1
|
Choy S, Thakur S, Polyakov E, Abdelaziz J, Lloyd E, Enriquez M, Jayan N, Mensinger A, Fily Y, McGaugh S, Keene AC, Kowalko JE. Mutations in the albinism gene oca2 alter vision-dependent prey capture behavior in the Mexican tetra. J Exp Biol 2025; 228:jeb249881. [PMID: 40094260 PMCID: PMC12045627 DOI: 10.1242/jeb.249881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Understanding the phenotypic consequences of naturally occurring genetic changes, as well as their impact on fitness, is fundamental to understanding how organisms adapt to an environment. This is critical when genetic variants have pleiotropic effects, as determining how each phenotype impacted by a gene contributes to fitness is essential to understand how and why traits have evolved. Here, we characterized the effects of mutations in the oca2 gene, which underlie albinism and reductions of sleep in the blind Mexican cavefish Astyanax mexicanus, on larval prey capture. We found that when surface A. mexicanus with engineered mutations in oca2 are hunting, they use cave-like, wide-angle strikes to capture prey. However, unlike cavefish or surface fish in the dark, which utilize the lateral line when hunting, oca2 mutant (oca2Δ2bp/Δ2bp) surface fish can use vision when striking at prey from wide angles. We found that when raised under lighted conditions, pigmented surface fish outcompete albino oca2Δ2bp/Δ2bp surface fish when hunting in lighted conditions. In contrast, when surface fish are reared in darkness, oca2Δ2bp/Δ2bp surface fish outcompete their wild type siblings in the dark. This raises the possibility that albinism is detrimental to larval feeding in a surface-like lighted environment, but may confer an advantage to fish in cave-like, dark environments. Together, these results demonstrate that oca2 plays a role in larval feeding behavior in A. mexicanus, and expand our understanding of the pleiotropic phenotypic consequences of oca2 in cavefish evolution.
Collapse
Affiliation(s)
- Stefan Choy
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Sunishka Thakur
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ellen Polyakov
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jennah Abdelaziz
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Evan Lloyd
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Maya Enriquez
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Nikita Jayan
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Allen Mensinger
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M, College Station, TX 77843, USA
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Wiese J, Richards E, Kowalko JE, McGaugh SE. Quantitative trait loci concentrate in specific regions of the Mexican cavefish genome and reveal key candidate genes for cave-associated evolution. J Hered 2025; 116:89-100. [PMID: 39079020 DOI: 10.1093/jhered/esae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here, we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL clusters in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in A. mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.
Collapse
Affiliation(s)
- Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Emilie Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Powers AK, Amaismeier A, Thiel K, Anyonge W, McGaugh SE, Boggs TE, Tabin CJ, Gross JB. Genetic Mapping of Orofacial Traits Reveals a Single Genomic Region Associated With Differences in Multiple Parameters of Jaw Size Between Astyanax mexicanus Surface and Cavefish. Evol Dev 2025:e70003. [PMID: 39973210 DOI: 10.1111/ede.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/10/2024] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The regulation of bone size is a poorly understood and complex developmental process. Evolutionary models can enable insight through interrogation of the developmental and molecular underpinnings of natural variation in bone size and shape. Here, we examine the Mexican tetra (Astyanax mexicanus), a species of teleost fish comprising of an extant river-dwelling surface fish and obligate cave-dwelling fish. These divergent morphs have evolved for thousands of years in drastically different habitats, which have led to diverse phenotypic differences. Among many craniofacial aberrations, cavefish harbor a wider gape, an underbite, and larger jaws compared to surface-dwelling morphs. Morphotypes are inter-fertile, allowing quantitative genetic analyses in F2 pedigrees derived from surface × cavefish crosses. Here, we used quantitative trait locus (QTL) analysis to determine the genetic basis of jaw size. Strikingly, we discovered a single genomic region associated with several jaw size metrics. Future work identifying genetic lesions that explain differences in jaw development will provide new insight to the mechanisms driving bone size differences across vertebrate taxa.
Collapse
Affiliation(s)
- Amanda K Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kathryn Thiel
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - William Anyonge
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
5
|
Holtz N, Albertson RC. Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. Integr Org Biol 2024; 6:obae030. [PMID: 39234027 PMCID: PMC11372417 DOI: 10.1093/iob/obae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.
Collapse
Affiliation(s)
- N Holtz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - R C Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Berning D, Heerema H, Gross JB. The spatiotemporal and genetic architecture of extraoral taste buds in Astyanax cavefish. Commun Biol 2024; 7:951. [PMID: 39107459 PMCID: PMC11303775 DOI: 10.1038/s42003-024-06635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Intense environmental pressures can yield both regressive and constructive traits through complex evolutionary mechanisms. Although regression is well-studied, the biological bases of constructive features are less well understood. Cave-dwelling Astyanax fish harbor prolific extraoral taste buds on their heads, which are absent in conspecific surface-dwellers. Here, we present novel ontogenetic data demonstrating extraoral taste buds appear gradually and late in life history. This appearance is similar but non-identical in different cavefish populations, where patterning has evolved to permit taste bud re-specification across the endoderm-ectoderm germ layer boundary. Quantitative genetic analyses revealed that spatially distinct taste buds on the head are primarily mediated by two different cave-dominant loci. While the precise function of this late expansion on to the head is unknown, the appearance of extraoral taste buds coincides with a dietary shift from live-foods to bat guano, suggesting an adaptive mechanism to detect nutrition in food-starved caves. This work provides fundamental insight to a constructive evolutionary feature, arising late in life history, promising a new window into unresolved features of vertebrate sensory organ development.
Collapse
Affiliation(s)
- Daniel Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Halle Heerema
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Ra K, A C, B T, Ac K, Je K, Er D. Evolution of a central dopamine circuit underlies adaptation of light-evoked sensorimotor response in the blind cavefish, Astyanax mexicanus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605141. [PMID: 39091880 PMCID: PMC11291158 DOI: 10.1101/2024.07.25.605141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Adaptive behaviors emerge in novel environments through functional changes in neural circuits. While relationships between circuit function and behavior have been well studied, how evolution shapes those circuits and leads to behavioral adpation is poorly understood. The Mexican cavefish, Astyanax mexicanus, provides a unique genetically amendable model system, equipped with above ground eyed surface fish and multiple evolutionarily divergent populations of blind cavefish that have evolved in complete darkness. These differences in environment and vision provide an opprotunity to examine how a neural circuit is functionally influenced by the presence of light. Here, we examine differences in the detection, and behavioral response induced by non visual light reception. Both populations exhibit photokinetic behavior, with surface fish becoming hyperactive following sudden darkness and cavefish becoming hyperactive following sudden illumination. To define these photokinetic neural circuits, we integrated whole brain functional imaging with our Astyanax brain atlas for surface and cavefish responding to light changes. We identified the caudal posterior tuberculum as the central modulator for both light or dark stimulated photokinesis. To unconver how spatiotemporal neuronal activity differed between surface fish and cavefish, we used stable pan-neuronal GCaMP Astyanax transgenics to show that a subpopulation of darkness sensitve neurons in surface fish are now light senstive in cavefish. Further functional analysis revealed that this integrative switch is dependent on dopmane signaling, suggesting a key role for dopamine and a highly conserved dopamine circuit in modulating the evolution of a circuit driving an essential behavior. Together, these data shed light into how neural circuits evolved to adapte to novel settings, and reveal the power of Astyanax as a model to elucidate mechanistic ingiths underlying sensory adaptation.
Collapse
Affiliation(s)
- Kozol Ra
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Canavan A
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Tolentino B
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Keene Ac
- Department of Biology, Texas A&M University, College Station, TX
| | - Kowalko Je
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | - Duboué Er
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
8
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren W, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial sleep in short-sleeping Mexican cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.602003. [PMID: 39005273 PMCID: PMC11244998 DOI: 10.1101/2024.07.03.602003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Owen North
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Morgan O'Gorman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Pierce Hutton
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Wes Warren
- Department of Genomics, University of Missouri, Columbia, MO 65201
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
9
|
St John ME, Dunker JC, Richards EJ, Romero S, Martin CH. Parallel evolution of integrated craniofacial traits in trophic specialist pupfishes. Ecol Evol 2024; 14:e11640. [PMID: 38979003 PMCID: PMC11228360 DOI: 10.1002/ece3.11640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Populations may adapt to similar environments via parallel or non-parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale-eater (Cyprinodon desquamator) and molluscivore (C. brontotheroides) pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab-reared F2 scale-eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex. We compared the location of QTL between lakes to quantify parallel and non-parallel genetic changes. We detected significant QTL for six craniofacial traits in at least one lake. However, nearly all shared QTL loci were associated with a different craniofacial trait within each lake. Therefore, our estimate of parallel evolution of craniofacial genetic architecture could range from one out of six identical trait QTL (low parallelism) to five out of six integrated trait QTL (high parallelism). We suggest that pleiotropy and trait integration can affect estimates of parallel evolution, particularly within rapid radiations. We also observed increased adaptive introgression in shared QTL regions, suggesting that gene flow contributed to parallel evolution. Overall, our results suggest that the same genomic regions may contribute to parallel adaptation across integrated suites of craniofacial traits, rather than specific traits, and highlight the need for a more expansive definition of parallel evolution.
Collapse
Affiliation(s)
| | - Julia C Dunker
- Department of Integrative Biology University of California Berkeley California USA
| | - Emilie J Richards
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota USA
| | - Stephanie Romero
- Department of Evolution and Ecology University of California Davis California USA
| | - Christopher H Martin
- Department of Integrative Biology University of California Berkeley California USA
- Museum of Vertebrate Zoology University of California Berkeley California USA
| |
Collapse
|
10
|
Choy S, Thakur S, Polyakov E, Abdelaziz J, Lloyd E, Enriquez M, Jayan N, Fily Y, McGaugh S, Keene AC, Kowalko JE. Mutations in the albinism gene oca2 alter vision-dependent prey capture behavior in the Mexican tetra. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599419. [PMID: 38948816 PMCID: PMC11212897 DOI: 10.1101/2024.06.17.599419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding the phenotypic consequences of naturally occurring genetic changes, as well as their impact on fitness, is fundamental to understanding how organisms adapt to an environment. This is critical when genetic variants have pleiotropic effects, as determining how each phenotype impacted by a gene contributes to fitness is essential to understand how and why traits have evolved. A striking example of a pleiotropic gene contributing to trait evolution is the oca2 gene, coding mutations in which underlie albinism and reductions of sleep in the blind Mexican cavefish, Astyanax mexicanus. Here, we characterize the effects of mutations in the oca2 gene on larval prey capture. We find that when conspecific surface fish with engineered mutations in the oca2 allele are hunting, they use cave-like, wide angle strikes to capture prey. However, unlike cavefish or surface fish in the dark, which rely on lateral line mediated hunting, oca2 mutant surface fish use vision when striking at prey from wide angles. Finally, we find that while oca2 mutant surface fish do not outcompete pigmented surface siblings in the dark, pigmented fish outcompete albino fish in the light. This raises the possibility that albinism is detrimental to larval feeding in a surface-like lighted environment, but does not have negative consequences for fish in cave-like, dark environments. Together, these results demonstrate that oca2 plays a role in larval feeding behavior in A. mexicanus. Further, they expand our understanding of the pleiotropic phenotypic consequences of oca2 in cavefish evolution.
Collapse
Affiliation(s)
- Stefan Choy
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | - Sunishka Thakur
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Ellen Polyakov
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Jennah Abdelaziz
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | | | - Maya Enriquez
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Nikita Jayan
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Alex C Keene
- Department of Biology, Texas A&M, College Station, TX
| | | |
Collapse
|
11
|
Cobham AE, Rohner N. Unraveling stress resilience: Insights from adaptations to extreme environments by Astyanax mexicanus cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:178-188. [PMID: 38247307 DOI: 10.1002/jez.b.23238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, Astyanax mexicanus, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of A. mexicanus, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.
Collapse
Affiliation(s)
- Ansa E Cobham
- Stowers Institute for Medical Research, Missouri, Kansas City, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Missouri, Kansas City, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
12
|
Riddle MR, Nguyen NK, Nave M, Peuß R, Maldonado E, Rohner N, Tabin CJ. Host evolution shapes gut microbiome composition in Astyanax mexicanus. Ecol Evol 2024; 14:e11192. [PMID: 38571802 PMCID: PMC10985381 DOI: 10.1002/ece3.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.
Collapse
Affiliation(s)
| | | | | | - Robert Peuß
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Ernesto Maldonado
- Institute of Marine Sciences and LimnologyUniversidad Nacional Autonoma de Mexico, UNAMPuerto MorelosMexico
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | | |
Collapse
|
13
|
Fenton S, Jacobs A, Bean CW, Adams CE, Elmer KR. Genomic underpinnings of head and body shape in Arctic charr ecomorph pairs. Mol Ecol 2024; 33:e17305. [PMID: 38421099 DOI: 10.1111/mec.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.
Collapse
Affiliation(s)
- Sam Fenton
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Arne Jacobs
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Colin W Bean
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- NatureScot, Clydebank, UK
| | - Colin E Adams
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Wiese J, Richards E, Kowalko JE, McGaugh SE. Loci associated with cave-derived traits concentrate in specific regions of the Mexican cavefish genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587360. [PMID: 38585759 PMCID: PMC10996652 DOI: 10.1101/2024.03.29.587360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A major goal of modern evolutionary biology is connecting phenotypic evolution with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. This analysis revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify a list of 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific "evolutionary hotspots" in the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.
Collapse
Affiliation(s)
- Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Emilie Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
15
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
16
|
Powers AK, Hyacinthe C, Riddle MR, Kim YK, Amaismeier A, Thiel K, Martineau B, Ferrante E, Moran RL, McGaugh SE, Boggs TE, Gross JB, Tabin CJ. Genetic mapping of craniofacial traits in the Mexican tetra reveals loci associated with bite differences between cave and surface fish. BMC Ecol Evol 2023; 23:41. [PMID: 37626324 PMCID: PMC10463419 DOI: 10.1186/s12862-023-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations. RESULTS To investigate these traits, we created a novel feeding behavior assay wherein bite impressions could be obtained. We determined that fish with an underbite leave larger bite impressions with an increase in the number of tooth marks. Capitalizing on the ability to produce hybrids from surface and cavefish crosses, we investigated genes underlying these segregating orofacial traits by performing Quantitative Trait Loci (QTL) analysis with F2 hybrids. We discovered significant QTL for bite (underbite vs. overbite) that mapped to a single region of the Astyanax genome. Within this genomic region, multiple genes exhibit coding region mutations, some with known roles in bone development. Further, we determined that there is evidence that this genomic region is under natural selection. CONCLUSIONS This work highlights cavefish as a valuable genetic model for orofacial patterning and will provide insight into the genetic regulators of jaw and tooth development.
Collapse
Affiliation(s)
- Amanda K Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Carole Hyacinthe
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Young Kwang Kim
- Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115, USA
| | - Alleigh Amaismeier
- Department of Biology, Xavier University, 3800 Victory Pkwy., Cincinnati, OH, 45207, USA
| | - Kathryn Thiel
- Department of Biology, Xavier University, 3800 Victory Pkwy., Cincinnati, OH, 45207, USA
| | - Brian Martineau
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Emma Ferrante
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Rachel L Moran
- Department of Biology, Texas A & M University, 100 Butler Hall, College Station, TX, 77843, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1500 Gortner Ave., Saint Paul, MN, 55108, USA
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, 312 College Dr., Cincinnati, OH, 45221, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 College Dr., Cincinnati, OH, 45221, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute at Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Sifuentes-Romero I, Aviles AM, Carter JL, Chan-Pong A, Clarke A, Crotty P, Engstrom D, Meka P, Perez A, Perez R, Phelan C, Sharrard T, Smirnova MI, Wade AJ, Kowalko JE. Trait Loss in Evolution: What Cavefish Have Taught Us about Mechanisms Underlying Eye Regression. Integr Comp Biol 2023; 63:393-406. [PMID: 37218721 PMCID: PMC10445413 DOI: 10.1093/icb/icad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Reduction or complete loss of traits is a common occurrence throughout evolutionary history. In spite of this, numerous questions remain about why and how trait loss has occurred. Cave animals are an excellent system in which these questions can be answered, as multiple traits, including eyes and pigmentation, have been repeatedly reduced or lost across populations of cave species. This review focuses on how the blind Mexican cavefish, Astyanax mexicanus, has been used as a model system for examining the developmental, genetic, and evolutionary mechanisms that underlie eye regression in cave animals. We focus on multiple aspects of how eye regression evolved in A. mexicanus, including the developmental and genetic pathways that contribute to eye regression, the effects of the evolution of eye regression on other traits that have also evolved in A. mexicanus, and the evolutionary forces contributing to eye regression. We also discuss what is known about the repeated evolution of eye regression, both across populations of A. mexicanus cavefish and across cave animals more generally. Finally, we offer perspectives on how cavefish can be used in the future to further elucidate mechanisms underlying trait loss using tools and resources that have recently become available.
Collapse
Affiliation(s)
- Itzel Sifuentes-Romero
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ari M Aviles
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Joseph L Carter
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Allen Chan-Pong
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Anik Clarke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Patrick Crotty
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - David Engstrom
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Pranav Meka
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Alexandra Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Riley Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Christine Phelan
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Taylor Sharrard
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Maria I Smirnova
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Stiles–Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Amanda J Wade
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
18
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
19
|
Borowsky R. Selection Maintains the Phenotypic Divergence of Cave and Surface Fish. Am Nat 2023; 202:55-63. [PMID: 37384766 DOI: 10.1086/724661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractGenetic divergence in the presence of gene flow has been well documented, but there is little information on the specific factors maintaining divergence. The present study investigates this in the Mexican tetra (Astyanax mexicanus), an excellent model for studying this question because surface and cave populations differ markedly in phenotype and genotype but are interfertile. Previous population studies documented significant gene flow among cave and surface populations, but they focused on analyses of neutral markers whose evolutionary dynamics likely differ from those of genes involved in cave adaptation. The present study advances our understanding of this question by focusing specifically on the genetics responsible for eye and pigmentation reduction, signature traits of cave populations. Direct observations of two cave populations over the course of 63 years verify that surface fish frequently move into the caves and even hybridize with the cave fish. Importantly, however, historical records show that surface alleles for pigmentation and eye size do not persist but are rapidly eliminated from the cave gene pool. It has been argued that regression of eyes and pigmentation was driven by drift, but the results of this study suggest that strong selection actively eliminates surface alleles from the cave populations.
Collapse
|
20
|
Kozol RA, Yuiska A, Han JH, Tolentino B, Lopatto A, Lewis P, Paz A, Keene AC, Kowalko JE, Duboué ER. Novel Husbandry Practices Result in Rapid Rates of Growth and Sexual Maturation Without Impacting Adult Behavior in the Blind Mexican Cavefish. Zebrafish 2023; 20:86-94. [PMID: 37071855 PMCID: PMC10123811 DOI: 10.1089/zeb.2023.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Animal model systems are dependent on the standardization of husbandry protocols that maximize growth and reduce generation time. The Mexican tetra, Astyanax mexicanus, exists as eyed surface and blind cave dwelling populations. The opportunity for comparative approaches between independently evolved populations has led to the rapid growth of A. mexicanus as a model for evolution and biomedical research. However, a slow and inconsistent growth rate remains a major limitation to the expanded application of A. mexicanus. Fortunately, this temporal limitation can be addressed through husbandry changes that accelerate growth rates while maintaining optimal health outcomes. Here, we describe a husbandry protocol that produces rapid growth rates through changes in diet, feeding frequency, growth sorting and progressive changes in tank size. This protocol produced robust growth rates and decreased the age of sexual maturity in comparison to our previous protocol. To determine whether changes in feeding impacted behavior, we tested fish in exploration and schooling assays. We found no difference in behavior between the two groups, suggesting that increased feeding and rapid growth will not impact the natural variation in behavioral traits. Taken together, this standardized husbandry protocol will accelerate the development of A. mexicanus as a genetic model.
Collapse
Affiliation(s)
- Robert A. Kozol
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Anders Yuiska
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Ji Heon Han
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Bernadeth Tolentino
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Arthur Lopatto
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Peter Lewis
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alexandra Paz
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M, College Station, Texas, USA
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Erik R. Duboué
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
21
|
Lloyd E, McDole B, Privat M, Jaggard JB, Duboué ER, Sumbre G, Keene AC. Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Curr Biol 2022; 32:3720-3730.e3. [PMID: 35926509 DOI: 10.1016/j.cub.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Sensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations and multiple independent cave populations that have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Furthermore, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA; Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - James B Jaggard
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik R Duboué
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
22
|
An enhancer of Agouti contributes to parallel evolution of cryptically colored beach mice. Proc Natl Acad Sci U S A 2022; 119:e2202862119. [PMID: 35776547 PMCID: PMC9271204 DOI: 10.1073/pnas.2202862119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying the genetic basis of repeatedly evolved traits provides a way to reconstruct their evolutionary history and ultimately investigate the predictability of evolution. Here, we focus on the oldfield mouse (Peromyscus polionotus), which occurs in the southeastern United States, where it exhibits considerable color variation. Dorsal coats range from dark brown in mainland mice to near white in mice inhabiting sandy beaches; this light pelage has evolved independently on Florida's Gulf and Atlantic coasts as camouflage from predators. To facilitate genomic analyses, we first generated a chromosome-level genome assembly of Peromyscus polionotus subgriseus. Next, in a uniquely variable mainland population (Peromyscus polionotus albifrons), we scored 23 pigment traits and performed targeted resequencing in 168 mice. We find that pigment variation is strongly associated with an ∼2-kb region ∼5 kb upstream of the Agouti signaling protein coding region. Using a reporter-gene assay, we demonstrate that this regulatory region contains an enhancer that drives expression in the dermis of mouse embryos during the establishment of pigment prepatterns. Moreover, extended tracts of homozygosity in this Agouti region indicate that the light allele experienced recent and strong positive selection. Notably, this same light allele appears fixed in both Gulf and Atlantic coast beach mice, despite these populations being separated by >1,000 km. Together, our results suggest that this identified Agouti enhancer allele has been maintained in mainland populations as standing genetic variation and from there, has spread to and been selected in two independent beach mouse lineages, thereby facilitating their rapid and parallel evolution.
Collapse
|
23
|
James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, Ortiz-Barrientos D. Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 2021; 75:3115-3131. [PMID: 34687472 PMCID: PMC9299460 DOI: 10.1111/evo.14387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune‐Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait‐environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Diana M Bernal
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Biousos Neotropicales S.A.S, Bogotá, Colombia
| | - Huanle Liu
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Henry L North
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
24
|
Abstract
Albino cavefish sleep less than their pigmented siblings. A recent study used CRISPR-Cas9-directed mutation to establish unambiguously that loss of function of a single gene, ocular and cutaneous albinism2, underlies both phenotypes, one morphological, the other behavioral.
Collapse
Affiliation(s)
- Richard Borowsky
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
25
|
Mack KL, Jaggard JB, Persons JL, Roback EY, Passow CN, Stanhope BA, Ferrufino E, Tsuchiya D, Smith SE, Slaughter BD, Kowalko J, Rohner N, Keene AC, McGaugh SE. Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genet 2021; 17:e1009642. [PMID: 34252077 PMCID: PMC8297936 DOI: 10.1371/journal.pgen.1009642] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.
Collapse
Affiliation(s)
- Katya L. Mack
- Biology, Stanford University, Stanford, California, United States of America
| | - James B. Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Jenna L. Persons
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Emma Y. Roback
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Courtney N. Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bethany A. Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Estephany Ferrufino
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E. Smith
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Johanna Kowalko
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Alex C. Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Suzanne E. McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
26
|
Riddle MR, Aspiras A, Damen F, McGaugh S, Tabin JA, Tabin CJ. Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation. BMC Ecol Evol 2021; 21:94. [PMID: 34020589 PMCID: PMC8139031 DOI: 10.1186/s12862-021-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a longstanding interest in understanding how animals adapt to environments with limited nutrients, we have incomplete knowledge of the genetic basis of metabolic evolution. The Mexican tetra, Astyanax mexicanus, is a species of fish that consists of two morphotypes; eyeless cavefish that have adapted to a low-nutrient cave environment, and ancestral river-dwelling surface fish with abundant access to nutrients. Cavefish have evolved altered blood sugar regulation, starvation tolerance, increased fat accumulation, and superior body condition. To investigate the genetic basis of cavefish metabolic evolution we carried out a quantitative trait loci (QTL) analysis in surface/cave F2 hybrids. We genetically mapped seven metabolism-associated traits in hybrids that were challenged with a nutrient restricted diet. RESULTS We found that female F2 hybrids are bigger than males and have a longer hindgut, bigger liver, and heavier gonad, even after correcting for fish size. Although there is no difference between male and female blood sugar level, we found that high blood sugar is associated with weight gain in females and lower body weight and fat level in males. We identified a significant QTL associated with 24-h-fasting blood glucose level with the same effect in males and females. Differently, we identified sex-independent and sex-dependent QTL associated with fish length, body condition, liver size, hindgut length, and gonad weight. We found that some of the genes within the metabolism QTL display evidence of non-neutral evolution and are likely to be under selection. Furthermore, we report predicted nonsynonymous changes to the cavefish coding sequence of these genes. CONCLUSIONS Our study reveals previously unappreciated genomic regions associated with blood glucose regulation, body condition, gonad size, and internal organ morphology. In addition, we find an interaction between sex and metabolism-related traits in A. mexicanus. We reveal coding changes in genes that are likely under selection in the low-nutrient cave environment, leading to a better understanding of the genetic basis of metabolic evolution.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Ariel Aspiras
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Fleur Damen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julius A Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Warren WC, Boggs TE, Borowsky R, Carlson BM, Ferrufino E, Gross JB, Hillier L, Hu Z, Keene AC, Kenzior A, Kowalko JE, Tomlinson C, Kremitzki M, Lemieux ME, Graves-Lindsay T, McGaugh SE, Miller JT, Mommersteeg MTM, Moran RL, Peuß R, Rice ES, Riddle MR, Sifuentes-Romero I, Stanhope BA, Tabin CJ, Thakur S, Yamamoto Y, Rohner N. A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nat Commun 2021; 12:1447. [PMID: 33664263 PMCID: PMC7933363 DOI: 10.1038/s41467-021-21733-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, Institute for Data Science and Informatics, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Department of Surgery, Institute for Data Science and Informatics, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Brian M Carlson
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA
| | - Estephany Ferrufino
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zhilian Hu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | | | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | | | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey T Miller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Edward S Rice
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Misty R Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | - Bethany A Stanhope
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Clifford J Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sunishka Thakur
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular & Integrative Physiology, KU Medical Center, Kansas City, KS, USA.
| |
Collapse
|
28
|
Kowalko JE, Franz-Odendaal TA, Rohner N. Introduction to the special issue-cavefish-adaptation to the dark. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:393-396. [PMID: 33258551 DOI: 10.1002/jez.b.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
29
|
Chin JSR, Loomis CL, Albert LT, Medina-Trenche S, Kowalko J, Keene AC, Duboué ER. Analysis of stress responses in Astyanax larvae reveals heterogeneity among different populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:486-496. [PMID: 32767504 DOI: 10.1002/jez.b.22987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Stress responses are conserved physiological and behavioral outcomes as a result of facing potentially harmful stimuli, yet in pathological states, stress becomes debilitating. Stress responses vary considerably throughout the animal kingdom, but how these responses are shaped evolutionarily is unknown. The Mexican cavefish has emerged as a powerful system for examining genetic principles underlying behavioral evolution. Here, we demonstrate that cave Astyanax have reduced behavioral and physiological measures of stress when examined at larval stages. We also find increased expression of the glucocorticoid receptor, a repressible element of the neuroendocrine stress pathway. Additionally, we examine stress in three different cave populations, and find that some, but not all, show reduced stress measures. Together, these results reveal a mechanistic system by which cave-dwelling fish reduced stress, presumably to compensate for a predator poor environment.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Cody L Loomis
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Lydia T Albert
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Shirley Medina-Trenche
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Johanna Kowalko
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Department of Biological Science, Florida Atlantic University, Jupiter, Florida
| | - Erik R Duboué
- Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
30
|
Abstract
The small teleost fish Astyanax mexicanus has emerged as an outstanding model for studying many biological topics in the context of evolution. A major attribute is conspecific surface dwelling (surface fish) and blind cave dwelling (cavefish) morphs that can be raised in the laboratory and spawn large numbers of transparent and synchronously developing embryos. More than 30 cavefish populations have been discovered, mostly in northeastern Mexico, and some are thought to have evolved independently from surface fish ancestors, providing excellent models of parallel and convergent evolution. Cavefish have evolved eye and pigmentation regression, as well as modifications in brain morphology, behaviors, heart regenerative capacity, metabolic processes, and craniofacial organization. Thus, the Astyanax model provides researchers with natural "mutants" to study life in the challenging cave environment. The application of powerful genetic approaches based on hybridization between the two morphs and between the different cavefish populations are key advantages for deciphering the developmental and genetic mechanisms regulating trait evolution. QTL analysis has revealed the genetic architectures of gained and lost traits. In addition, some cavefish traits resemble human diseases, offering novel models for biomedical research. Astyanax research is supported by genome assemblies, transcriptomes, tissue and organ transplantation, gene manipulation and editing, and stable transgenesis, and benefits from a welcoming and interactive research community that conducts integrated community projects and sponsors the International Astyanax Meeting (AIM).
Collapse
Affiliation(s)
- William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
31
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
32
|
Sifuentes-Romero I, Ferrufino E, Thakur S, Laboissonniere LA, Solomon M, Smith CL, Keene AC, Trimarchi JM, Kowalko JE. Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:423-437. [PMID: 32614138 DOI: 10.1002/jez.b.22977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Evolution in similar environments often leads to convergence of behavioral and anatomical traits. A classic example of convergent trait evolution is the reduced traits that characterize many cave animals: reduction or loss of pigmentation and eyes. While these traits have evolved many times, relatively little is known about whether these traits repeatedly evolve through the same or different molecular and developmental mechanisms. The small freshwater fish, Astyanax mexicanus, provides an opportunity to investigate the repeated evolution of cave traits. A. mexicanus exists as two forms, a sighted, surface-dwelling form and at least 29 populations of a blind, cave-dwelling form that initially develops eyes that subsequently degenerate. We compared eye morphology and the expression of eye regulatory genes in developing surface fish and two independently evolved cavefish populations, Pachón and Molino. We found that many of the previously described molecular and morphological alterations that occur during eye development in Pachón cavefish are also found in Molino cavefish. However, for many of these traits, the Molino cavefish have a less severe phenotype than Pachón cavefish. Further, cave-cave hybrid fish have larger eyes and lenses during early development compared with fish from either parental population, suggesting that some different changes underlie eye loss in these two populations. Together, these data support the hypothesis that these two cavefish populations evolved eye loss independently, yet through some of the same developmental and molecular mechanisms.
Collapse
Affiliation(s)
| | - Estephany Ferrufino
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Sunishka Thakur
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Michael Solomon
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Courtney L Smith
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
33
|
Abstract
Abstract
The forces driving regression of biologically functionless traits remain disputed. There is ongoing debate regarding whether selection, as opposed to disuse and neutral mutations, is involved in this process. Cave species are of particular relevance for study in this regard because in continuous darkness all traits that depend on information from light, such as eyes, dark pigmentation and certain behaviours, abruptly lose their function. Recently, strong selection driving reduction has again been proposed, which relied on modelling analyses based on assumptions such as immigration of surface alleles into the cave forms or no fitness difference existing between Astyanax surface and cave fish. The validity of these assumptions, often applied to reject neutral processes in functionless traits, is questioned in this review. Morphological variation in a trait resulting from genetic variability is typical of biologically functionless traits and is particularly notable in phylogenetically young cave species. It is the most evident indicator of loss of selection, which normally enforces uniformity to guarantee optimal functionality. Phenotypic and genotypic variability in Astyanax cave fish eyes does not derive from genetic introgression by the surface form, but from regressive mutations not being eliminated by selection. This matches well with the principles of Kimura’s neutral theory of molecular evolution.
Collapse
Affiliation(s)
- Horst Wilkens
- CeNak/Zoological Museum Hamburg, University of Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
| |
Collapse
|
34
|
Sears CR, Boggs TE, Gross JB. Dark-rearing uncovers novel gene expression patterns in an obligate cave-dwelling fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:518-529. [PMID: 32372488 DOI: 10.1002/jez.b.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
Extreme environments often result in the evolution of dramatic adaptive features. The Mexican tetra, Astyanax mexicanus, includes 30 different populations of cave-dwelling forms that live in perpetual darkness. As a consequence, many populations have evolved eye loss, reduced pigmentation, and amplification of nonvisual sensory systems. Closely-related surface-dwelling morphs demonstrate typical vision, pigmentation, and sensation. Transcriptomic assessments in this system have revealed important developmental changes associated with the cave morph, however, they have not accounted for photic rearing conditions. Prior studies reared individuals under a 12:12 hr light/dark (LD) cycle. Here, we reared cavefish under constant darkness (DD) for 5+ years. From these experimental individuals, we performed mRNA sequencing and compared gene expression of surface fish reared under LD conditions to cavefish reared under DD conditions to identify photic-dependent gene expression differences. Gene Ontology enrichment analyses revealed a number of previously underappreciated cave-associated changes impacting blood physiology and olfaction. We further evaluated the position of differentially expressed genes relative to QTL positions from prior studies and found several candidate genes associated with these ecologically relevant lighting conditions. In sum, this work highlights photic conditions as a key environmental factor impacting gene expression patterns in blind cave-dwelling fish.
Collapse
Affiliation(s)
- Connor R Sears
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
35
|
Maldonado E, Rangel-Huerta E, Rodriguez-Salazar E, Pereida-Jaramillo E, Martínez-Torres A. Subterranean life: Behavior, metabolic, and some other adaptations of Astyanax cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:463-473. [PMID: 32346998 DOI: 10.1002/jez.b.22948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022]
Abstract
The ability of fishes to adapt to any aquatic environment seems limitless. It is enthralling how new species keep appearing at the deep sea or in subterranean environments. There are close to 230 known species of cavefishes, still today the best-known cavefish is Astyanax mexicanus, a Characid that has become a model organism, and has been studied and scrutinized since 1936. There are two morphotypes for A. mexicanus, a surface fish and a cavefish. The surface fish lives in central and northeastern Mexico and south of the United States, while the cavefish is endemic to the "Sierra del Abra-Tanchipa region" in northeast Mexico. The extensive genetic and genomic analysis depicts a complex origin for Astyanax cavefish, with multiple cave invasions and persistent gene flow among cave populations. The surface founder population prevails in the same region where the caves are. In this review, we focus on both morphotype's main morphological and physiological differences, but mainly in recent discoveries about behavioral and metabolic adaptations for subterranean life. These traits may not be as obvious as the troglomorphic characteristics, but are key to understand how Astyanax cavefish thrives in this environment of perpetual darkness.
Collapse
Affiliation(s)
- Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Rodriguez-Salazar
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Pereida-Jaramillo
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - Ataulfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| |
Collapse
|
36
|
Jacobs A, Carruthers M, Yurchenko A, Gordeeva NV, Alekseyev SS, Hooker O, Leong JS, Minkley DR, Rondeau EB, Koop BF, Adams CE, Elmer KR. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet 2020; 16:e1008658. [PMID: 32302300 PMCID: PMC7164584 DOI: 10.1371/journal.pgen.1008658] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Madeleine Carruthers
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrey Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Natalia V. Gordeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey S. Alekseyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Oliver Hooker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Jong S. Leong
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - David R. Minkley
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Eric B. Rondeau
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Ben F. Koop
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Berning D, Adams H, Luc H, Gross JB. In-Frame Indel Mutations in the Genome of the Blind Mexican Cavefish, Astyanax mexicanus. Genome Biol Evol 2020; 11:2563-2573. [PMID: 31418011 PMCID: PMC6751357 DOI: 10.1093/gbe/evz180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 12/23/2022] Open
Abstract
Organisms living in the subterranean biome evolve extreme characteristics including vision loss and sensory expansion. Despite prior work linking certain genes to Mendelian traits, the genetic basis for complex cave-associated traits remains unknown. Moreover, it is unclear if certain forms of genetic variation (e.g., indels, copy number variants) are more common in regressive evolution. Progress in this area has been limited by a lack of suitable natural model systems and genomic resources. In recent years, the Mexican tetra, Astyanax mexicanus, has advanced as a model for cave biology and regressive evolution. Here, we present the results of a genome-wide screen for in-frame indels using alignments of RNA-sequencing reads to the draft cavefish genome. Mutations were discovered in three genes associated with blood physiology (mlf1, plg, and wdr1), two genes associated with growth factor signaling (ghrb, rnf126), one gene linked to collagen defects (mia3), and one gene which may have a global epigenetic impact on gene expression (mki67). With one exception, polymorphisms were shared between Pachón and Tinaja cavefish lineages, and different from the surface-dwelling lineage. We confirmed the presence of mutations using direct Sanger sequencing and discovered remarkably similar developmental expression in both morphs despite substantial coding sequence alterations. Further, three mutated genes mapped near previously established quantitative trait loci associated with jaw size, condition factor, lens size, and neuromast variation. This work reveals previously unappreciated traits evolving in this species under environmental pressures (e.g., blood physiology) and provides insight to genetic changes underlying convergence of organisms evolving in complete darkness.
Collapse
Affiliation(s)
- Daniel Berning
- Department of Biological Sciences, University of Cincinnati
| | - Hannah Adams
- Department of Biological Sciences, University of Cincinnati
| | - Heidi Luc
- Department of Biological Sciences, University of Cincinnati
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati
| |
Collapse
|
38
|
Riddle MR, Tabin CJ. Little Fish, Big Questions: A Collection of Modern Techniques for Mexican Tetra Research. J Vis Exp 2020. [PMID: 32092048 PMCID: PMC7373155 DOI: 10.3791/60592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Articles Discussed: Stahl, B. A. et al. Manipulation of Gene Function in Mexican Cavefish. Journal of Visualized Experiments. (146) (2019). Peuß, R. et al. Gamete Collection and In Vitro Fertilization of Astyanax mexicanus. Journal of Visualized Experiments. (147) (2019). Worsham, M. et al. Behavioral Tracking and Neuromast Imaging of Mexican Cavefish.Journal of Visualized Experiments. (147) (2019). Jaggard, J.B., Lloyd, E., Lopatto, A., Duboue, E.R., Keene, A.C. Automated Measurements of Sleep and Locomotor Activity in Mexican Cavefish. Journal of Visualized Experiments. (145) (2019). Luc, H., Sears, C., Raczka, A., Gross, J.B. Wholemount In Situ Hybridization for Astyanax Embryos. Journal of Visualized Experiments. (145) (2019). Riddle, M., Martineau, B., Peavey, M., Tabin, C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. Journal of Visualized Experiments. (142) (2018).
Collapse
Affiliation(s)
- Misty R Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School
| | - Clifford J Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School;
| |
Collapse
|
39
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
40
|
Phylogenetic relationships and historical biogeography of Oligosarcus (Teleostei: Characidae): Examining riverine landscape evolution in southeastern South America. Mol Phylogenet Evol 2019; 140:106604. [DOI: 10.1016/j.ympev.2019.106604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
|
41
|
Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA, Raftopoulos SC, Raftopoulos A, Whu D, Green M, McGaugh SE, Rohner N, Keene AC, Duboue ER. An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Front Neuroanat 2019; 13:88. [PMID: 31636546 PMCID: PMC6788135 DOI: 10.3389/fnana.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.
Collapse
Affiliation(s)
- Cody Loomis
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - James B. Jaggard
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Stephan C. Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Austin Raftopoulos
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Daniel Whu
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew Green
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Suzanne E. McGaugh
- Department of Ecology, University of Minnesota, St. Paul, MN, United States
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS, United States
| | - Alex C. Keene
- Department of Biology, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, United States
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
| | - Erik R. Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
42
|
Evolution of acoustic communication in blind cavefish. Nat Commun 2019; 10:4231. [PMID: 31530801 PMCID: PMC6748933 DOI: 10.1038/s41467-019-12078-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Acoustic communication allows the exchange of information within specific contexts and during specific behaviors. The blind, cave-adapted and the sighted, river-dwelling morphs of the species Astyanax mexicanus have evolved in markedly different environments. During their evolution in darkness, cavefish underwent a series of morphological, physiological and behavioral changes, allowing the study of adaptation to drastic environmental change. Here we discover that Astyanax is a sonic species, in the laboratory and in the wild, with sound production depending on the social contexts and the type of morph. We characterize one sound, the "Sharp Click", as a visually-triggered sound produced by dominant surface fish during agonistic behaviors and as a chemosensory-, food odor-triggered sound produced by cavefish during foraging. Sharp Clicks also elicit different reactions in the two morphs in play-back experiments. Our results demonstrate that acoustic communication does exist and has evolved in cavefish, accompanying the evolution of its behaviors.
Collapse
|
43
|
Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2019; 14:rsbl.2018.0101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The Mexican tetra, Astyanax mexicanus, comes in two forms: a classical river-dwelling fish and a blind and depigmented cave-dwelling fish. The two morphotypes are used as models for evolutionary biology, to decipher mechanisms of morphological and behavioural evolution in response to environmental change. Over the past 40 years, insights have been obtained from genetics, developmental biology, physiology and metabolism, neuroscience, genomics, population biology and ecology. Here, we promote the idea that A. mexicanus, as a model, has reached a stage where an integrated approach or a multi-disciplinary method of analysis, whereby a phenomenon is examined from several angles, is a powerful tool that can be applied to understand general evolutionary processes. Mexican cavefish have undergone considerable selective pressure and extreme morphological evolution, an obvious advantage to contribute to our understanding of evolution through comparative analyses and to pinpoint the specific traits that may have helped their ancestors to colonize caves.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
44
|
Stahl BA, Peuß R, McDole B, Kenzior A, Jaggard JB, Gaudenz K, Krishnan J, McGaugh SE, Duboue ER, Keene AC, Rohner N. Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system. Dev Dyn 2019; 248:679-687. [PMID: 30938001 DOI: 10.1002/dvdy.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Astyanax mexicanus is a well-established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. RESULTS Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, a Cntnap2-mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. CONCLUSION The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype-phenotype gap.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Brittnee McDole
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | | | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Florida.,Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Kansas
| |
Collapse
|
45
|
Gross JB, Powers AK. A Natural Animal Model System of Craniofacial Anomalies: The Blind Mexican Cavefish. Anat Rec (Hoboken) 2018; 303:24-29. [PMID: 30365238 DOI: 10.1002/ar.23998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Natural model systems evolving under extreme environmental pressures provide the opportunity to advance our knowledge of how the craniofacial complex evolves in nature. Unlike traditional models, natural systems are less inbred, and, therefore, better model the complex variation of the human population. Owing to the nature of certain craniofacial aberrations in blind Mexican cavefish, we suggest that this organism can provide new insights to a variety of craniofacial changes. Diverse cranial features have evolved in natural cave-dwelling Astyanax fish, which have thrived in the unforgiving darkness and nutrient-poor environment of the cave for countless generations. While the genetic and environmental underpinnings of various cranial anomalies have been investigated for decades, a comprehensive characterization of their molecular and developmental origins remains incomplete. Cavefish provide numerous advantages given the availability of genomic resources, developmental and molecular tools, and the presence of a normative surface-dwelling "ancestral" surrogate for comparative studies. By leveraging the frequency of abnormal and asymmetric cranial features in cavefish, we anticipate advances in our knowledge of the etiologies of irregular cranial features. Extreme adaptations in cavefish are expected to offer new insights into the complex and multifactorial nature of craniofacial disorders and facial asymmetry. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| | - Amanda K Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| |
Collapse
|
46
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
47
|
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, Bilandžija H, Borowsky R, Espinasa L, O'Quin K, Ornelas-García CP, Yoshizawa M, Carlson B, Maldonado E, Gross JB, Cartwright RA, Rohner N, Warren WC, McGaugh SE. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 2018; 27:4397-4416. [PMID: 30252986 PMCID: PMC6261294 DOI: 10.1111/mec.14877] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
Collapse
Affiliation(s)
- Adam Herman
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yaniv Brandvain
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - James Weagley
- Ecology, Evolution, and Behavior, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York
| | - Kelly O'Quin
- Department of Biology, Centre College, Danville, Kentucky
| | - Claudia P Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Brian Carlson
- Department of Biology, College of Wooster, Wooster, Ohio
| | - Ernesto Maldonado
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St Louis, Missouri
| | - Suzanne E McGaugh
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
48
|
Tabin JA, Aspiras A, Martineau B, Riddle M, Kowalko J, Borowsky R, Rohner N, Tabin CJ. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev Biol 2018; 441:338-344. [PMID: 29704470 PMCID: PMC6119108 DOI: 10.1016/j.ydbio.2018.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Abstract
Little is known about the genetic basis of behavioral choice, such as temperature preference, especially in natural populations. Thermal preference can play a key role in habitat selection, for example in aquatic species. Examining this behavior on a genetic level requires access to individuals or populations of the same species that display distinct temperature preferences. Caves provide a uniquely advantageous setting to tackle this problem, as animals colonizing caves encounter an environment that generally has a different, and far more stable, annual temperature than what is encountered on the outside. Here, we focus on cave and surface populations of Astyanax mexicanus, the Mexican tetra, and examine temperature preference and strength of temperature preference (reflected in the percent of time spent at the optimal temperature). We used a tank with a stable temperature gradient and automated tracking software to follow individual fish from each population. We found that distinct populations of A. mexicanus display differences in both temperature preference and strength of preference. Hybrid crosses established that these are multigenic traits that segregate independently from one another. Temperature preference in many aquatic animals is known to shift towards warmer temperatures following infection with parasites (akin to a fever response in humans). While surface fish infected by the ectoparasite Gyrodactylus turnbulli (a gill fluke) displayed a strong fever response, cavefish showed a significantly attenuated fever response. This work establishes A. mexicanus as a genetically tractable system in which differences in temperature preference can be studied in naturally evolved populations.
Collapse
Affiliation(s)
- Julius A Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Ariel Aspiras
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Brian Martineau
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Misty Riddle
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Johanna Kowalko
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 640 Sciences Hall II, Ames, IA 50011, United States
| | - Richard Borowsky
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
49
|
Lloyd E, Olive C, Stahl BA, Jaggard JB, Amaral P, Duboué ER, Keene AC. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Dev Biol 2018; 441:328-337. [PMID: 29772227 PMCID: PMC6450390 DOI: 10.1016/j.ydbio.2018.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.
Collapse
Affiliation(s)
- Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Courtney Olive
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
50
|
Xiong S, Krishnan J, Peuß R, Rohner N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev Biol 2018; 441:297-304. [DOI: 10.1016/j.ydbio.2018.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/23/2023]
|