1
|
G C B, Wu C. The CarSR two-component system directly controls radD expression as a global regulator that senses bacterial coaggregation in Fusobacterium nucleatum. J Bacteriol 2025:e0052924. [PMID: 40396725 DOI: 10.1128/jb.00529-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Two-component systems (TCS) enable bacteria to sense and respond to environmental signals, facilitating rapid adaptation. Fusobacterium nucleatum, a key oral pathobiont, employs the CarSR TCS to modulate coaggregation with various gram-positive partners by regulating the expression of radD, encoding a surface adhesion protein, as revealed by RNA-Seq analysis. However, the direct regulation of the radD-containing operon (radABCD) by the response regulator CarR, the broader CarR regulon, and the signals sensed by this system remain unclear. In this study, chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) identified approximately 161 CarR-enriched loci across the genome and a 17 bp consensus motif that likely serves as the CarR-binding site. Notably, one such binding motif was found in the promoter region of the radABCD operon. The interaction of CarR with this binding motif was further validated using electrophoretic mobility shift assays, mutagenesis, and DNase I footprinting analyses. Beyond regulating radABCD, CarR directly controls genes involved in fructose and amino acid (cysteine, glutamate, lysine) utilization, underscoring its role as a global regulator in F. nucleatum. Lastly, we discovered that RadD-mediated coaggregation enhances radD expression, and deletion of carS abolished this enhancement, suggesting that coaggregation itself serves as a signal sensed by this TCS. These findings provide new insights into the CarR regulon and the regulation of RadD, elucidating the ecological and pathogenic roles of F. nucleatum in dental plaque formation and disease processes.IMPORTANCEFusobacterium nucleatum is an essential member of oral biofilms acting as a bridging organism that connects early and late colonizers, thus driving dental plaque formation. Its remarkable ability to aggregate with diverse bacterial partners is central to its ecological success, yet the mechanisms it senses and responds to these interactions remain poorly understood. This study identifies the CarSR two-component system as a direct regulator of RadD, a major adhesin mediating coaggregation, and reveals its role in sensing coaggregation as a signal. These findings uncover a novel mechanism by which F. nucleatum dynamically adapts to polymicrobial environments, offering new perspectives on biofilm formation and bacterial communication in complex oral microbial ecosystems.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
2
|
Reyes-Carmona SR, Jijón Moreno S, Ramírez-Mata A, Xiqui Vázquez ML, Baca BE. MibR and LibR are involved in the transcriptional regulation of the ipdC gene in Azospirillum brasilense Sp7. Res Microbiol 2025:104295. [PMID: 40127730 DOI: 10.1016/j.resmic.2025.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Azospirillum brasilense is a PGPR that produces the phytohormone IAA, a signaling molecule involved in bacteria-plant interaction processes. IAA biosynthesis in Azospirillum is mainly carried out via the IPyA pathway in which the enzyme phenylpyruvate decarboxylase encoded by the ipdC gene is the main. The promoter region of ipdC gene contains cis elements that are highly conserved among different Azospirillum strains. In this work, we identified two proteins that interact with the promoter region of the ipdC gene, named MibR and LibR that belong to the MarR and LuxR transcriptional regulators family, respectively. Both proteins have an HTH domain, and in the case of LibR, it has a REC domain, with aspartic acid residue conserved in positions 7, 8 and 54, this last as a possible phosphorylation target. To explore their participation in the regulation of the ipdC gene, mutants of libR, mibR, and libR-mibR double mutant were generated. The results showed a decrease in IAA biosynthesis that was related to the observed decrease in ipdC gene expression mostly in the doble mutant compared with the wild type. In this work we suggest that ipdC transcription is regulated by LibR and MibR, providing new findings insight into the mechanism employed by A. brasilense to control IAA biosynthesis.
Collapse
Affiliation(s)
- Sandra R Reyes-Carmona
- Laboratorio de Interacción bacteria-planta, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Saúl Jijón Moreno
- Laboratorio de Interacción bacteria-planta, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico; Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José No. 2055, Colonia Lomas 4(a). Sección, San Luis Potosí, Mexico
| | - Alberto Ramírez-Mata
- Laboratorio de Interacción bacteria-planta, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - María Luisa Xiqui Vázquez
- Laboratorio de Interacción bacteria-planta, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Beatriz Eugenia Baca
- Laboratorio de Interacción bacteria-planta, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico.
| |
Collapse
|
3
|
Pettersen JS, Nielsen FD, Andreassen PR, Møller-Jensen J, Jørgensen M. A comprehensive analysis of pneumococcal two-component system regulatory networks. NAR Genom Bioinform 2024; 6:lqae039. [PMID: 38650915 PMCID: PMC11034029 DOI: 10.1093/nargab/lqae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Two-component systems are key signal-transduction systems that enable bacteria to respond to a wide variety of environmental stimuli. The human pathogen, Streptococcus pneumoniae (pneumococcus) encodes 13 two-component systems and a single orphan response regulator, most of which are significant for pneumococcal pathogenicity. Mapping the regulatory networks governed by these systems is key to understand pneumococcal host adaptation. Here we employ a novel bioinformatic approach to predict the regulons of each two-component system based on publicly available whole-genome sequencing data. By employing pangenome-wide association studies (panGWAS) to predict genotype-genotype associations for each two-component system, we predicted regulon genes of 11 of the pneumococcal two-component systems. Through validation via next-generation RNA-sequencing on response regulator overexpression mutants, several top candidate genes predicted by the panGWAS analysis were confirmed as regulon genes. The present study presents novel details on multiple pneumococcal two-component systems, including an expansion of regulons, identification of candidate response regulator binding motifs, and identification of candidate response regulator-regulated small non-coding RNAs. We also demonstrate a use for panGWAS as a complementary tool in target gene identification via identification of genotype-to-genotype links. Expanding our knowledge on two-component systems in pathogens is crucial to understanding how these bacteria sense and respond to their host environment, which could prove useful in future drug development.
Collapse
Affiliation(s)
- Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming Damgaard Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Anantharaman S, Guercio D, Mendoza AG, Withorn JM, Boon EM. Negative regulation of biofilm formation by nitric oxide sensing proteins. Biochem Soc Trans 2023; 51:1447-1458. [PMID: 37610010 PMCID: PMC10625800 DOI: 10.1042/bst20220845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Biofilm-based infections pose a serious threat to public health. Biofilms are surface-attached communities of microorganisms, most commonly bacteria and yeast, residing in an extracellular polymeric substance (EPS). The EPS is composed of several secreted biomolecules that shield the microorganisms from harsh environmental stressors and promote antibiotic resistance. Due to the increasing prominence of multidrug-resistant microorganisms and a decreased development of bactericidal agents in clinical production, there is an increasing need to discover alternative targets and treatment regimens for biofilm-based infections. One promising strategy to combat antibiotic resistance in biofilm-forming bacteria is to trigger biofilm dispersal, which is a natural part of the bacterial biofilm life cycle. One signal for biofilm dispersal is the diatomic gas nitric oxide (NO). Low intracellular levels of NO have been well documented to rapidly disperse biofilm macrostructures and are sensed by a widely conserved NO-sensory protein, NosP, in many pathogenic bacteria. When bound to heme and ligated to NO, NosP inhibits the autophosphorylation of NosP's associated histidine kinase, NahK, reducing overall biofilm formation. This reduction in biofilm formation is regulated by the decrease in secondary metabolite bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). The NosP/NahK signaling pathway is also associated with other major regulatory systems in the maturation of bacterial biofilms, including virulence and quorum sensing. In this review, we will focus on recent discoveries investigating NosP, NahK and NO-mediated biofilm dispersal in pathogenic bacteria.
Collapse
Affiliation(s)
- Sweta Anantharaman
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Danielle Guercio
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Alicia G Mendoza
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Jason M Withorn
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| |
Collapse
|
5
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
7
|
Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, Xie Y, Li H, Zhu T, Lu X, Hess WR. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. Nat Commun 2023; 14:924. [PMID: 36801863 PMCID: PMC9938897 DOI: 10.1038/s41467-023-36542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.
Collapse
Affiliation(s)
- Marcus Ziemann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Viktoria Reimann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yajing Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yue Shi
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Honglei Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuman Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany.
| |
Collapse
|
8
|
Barr SA, Kennedy EN, McKay LS, Johnson RM, Ohr RJ, Cotter PA, Bourret RB. Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Mol Microbiol 2023; 119:174-190. [PMID: 36577696 PMCID: PMC10313215 DOI: 10.1111/mmi.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.
Collapse
Affiliation(s)
- Sarah A. Barr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily N. Kennedy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liliana S. McKay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard M. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ryan J. Ohr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
BfmRS encodes a regulatory system involved in light signal transduction modulating motility and desiccation tolerance in the human pathogen Acinetobacter baumannii. Sci Rep 2023; 13:175. [PMID: 36604484 PMCID: PMC9814549 DOI: 10.1038/s41598-022-26314-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that Acinetobacter baumannii as well as other relevant clinical bacterial pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, perceive and respond to light at 37 °C, the normal temperature in mammal hosts. In this work, we present evidence indicating that the two-component system BfmRS transduces a light signal in A. baumannii at this temperature, showing selective involvement of the BfmR and BfmS components depending on the specific cellular process. In fact, both BfmR and BfmS participate in modulation of motility by light, while only BfmR is involved in light regulation of desiccation tolerance in this microorganism. Neither BfmR nor BfmS contain a photoreceptor domain and then most likely, the system is sensing light indirectly. Intriguingly, this system inhibits blsA expression at 37 °C, suggesting antagonistic functioning of both signaling systems. Furthermore, we present evidence indicating that the phosphorylatable form of BfmR represses motility. Overall, we provide experimental evidence on a new biological function of this multifaceted system that broadens our understanding of A. baumannii's physiology and responses to light.
Collapse
|
10
|
Ogawa A, Kojima F, Miyake Y, Yoshimura M, Ishijima N, Iyoda S, Sekine Y, Yamanaka Y, Yamamoto K. Regulation of constant cell elongation and Sfm pili synthesis in Escherichia coli via two active forms of FimZ orphan response regulator. Genes Cells 2022; 27:657-674. [PMID: 36057789 DOI: 10.1111/gtc.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli (E. coli) has multiple copies of the chaperone-usher (CU) pili operon in five fimbria groups: CU pili, curli, type IV pili, type III secretion pili, and type IV secretion pili. Commensal E. coli K-12 contains 12 CU pili operons. Among these operons, Sfm is expressed by the sfmACDHF operon. Transcriptome analyses, reporter assays, and chromatin immunoprecipitation PCR analyses reported that FimZ directly binds to and activates the sfmA promoter, transcribing sfmACDHF. In addition, FimZ regularly induces constant cell elongation in E. coli, which is required for F-type ATPase function. The bacterial two-hybrid system showed a specific interaction between FimZ and the α subunit of the cytoplasmic F1 domain of F-type ATPase. Studies performed using mutated FimZs have revealed two active forms, I and II. Active form I is required for constant cell elongation involving amino acid residues K106 and D109. Active form II additionally required D56, a putative phosphorylation site, to activate the sfmA promoter. The chromosomal fimZ was hardly expressed in parent strain but functioned in phoB and phoP double-gene knockout strains. These insights may help to understand bacterial invasion restricted host environments by the sfm γ-type pili.
Collapse
Affiliation(s)
- Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Fumika Kojima
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Miho Yoshimura
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Nippon Dental University School of Dentistry, Tokyo, Japan
| | | |
Collapse
|
11
|
A Feedback Regulatory Loop Containing McdR and WhiB2 Controls Cell Division and DNA Repair in Mycobacteria. mBio 2022; 13:e0334321. [PMID: 35357209 PMCID: PMC9040748 DOI: 10.1128/mbio.03343-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division must be coordinated with DNA repair, which is strictly regulated in response to different drugs and environmental stresses in bacteria. However, the mechanisms by which mycobacteria orchestrate these two processes remain largely uncharacterized. Here, we report a regulatory loop between two essential mycobacterial regulators, McdR (Rv1830) and WhiB2, in coordinating the processes of cell division and DNA repair. McdR inhibits cell division-associated whiB2 expression by binding to the AATnACAnnnnTGTnATT motif in the promoter region. Furthermore, McdR overexpression simultaneously activates imuAB and dnaE2 expression to promote error-prone DNA repair, which facilitates genetic adaptation to stress conditions. Through a feedback mechanism, WhiB2 activates mcdR expression by binding to the cGACACGc motif in the promoter region. Importantly, analyses of mutations in clinical Mycobacterium tuberculosis strains indicate that disruption of this McdR-WhiB2 feedback regulatory loop influences expression of both cell growth- and DNA repair-associated genes, which further supports the contribution of McdR-WhiB2 regulatory loop in regulating mycobacterial cell growth and drug resistance. This highly conserved feedback regulatory loop provides fresh insight into the link between mycobacterial cell growth control and stress responses. IMPORTANCE Drug-resistant M. tuberculosis poses a threat to the control and prevention of tuberculosis (TB) worldwide. Thus, there is a need to identify the mechanisms enabling M. tuberculosis to adapt and grow under drug-induced stress. Rv1830 has been shown to be associated with drug resistance in M. tuberculosis, but its mechanisms have not yet been elucidated. Here, we reveal a regulatory role of Rv1830, which coordinates cell division and DNA repair in mycobacteria, and rename it McdR (mycobacterial cell division regulator). An increase in McdR levels represses the expression of cell division-associated whiB2 but activates the DNA repair-associated, error-prone enzymes ImuA/B and DnaE2, which in turn facilitates adaptation to stress responses and drug resistance. Furthermore, WhiB2 activates the transcription of mcdR to form a conserved regulatory loop. These data provide new insights into the mechanisms controlling mycobacterial cell growth and stress responses.
Collapse
|
12
|
H-NOX proteins in the virulence of pathogenic bacteria. Biosci Rep 2021; 42:230559. [PMID: 34939646 PMCID: PMC8738867 DOI: 10.1042/bsr20212014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.
Collapse
|
13
|
The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus. J Bacteriol 2021; 203:e0019921. [PMID: 34124942 DOI: 10.1128/jb.00199-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-component signaling systems (TCSs) are comprised of a sensory histidine kinase and a response regulator protein. In response to environmental changes, sensor kinases directly phosphorylate their cognate response regulator to affect gene expression. Bacteria typically express multiple TCSs that are insulated from one another and regulate distinct physiological processes. There are examples of cross-regulation between TCSs, but this phenomenon remains relatively unexplored. We have identified regulatory links between the ChvG-ChvI (ChvGI) and NtrY-NtrX (NtrYX) TCSs, which control important and often overlapping processes in alphaproteobacteria, including maintenance of the cell envelope. Deletion of chvG and chvI in Caulobacter crescentus limited growth in defined medium, and a selection for genetic suppressors of this growth phenotype uncovered interactions among chvGI, ntrYX, and ntrZ, which encodes a previously uncharacterized periplasmic protein. Significant overlap in the experimentally defined ChvI and NtrX transcriptional regulons provided support for the observed genetic connections between ntrYX and chvGI. Moreover, we present evidence that the growth defect of strains lacking chvGI is influenced by the phosphorylation state of NtrX and, to some extent, by levels of the TonB-dependent receptor ChvT. Measurements of NtrX phosphorylation in vivo indicated that NtrZ is an upstream regulator of NtrY and that NtrY primarily functions as an NtrX phosphatase. We propose a model in which NtrZ functions in the periplasm to inhibit NtrY phosphatase activity; regulation of phosphorylated NtrX levels by NtrZ and NtrY provides a mechanism to modulate and balance expression of the NtrX and ChvI regulons under different growth conditions. IMPORTANCE TCSs enable bacteria to regulate gene expression in response to physiochemical changes in their environment. The ChvGI and NtrYX TCSs regulate diverse pathways associated with pathogenesis, growth, and cell envelope function in many alphaproteobacteria. We used Caulobacter crescentus as a model to investigate regulatory connections between ChvGI and NtrYX. Our work defined the ChvI transcriptional regulon in C. crescentus and revealed a genetic interaction between ChvGI and NtrYX, whereby modulation of NtrYX signaling affects the survival of cells lacking ChvGI. In addition, we identified NtrZ as a periplasmic inhibitor of NtrY phosphatase activity in vivo. Our work establishes C. crescentus as an excellent model to investigate multilevel regulatory connections between ChvGI and NtrYX in alphaproteobacteria.
Collapse
|
14
|
Fu J, Hall S, Boon EM. Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX. CHEM LETT 2021; 50:1095-1103. [PMID: 36051866 PMCID: PMC9432776 DOI: 10.1246/cl.200945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Boon
- To whom correspondence should be addressed: Elizabeth M. Boon: Tel.: (631) 632-7945. Fax: (631) 632-7960.
| |
Collapse
|
15
|
The Importance of Protein Phosphorylation for Signaling and Metabolism in Response to Diel Light Cycling and Nutrient Availability in a Marine Diatom. BIOLOGY 2020; 9:biology9070155. [PMID: 32640597 PMCID: PMC7408324 DOI: 10.3390/biology9070155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and protein homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.
Collapse
|
16
|
Nisbett LM, Binnenkade L, Bacon B, Hossain S, Kotloski NJ, Brutinel ED, Hartmann R, Drescher K, Arora DP, Muralidharan S, Thormann KM, Gralnick JA, Boon EM. NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in Shewanella oneidensis. Biochemistry 2019; 58:4827-4841. [PMID: 31682418 PMCID: PMC7290162 DOI: 10.1021/acs.biochem.9b00706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lucas Binnenkade
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Bezalel Bacon
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Sajjad Hossain
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicholas J. Kotloski
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Evan D. Brutinel
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany
| | - Dhruv P. Arora
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Sandhya Muralidharan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai M. Thormann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
| | - Elizabeth M. Boon
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
17
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
18
|
Rajeev L, Garber ME, Zane GM, Price MN, Dubchak I, Wall JD, Novichkov PS, Mukhopadhyay A, Kazakov AE. A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport. Environ Microbiol 2019; 21:784-799. [PMID: 30536693 DOI: 10.1111/1462-2920.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Bacterial genes for molybdenum-containing and tungsten-containing enzymes are often differentially regulated depending on the metal availability in the environment. Here, we describe a new family of transcription factors with an unusual DNA-binding domain related to excisionases of bacteriophages. These transcription factors are associated with genes for various molybdate and tungstate-specific transporting systems as well as molybdo/tungsto-enzymes in a wide range of bacterial genomes. We used a combination of computational and experimental techniques to study a member of the TF family, named TaoR (for tungsten-containing aldehyde oxidoreductase regulator). In Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, TaoR activates expression of aldehyde oxidoreductase aor and represses tungsten-specific ABC-type transporter tupABC genes under tungsten-replete conditions. TaoR binding sites at aor promoter were identified by electrophoretic mobility shift assay and DNase I footprinting. We also reconstructed TaoR regulons in 45 Deltaproteobacteria by comparative genomics approach and predicted target genes for TaoR family members in other Proteobacteria and Firmicutes.
Collapse
Affiliation(s)
- L Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - M E Garber
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA
| | - G M Zane
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - M N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - I Dubchak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J D Wall
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - P S Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Energy, Knowledge Base, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Rao M, Herzik MA, Iavarone AT, Marletta MA. Nitric Oxide-Induced Conformational Changes Govern H-NOX and Histidine Kinase Interaction and Regulation in Shewanella oneidensis. Biochemistry 2017; 56:1274-1284. [PMID: 28170222 DOI: 10.1021/acs.biochem.6b01133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is implicated in biofilm regulation in several bacterial families via heme-nitric oxide/oxygen binding (H-NOX) protein signaling. Shewanella oneidensis H-NOX (So H-NOX) is associated with a histidine kinase (So HnoK) encoded on the same operon, and together they form a multicomponent signaling network whereby the NO-bound state of So H-NOX inhibits So HnoK autophosphorylation activity, affecting the phosphorylation state of three response regulators. Although the conformational changes of So H-NOX upon NO binding have been structurally characterized, the mechanism of HnoK inhibition by NO-bound So H-NOX remains unclear. In the present study, the molecular details of So H-NOX and So HnoK interaction and regulation are characterized. The N-terminal domain in So HnoK was determined to be the site of H-NOX interaction, and the binding interface on So H-NOX was identified using a combination of hydrogen-deuterium exchange mass spectrometry and surface-scanning mutagenesis. Binding kinetics measurements and analytical gel filtration revealed that NO-bound So H-NOX has a tighter affinity for So HnoK compared that of H-NOX in the unliganded state, correlating binding affinity with kinase inhibition. Kinase activity assays with binding-deficient H-NOX mutants further indicate that while formation of the H-NOX-HnoK complex is required for HnoK to be catalytically active, H-NOX conformational changes upon NO-binding are necessary for HnoK inhibition.
Collapse
Affiliation(s)
- Minxi Rao
- Department of Chemistry, ‡Department of Molecular and Cell Biology, §QB3 Institute, University of California , Berkeley, California 94720, United States
| | - Mark A Herzik
- Department of Chemistry, ‡Department of Molecular and Cell Biology, §QB3 Institute, University of California , Berkeley, California 94720, United States
| | - Anthony T Iavarone
- Department of Chemistry, ‡Department of Molecular and Cell Biology, §QB3 Institute, University of California , Berkeley, California 94720, United States
| | - Michael A Marletta
- Department of Chemistry, ‡Department of Molecular and Cell Biology, §QB3 Institute, University of California , Berkeley, California 94720, United States
| |
Collapse
|
20
|
Abstract
Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| |
Collapse
|
21
|
Valladares A, Flores E, Herrero A. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacteriumAnabaenaforms tetramers and can be regulated by phosphorylation. Mol Microbiol 2015; 99:808-19. [DOI: 10.1111/mmi.13268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| |
Collapse
|
22
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
23
|
Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B. mBio 2015; 6:e00206-15. [PMID: 25944856 PMCID: PMC4436077 DOI: 10.1128/mbio.00206-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. IMPORTANCE Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a nutrient-rich environment. In this study, we show that in Silicibacter sp. strain TrichCH4B, NO mediates symbiosis with the alga Trichodesmium erythraeum, a major marine diazotroph. In addition, Silicibacter sp. TrichCH4B is the first characterized bacteria to harbor both the NOS and H-NOX proteins, making it uniquely capable of both synthesizing and sensing NO, analogous to mammalian NO signaling. Our study expands current understanding of the role of NO in bacterial signaling, providing a novel role for NO in bacterial communication and symbiosis.
Collapse
|
24
|
Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends Biochem Sci 2013; 38:566-75. [PMID: 24113192 DOI: 10.1016/j.tibs.2013.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 11/22/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.
Collapse
|