integrin to PIP5K1c-pY644 and leads to activation of PIP5K1c-FAK. Reduced CDCP1 expression also inactivates CDK5, a negative regulator of PIP5K1c. Furthermore, immersion of prostate cancer cells in 10% human plasma or fetal bovine serum is required for activation of PIP5K1c-FAK. The PIP5K1c induced detachment-activation of FAK in preclinical models sensitizes CDCP1low prostate cancer cells to FAK inhibitors. In patients, CDCP1High versus CDCP1low circulating tumor cells differ in expression of AR-v7, ONECUT2 and HOXB13 oncogenes and TMPRSS2 and display intra-patient heterogeneity of FAK-pY397 expression. Taken together, CDCP1low and CDCP1high detached prostate cancer cells activate distinct cytoplasmic kinase complexes and targetable transcription factors, which has important therapeutic implications.
Collapse
Affiliation(s)
- Sara G Pollan
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Pai-Chi Teng
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Yu Jen Jan
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Julie Livingstone
- Department of Informatics and Biocomputing, Ontario Institute for Cancer ResearchToronto, ON M5G 1L7, Canada
| | - Cai Huang
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky789 South Limestone St, Lexington, KY 40536, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Javier Mariscal
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Maria Rodriguez
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jie-Fu Chen
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Dolores DiVizio
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Paul C Boutros
- Department of Human Genetics and Urology, Jonsson Comprehensive Cancer Centre, University of CaliforniaLos Angeles, CA, USA
| | - Keith Syson Chan
- Department of Pathology, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Olga Rasorenova
- Department of Molecular Biology and Biochemistry, University of California IrvineIrvine, CA 92697, USA
| | - Anne Cress
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine1501 N, Campbell Avenue, Tucson, AZ 85724, USA
| | - Danislav Spassov
- Department of Medicine, University of California San FranciscoSan Francisco, CA 94143, USA
| | - Mark Moasser
- Department of Medicine, University of California San FranciscoSan Francisco, CA 94143, USA
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jie J Zheng
- Department of Cell & Developmental Biology, University of California Los AngelesCHS BH-973B, Los Angeles, CA 90095, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology, University of UtahSalt Lake City, UT 84112, USA
| |
Collapse
|
47
|
Takahashi K, Kanerva K, Vanharanta L, Almeida‐Souza L, Lietha D, Olkkonen VM, Ikonen E. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P 2 exchange. EMBO J 2021; 40:e106871. [PMID: 34124795 PMCID: PMC8281050 DOI: 10.15252/embj.2020106871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.
Collapse
Affiliation(s)
- Kohta Takahashi
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Present address:
Laboratory of Microbiology and ImmunologyGraduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Leonardo Almeida‐Souza
- Helsinki Institute of Life Science, HiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Daniel Lietha
- Centro de Investigaciones Biológicas Margarita Salas (CIB)Spanish National Research Council (CSIC)MadridSpain
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
48
|
Greene AR, Owen KA, Casanova JE. Salmonella Typhimurium manipulates macrophage cholesterol homeostasis through the SseJ-mediated suppression of the host cholesterol transport protein ABCA1. Cell Microbiol 2021; 23:e13329. [PMID: 33742761 DOI: 10.1111/cmi.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
Upon infection of host cells, Salmonella enterica serovar Typhimurium resides in a modified-endosomal compartment referred to as the Salmonella-containing vacuole (SCV). SCV biogenesis is driven by multiple effector proteins translocated through two type III secretion systems (T3SS-1 and T3SS-2). While many host proteins targeted by these effector proteins have been characterised, the role of host lipids in SCV dynamics remains poorly understood. Previous studies have shown that S. Typhimurium infection in macrophages leads to accumulation of intracellular cholesterol, some of which concentrates in and around SCVs; however, the underlying mechanisms remain unknown. Here, we show that S. Typhimurium utilises the T3SS-2 effector SseJ to downregulate expression of the host cholesterol transporter ABCA1 in macrophages, leading to a ~45% increase in cellular cholesterol. Mechanistically, SseJ activates a signalling cascade involving the host kinases FAK and Akt to suppress Abca1 expression. Mutational inactivation of SseJ acyltransferase activity, silencing FAK, or inhibiting Akt prevents Abca1 downregulation and the corresponding accumulation of cholesterol during infection. Importantly, RNAi-mediated silencing of ABCA1 rescued bacterial survival in FAK-deficient macrophages, suggesting that Abca1 downregulation and cholesterol accumulation are important for intracellular survival.
Collapse
Affiliation(s)
- Adam R Greene
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Katherine A Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA.,Ampel Biosolutions, Charlottesville, Virginia, USA
| | - James E Casanova
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
49
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
50
|
Structural and functional analysis of LIM domain-dependent recruitment of paxillin to αvβ3 integrin-positive focal adhesions. Commun Biol 2021; 4:380. [PMID: 33782527 PMCID: PMC8007706 DOI: 10.1038/s42003-021-01886-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The LIM domain-dependent localization of the adapter protein paxillin to β3 integrin-positive focal adhesions (FAs) is not mechanistically understood. Here, by combining molecular biology, photoactivation and FA-isolation experiments, we demonstrate specific contributions of each LIM domain of paxillin and reveal multiple paxillin interactions in adhesion-complexes. Mutation of β3 integrin at a putative paxillin binding site (β3VE/YA) leads to rapidly inward-sliding FAs, correlating with actin retrograde flow and enhanced paxillin dissociation kinetics. Induced mechanical coupling of paxillin to β3VE/YA integrin arrests the FA-sliding, thereby disclosing an essential structural function of paxillin for the maturation of β3 integrin/talin clusters. Moreover, bimolecular fluorescence complementation unveils the spatial orientation of the paxillin LIM-array, juxtaposing the positive LIM4 to the plasma membrane and the β3 integrin-tail, while in vitro binding assays point to LIM1 and/or LIM2 interaction with talin-head domain. These data provide structural insights into the molecular organization of β3 integrin-FAs.
Collapse
|