1
|
Wang W, Shan Y, Liu R, Li D, Zhou J, Lu Q, Zhao H. Coordination of IFT20 With Other IFT Components Is Required for Ciliogenesis. J Clin Lab Anal 2025; 39:e70000. [PMID: 40192002 PMCID: PMC12078756 DOI: 10.1002/jcla.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Primary cilia are organelles formed on the cell surface. They can act as cellular antennae to sense signals and play important roles in various biological processes. Abnormalities in primary cilia lead to a variety of diseases collectively known as ciliopathies. Intraflagellar transport protein 20 (IFT20) has been implicated in ciliogenesis. METHODS IFT20 knockout cell lines were established using the CRISPR-Cas9 gene editing technology. The GFP-IFT20 plasmid was constructed with the Gateway cloning system. Protein levels were detected via immunoblotting, and the localization of IFT20, acetylated α-tubulin, ARL13B, CP110, MKS3, IFT88, and IFT140 in wild-type and IFT20 knockout cells was examined by immunofluorescence microscopy. The fluorescence intensities were analyzed using ImageJ. Data quantifications and mass spectrometry results were analyzed using GraphPad Prism and Metascape. RESULTS The IFT20 deficiency impaired ciliogenesis and reduced cilium length. IFT20 depletion did not affect the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole or the recruitment of Meckel-Gruber syndrome type 3 (MKS3) to the transition zone. Mass spectrometry analysis revealed that proteins interacting with IFT20 were mainly IFT components. IFT20 knockout decreased the levels of both IFT88 and IFT140, and abrogated IFT88 localization at the basal body and ciliary axoneme. IFT20 knockout also impaired IFT140 localization at the ciliary axoneme but did not affect its localization at the basal body. CONCLUSIONS IFT20 is involved in ciliogenesis by regulating the level and localization of other IFT proteins and may have important implications in ciliopathies and related diseases.
Collapse
Affiliation(s)
- Weishu Wang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ying Shan
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Quanlong Lu
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
2
|
Sentell ZT, Mougharbel L, Nurcombe ZW, Babayeva S, Henein M, Chu LL, Akpa MM, Chung CF, Rivière JB, Pupavac M, Li R, Rosenblatt DS, Majewski J, Goodyer PR, Torban E, Kitzler TM. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Hum Mol Genet 2025; 34:368-380. [PMID: 39690811 PMCID: PMC11811416 DOI: 10.1093/hmg/ddae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948). We present compound heterozygous missense variants in C2CD3 that partially disrupt ciliary function in a patient with isolated renal disease. METHODS Exome sequencing identified biallelic C2CD3 missense variants (p.Pro168Leu; p.Thr2079Met). Patient-derived fibroblasts and urinary renal epithelial cells (URECs), and human RPE-1 C2CD3 knockout (KO) cell-lines were used for in vitro studies. RESULTS Cilia length was significantly shorter in patient-derived fibroblasts compared to an unaffected sibling (2.309 vs. 2.850 μm, P < 0.0001), while URECs showed significantly shortened cilia (2.068 vs. 2.807 μm, P < 0.0001) and a 40.8% reduction in ciliation (P < 0.001). The latter was not observed in fibroblasts, suggesting a kidney-specific effect. SHH signaling was dysregulated in patient cells as expression of GLI3 activator protein and GLI1 mRNA was significantly reduced. C2CD3 localization to the basal body was significantly reduced in patient URECs. Finally, rescue experiments in C2CD3 KO RPE-1 cells corroborated these findings by demonstrating a reduced capacity to restore ciliogenesis for each variant. CONCLUSION Biallelic hypomorphic missense variants in C2CD3 may contribute to an isolated nephronophthisis phenotype with impaired ciliogenesis and SHH signaling. Our findings underscore the importance of functional testing to characterize candidate gene-disease relationships in patients with nephropathy of unknown etiology.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lina Mougharbel
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Marc Henein
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lee Lee Chu
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Murielle M Akpa
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - David S Rosenblatt
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Departments of Human Genetics, Medicine, Pediatrics and Biology, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Divisions of Medical Genetics and Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Paul R Goodyer
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
3
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
4
|
Pfister JA, Agostini L, Bournonville L, Sankaralingam P, Bell ZG, Hamel V, Guichard P, Biertümpfel C, Mizuno N, O’Connell KF. The C. elegans homolog of Sjögren's Syndrome Nuclear Antigen 1 is required for the structural integrity of the centriole and bipolar mitotic spindle assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616528. [PMID: 39803516 PMCID: PMC11722412 DOI: 10.1101/2024.10.03.616528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood. In this study we show that SSNA-1, the Caenorhabditis elegans ortholog of Sjogren's Syndrome Nuclear Antigen 1, is a centriole constituent that localizes close to the microtubule outer wall, while also exhibiting a developmentally regulated association with centriole satellite-like structures. A complete deletion of the ssna-1 gene results in an embryonic lethal phenotype marked by the appearance of extra centrioles and spindle poles. We show that SSNA-1 genetically interacts with the centriole stability factor SAS-1 and is required post assembly for centriole structural integrity. In SSNA-1's absence, centrioles assemble but fracture leading to extra spindle poles. However, if the efficiency of cartwheel assembly is reduced, the absence of SSNA-1 results in daughter centriole loss and monopolar spindle formation, indicating that the cartwheel and SSNA-1 cooperate to stabilize the centriole during assembly. Our work thus shows that SSNA-1 contributes to centriole stability during and after assembly, thereby ensuring proper centriole number.
Collapse
Affiliation(s)
- Jason A. Pfister
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Agostini
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorène Bournonville
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zachary G. Bell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
6
|
Brooks EC, Han SJY, Bonatto Paese CL, Lewis AA, Aarnio-Peterson M, Brugmann SA. The ciliary protein C2cd3 is required for mandibular musculoskeletal tissue patterning. Differentiation 2024; 138:100782. [PMID: 38810379 PMCID: PMC11227401 DOI: 10.1016/j.diff.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.
Collapse
Affiliation(s)
- Evan C Brooks
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Simon J Y Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Amya A Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Wu Z, Chen H, Zhang Y, Wang Y, Wang Q, Augière C, Hou Y, Fu Y, Peng Y, Durand B, Wei Q. Cep131-Cep162 and Cby-Fam92 complexes cooperatively maintain Cep290 at the basal body and contribute to ciliogenesis initiation. PLoS Biol 2024; 22:e3002330. [PMID: 38442096 PMCID: PMC10914257 DOI: 10.1371/journal.pbio.3002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.
Collapse
Affiliation(s)
- Zhimao Wu
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huicheng Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yingying Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yaru Wang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Céline Augière
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Yanan Hou
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ying Peng
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bénédicte Durand
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, China
- School of Synthetic Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Chatzifrangkeskou M, Kouis P, Skourides PA. JNK regulates ciliogenesis through the interflagellar transport complex and actin networks. J Cell Biol 2023; 222:e202303052. [PMID: 37851005 PMCID: PMC10585068 DOI: 10.1083/jcb.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) regulates various important physiological processes. Although the JNK pathway has been under intense investigation for over 20 yr, its complexity is still perplexing, with multiple protein partners underlying the diversity of its activity. We show that JNK is associated with the basal bodies in both primary and motile cilia. Loss of JNK disrupts basal body migration and docking and leads to severe ciliogenesis defects. JNK's involvement in ciliogenesis stems from a dual role in the regulation of the actin networks of multiciliated cells (MCCs) and the establishment of the intraflagellar transport-B core complex. JNK signaling is also critical for the maintenance of the actin networks and ciliary function in mature MCCs. JNK is implicated in the development of diabetes, neurodegeneration, and liver disease, all of which have been linked to ciliary dysfunction. Our work uncovers a novel role of JNK in ciliogenesis and ciliary function that could have important implications for JNK's role in the disease.
Collapse
Affiliation(s)
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Theile L, Li X, Dang H, Mersch D, Anders S, Schiebel E. Centrosome linker diversity and its function in centrosome clustering and mitotic spindle formation. EMBO J 2023; 42:e109738. [PMID: 37401899 PMCID: PMC10476278 DOI: 10.15252/embj.2021109738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
The centrosome linker joins the two interphase centrosomes of a cell into one microtubule organizing center. Despite increasing knowledge on linker components, linker diversity in different cell types and their role in cells with supernumerary centrosomes remained unexplored. Here, we identified Ninein as a C-Nap1-anchored centrosome linker component that provides linker function in RPE1 cells while in HCT116 and U2OS cells, Ninein and Rootletin link centrosomes together. In interphase, overamplified centrosomes use the linker for centrosome clustering, where Rootletin gains centrosome linker function in RPE1 cells. Surprisingly, in cells with centrosome overamplification, C-Nap1 loss prolongs metaphase through persistent activation of the spindle assembly checkpoint indicated by BUB1 and MAD1 accumulation at kinetochores. In cells lacking C-Nap1, the reduction of microtubule nucleation at centrosomes and the delay in nuclear envelop rupture in prophase probably cause mitotic defects like multipolar spindle formation and chromosome mis-segregation. These defects are enhanced when the kinesin HSET, which normally clusters multiple centrosomes in mitosis, is partially inhibited indicating a functional interplay between C-Nap1 and centrosome clustering in mitosis.
Collapse
Affiliation(s)
- Laura Theile
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Present address:
Laboratory for Cell Polarity RegulationRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | | | - Simon Anders
- Bioquant CenterUniversity of HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|
11
|
Otto M, Hoyer-Fender S. ODF2 Negatively Regulates CP110 Levels at the Centrioles/Basal Bodies to Control the Biogenesis of Primary Cilia. Cells 2023; 12:2194. [PMID: 37681926 PMCID: PMC10486571 DOI: 10.3390/cells12172194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Primary cilia are essential sensory organelles that develop when an inhibitory cap consisting of CP110 and other proteins is eliminated. The degradation of CP110 by the ubiquitin-dependent proteasome pathway mediated by NEURL4 and HYLS1 removes the inhibitory cap. Here, we investigated the suitability of rapamycin-mediated dimerization for centriolar recruitment and asked whether the induced recruitment of NEURL4 or HYLS1 to the centriole promotes primary cilia development and CP110 degradation. We used rapamycin-mediated dimerization with ODF2 to induce their targeted recruitment to the centriole. We found decreased CP110 levels in the transfected cells, but independent of rapamycin-mediated dimerization. By knocking down ODF2, we showed that ODF2 controls CP110 levels. The overexpression of ODF2 is not sufficient to promote the formation of primary cilia, but the overexpression of NEURL4 or HYLS1 is. The co-expression of ODF2 and HYLS1 resulted in the formation of tube-like structures, indicating an interaction. Thus, ODF2 controls primary cilia formation by negatively regulating the concentration of CP110 levels. Our data suggest that ODF2 most likely acts as a scaffold for the binding of proteins such as NEURL4 or HYLS1 to mediate CP110 degradation.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology—Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
13
|
Streubel JMS, Pereira G. Control of centrosome distal appendages assembly and disassembly. Cells Dev 2023; 174:203839. [PMID: 37062431 DOI: 10.1016/j.cdev.2023.203839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carry appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.
Collapse
Affiliation(s)
- Johanna M S Streubel
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Chang TJB, Hsu JCC, Yang TT. Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nat Commun 2023; 14:1688. [PMID: 36973278 PMCID: PMC10043031 DOI: 10.1038/s41467-023-37342-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Distal appendages (DAPs) are vital in cilia formation, mediating vesicular and ciliary docking to the plasma membrane during early ciliogenesis. Although numerous DAP proteins arranging a nine-fold symmetry have been studied using superresolution microscopy analyses, the extensive ultrastructural understanding of the DAP structure developing from the centriole wall remains elusive owing to insufficient resolution. Here, we proposed a pragmatic imaging strategy for two-color single-molecule localization microscopy of expanded mammalian DAP. Importantly, our imaging workflow enables us to push the resolution limit of a light microscope well close to a molecular level, thus achieving an unprecedented mapping resolution inside intact cells. Upon this workflow, we unravel the ultra-resolved higher-order protein complexes of the DAP and its associated proteins. Intriguingly, our images show that C2CD3, microtubule triplet, MNR, CEP90, OFD1, and ODF2 jointly constitute a unique molecular configuration at the DAP base. Moreover, our finding suggests that ODF2 plays an auxiliary role in coordinating and maintaining DAP nine-fold symmetry. Together, we develop an organelle-based drift correction protocol and a two-color solution with minimum crosstalk, allowing a robust localization microscopy imaging of expanded DAP structures deep into the gel-specimen composites.
Collapse
Affiliation(s)
- Ting-Jui Ben Chang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | | | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Doğan B, Ayar B, Pirim D. Investigation of putative roles of smoking-associated salivary microbiome alterations on carcinogenesis by integrative in silico analysis. Comput Biol Chem 2023; 102:107805. [PMID: 36587566 DOI: 10.1016/j.compbiolchem.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Growing evidence suggests that cigarette smoking alters the salivary microbiome composition and affects the risk of various complex diseases including cancer. However, the potential role of the smoking-associated microbiome in cancer development remains unexplained. Here, the putative roles of smoking-related microbiome alterations in carcinogenesis were investigated by in silico analysis and suggested evidence can be further explored by experimental methodologies. The Disbiome database was used to extract smoking-associated microbial taxa in saliva and taxon set enrichment analysis (TSEA) was conducted to identify the gene sets associated with extracted microbial taxa. We further analyzed the expression profiles of identified genes by using RNA-sequencing data from TCGA and GTEx projects. Associations of the genes with smoking-related phenotypes in cancer datasets were analyzed to prioritize genes for their interplay between smoking-related microbiome and carcinogenesis. Thirty-eight microbial taxa associated with smoking were included in the TSEA and this revealed sixteen genes that were significantly associated with smoking-associated microbial taxa. All genes were found to be differentially expressed in at least one cancer dataset, yet the ELF3 and CTSH were the most common differentially expressed genes giving significant results for several cancer types. Moreover, C2CD3, CTSH, DSC3, ELF3, RHOT2, and WSB2 showed statistically significant associations with smoking-related phenotypes in cancer datasets. This study provides in silico evidence for the potential roles of the salivary microbiome on carcinogenesis. The results shed light on the importance of smoking cessation strategies for cancer management and interventions to stratify smokers for their risk of smoking-induced carcinogenesis.
Collapse
Affiliation(s)
- Berkcan Doğan
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, 16059 Bursa, Turkey
| | - Berna Ayar
- Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey; Istinye University, Institute of Health Science, Department of Molecular Oncology, 34010 Istanbul, Turkey
| | - Dilek Pirim
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey.
| |
Collapse
|
16
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development. J Dev Biol 2022; 10:jdb10040052. [PMID: 36547474 PMCID: PMC9783631 DOI: 10.3390/jdb10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.
Collapse
|
18
|
Lee H, Moon KH, Song J, Je S, Bok J, Ko HW. Tissue-specific requirement of sodium channel and clathrin linker 1 (Sclt1) for ciliogenesis during limb development. Front Cell Dev Biol 2022; 10:1058895. [PMID: 36407107 PMCID: PMC9669486 DOI: 10.3389/fcell.2022.1058895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2024] Open
Abstract
Primary cilia have essential roles as signaling centers during development and adult homeostasis. Disruption of ciliary structure or function causes congenital human disorders called ciliopathies. Centriolar distal appendage (DAP) proteins are important for anchoring cilia to the membrane. However, the exact functions of DAP during in vivo ciliogenesis and animal development remain poorly understood. Here, we showed that the DAP component sodium channel and clathrin linker 1 (Sclt1) mutant mice had abnormal craniofacial and limb development with postnatal lethality. In mutant embryos, most of the affected tissues had defects in DAP recruitment to the basal body and docking to the membrane that resulted in reduced ciliogenesis and disrupted hedgehog (Hh) signaling in limb bud mesenchymal cells. However, limb digit formation and ciliogenesis in Sclt1 mutant mice were differentially affected between the fore- and hindlimb buds. The forelimbs developed normally in Sclt1 mutants, but the hindlimbs had preaxial polydactyly. Heterozygous loss of Cep83, another core DAP component, in Sclt1 mutant mice, caused forelimb and hindlimb polydactyly. These findings revealed the tissue-specific differential requirement of DAPs. Taken together, these results indicated that during limb development the ciliary base components, DAPs, play an essential role in ciliogenesis and Hh signaling in vivo in a position-dependent manner.
Collapse
Affiliation(s)
- Hankyu Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- College of Pharmacy, Dongguk University-Seoul, Goyang, South Korea
| | - Kyeong-Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 (BK21) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education and Research Center for Biosystems, Yonsei University, Seoul, South Korea
| | - Suyeon Je
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education and Research Center for Biosystems, Yonsei University, Seoul, South Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 (BK21) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education and Research Center for Biosystems, Yonsei University, Seoul, South Korea
| |
Collapse
|
19
|
Reed M, Takemaru KI, Ying G, Frederick JM, Baehr W. Deletion of CEP164 in mouse photoreceptors post-ciliogenesis interrupts ciliary intraflagellar transport (IFT). PLoS Genet 2022; 18:e1010154. [PMID: 36074756 PMCID: PMC9488791 DOI: 10.1371/journal.pgen.1010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/20/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Centrosomal protein of 164 kDa (CEP164) is located at distal appendages of primary cilia and is necessary for basal body (BB) docking to the apical membrane. To investigate the function of photoreceptor CEP164 before and after BB docking, we deleted CEP164 during retina embryonic development (Six3Cre), in postnatal rod photoreceptors (iCre75) and in mature retina using tamoxifen induction (Prom1-ETCre). BBs dock to the cell cortex during postnatal day 6 (P6) to extend a connecting cilium (CC) and an axoneme. P6 retina-specific knockouts (retCep164-/-) are unable to dock BBs, thereby preventing formation of CC or outer segments (OSs). In rod-specific knockouts (rodCep164-/-), Cre expression starts after P7 and CC/OS form. P16 rodCep164-/- rods have nearly normal OS lengths, and maintain OS attachment through P21 despite loss of CEP164. Intraflagellar transport components (IFT88, IFT57 and IFT140) were reduced at P16 rodCep164-/- BBs and CC tips and nearly absent at P21, indicating impaired intraflagellar transport. Nascent OS discs, labeled with a fluorescent dye on P14 and P18 and harvested on P19, showed continued rodCep164-/- disc morphogenesis but absence of P14 discs mid-distally, indicating OS instability. Tamoxifen induction with PROM1ETCre;Cep164F/F (tamCep164-/-) adult mice affected maintenance of both rod and cone OSs. The results suggest that CEP164 is key towards recruitment and stabilization of IFT-B particles at the BB/CC. IFT impairment may be the main driver of ciliary malfunction observed with hypomorphic CEP164 mutations.
Collapse
Affiliation(s)
- Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Ken-Ichi Takemaru
- Stony Brook University, Department of Pharmacological Sciences, Stony Brook, New York, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
20
|
Le Borgne P, Greibill L, Laporte MH, Lemullois M, Bouhouche K, Temagoult M, Rosnet O, Le Guennec M, Lignières L, Chevreux G, Koll F, Hamel V, Guichard P, Tassin AM. The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly. PLoS Biol 2022; 20:e3001782. [PMID: 36070319 PMCID: PMC9484695 DOI: 10.1371/journal.pbio.3001782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/19/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022] Open
Abstract
In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins. CEP90, FOPNL and OFD1 form an evolutionary conserved module which promotes the assembly of centriolar distal appendages. This study uses ultrastructure expansion microscopy to reveal the recruitment of this module on early-born procentrioles to in turn recruit centriolar distal appendage proteins, proposing that this dictates the future location of distal appendages.
Collapse
Affiliation(s)
- Pierrick Le Borgne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Logan Greibill
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Hélène Laporte
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Michel Lemullois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Khaled Bouhouche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mebarek Temagoult
- Imagerie-Gif Light facility, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Rosnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Maeva Le Guennec
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Laurent Lignières
- ProteoSeine@IJM, Université de Paris/CNRS, Institut Jacques Monod, Paris, France
| | - Guillaume Chevreux
- ProteoSeine@IJM, Université de Paris/CNRS, Institut Jacques Monod, Paris, France
| | - France Koll
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Hamel
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Paul Guichard
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Anne-Marie Tassin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
21
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
22
|
Mendes A, Heil HS, Coelho S, Leterrier C, Henriques R. Mapping molecular complexes with super-resolution microscopy and single-particle analysis. Open Biol 2022; 12:220079. [PMID: 35892200 PMCID: PMC9326279 DOI: 10.1098/rsob.220079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the structure of supramolecular complexes provides insight into their functional capabilities and how they can be modulated in the context of disease. Super-resolution microscopy (SRM) excels in performing this task by resolving ultrastructural details at the nanoscale with molecular specificity. However, technical limitations, such as underlabelling, preclude its ability to provide complete structures. Single-particle analysis (SPA) overcomes this limitation by combining information from multiple images of identical structures and producing an averaged model, effectively enhancing the resolution and coverage of image reconstructions. This review highlights important studies using SRM-SPA, demonstrating how it broadens our knowledge by elucidating features of key biological structures with unprecedented detail.
Collapse
Affiliation(s)
| | | | - Simao Coelho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
23
|
Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Structure of the ciliogenesis-associated CPLANE complex. SCIENCE ADVANCES 2022; 8:eabn0832. [PMID: 35427153 PMCID: PMC9012472 DOI: 10.1126/sciadv.abn0832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
24
|
Gaudin N, Martin Gil P, Boumendjel M, Ershov D, Pioche-Durieu C, Bouix M, Delobelle Q, Maniscalco L, Phan TBN, Heyer V, Reina-San-Martin B, Azimzadeh J. Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 2022; 11:72382. [PMID: 35319462 PMCID: PMC8983040 DOI: 10.7554/elife.72382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.
Collapse
Affiliation(s)
| | | | | | - Dmitry Ershov
- Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
| | | | | | | | | | | | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
| | | | | |
Collapse
|
25
|
Berkel C, Cacan E. Copy number and expression of CEP89, a protein required for ciliogenesis, are increased and predict poor prognosis in patients with ovarian cancer. Cell Biochem Funct 2022; 40:298-309. [PMID: 35285957 DOI: 10.1002/cbf.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
CEP89 (centrosomal protein 89) is required for ciliogenesis and mitochondrial metabolism, but its role in cancer has yet to be clarified. We report that CEP89 is overexpressed in ovarian cancer (OC) compared to normal ovaries. Likewise, its expression is higher in malignant ovarian tumors than in borderline ovarian tumors with low malignant potential. More than a quarter of patients with OC have copy number gains in the CEP89 gene, and patients with high expression have more than a year shorter overall survival compared to those with low expression. Moreover, we found that CEP89 can be considered as a prognostic marker for poor overall survival in patients with OC, after adjusting for tumor stage and residual tumor. Nine out of the top 10 protein interactors of CEP89 have the highest percentage of total copy number variation (CNV) events in OC among all other cancer types. Furthermore, CEP89 messenger RNA (mRNA) levels are higher in OC patients with disease recurrence compared to those with no recurrence. We also analyzed CEP89 levels in OC cell lines in terms of CNV, mRNA, and protein levels; and observed that the FUOV-1 cell line has the highest levels among cell lines that originated from primary sites. Our study suggests that CEP89 may be a valuable prognostic predictor for the overall survival of patients with OC, and it could also be a novel therapeutic target in this malignancy.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
26
|
Tsutsumi R, Chaya T, Tsujii T, Furukawa T. The carboxyl-terminal region of SDCCAG8 comprises a functional module essential for cilia formation as well as organ development and homeostasis. J Biol Chem 2022; 298:101686. [PMID: 35131266 PMCID: PMC8902618 DOI: 10.1016/j.jbc.2022.101686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein–protein interaction networks involved in cilia development.
Collapse
|
27
|
Hwang JY, Wang H, Lu Y, Ikawa M, Chung JJ. C2cd6-encoded CatSperτ targets sperm calcium channel to Ca 2+ signaling domains in the flagellar membrane. Cell Rep 2022; 38:110226. [PMID: 34998468 PMCID: PMC8857959 DOI: 10.1016/j.celrep.2021.110226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
In mammalian sperm cells, regulation of spatiotemporal Ca2+ signaling relies on the quadrilinear Ca2+ signaling nanodomains in the flagellar membrane. The sperm-specific, multi-subunit CatSper Ca2+ channel, which is crucial for sperm hyperactivated motility and male fertility, organizes the nanodomains. Here, we report CatSperτ, the C2cd6-encoded membrane-associating C2 domain protein, can independently migrate to the flagella and serve as a major targeting component of the CatSper channel complex. CatSperτ loss of function in mice demonstrates that it is essential for sperm hyperactivated motility and male fertility. CatSperτ targets the CatSper channel into the quadrilinear nanodomains in the flagella of developing spermatids, whereas it is dispensable for functional channel assembly. CatSperτ interacts with ciliary trafficking machinery in a C2-dependent manner. These findings provide insights into the CatSper channel trafficking to the Ca2+ signaling nanodomains and the shared molecular mechanisms of ciliary and flagellar membrane targeting.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
28
|
Blanco-Ameijeiras J, Lozano-Fernández P, Martí E. Centrosome maturation - in tune with the cell cycle. J Cell Sci 2022; 135:274149. [PMID: 35088834 DOI: 10.1242/jcs.259395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.
Collapse
Affiliation(s)
- Jose Blanco-Ameijeiras
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Pilar Lozano-Fernández
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
29
|
Kumar D, Rains A, Herranz-Pérez V, Lu Q, Shi X, Swaney DL, Stevenson E, Krogan NJ, Huang B, Westlake C, Garcia-Verdugo JM, Yoder BK, Reiter JF. A ciliopathy complex builds distal appendages to initiate ciliogenesis. J Cell Biol 2021; 220:e202011133. [PMID: 34241634 PMCID: PMC8276316 DOI: 10.1083/jcb.202011133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Addison Rains
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Biomedical Research Networking Center on Neurodegenerative Diseases, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute Frederick, Frederick, MD
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biosciences, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Christopher Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute Frederick, Frederick, MD
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Biomedical Research Networking Center on Neurodegenerative Diseases, Valencia, Spain
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, AL
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
30
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
31
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
32
|
Gonçalves AB, Hasselbalch SK, Joensen BB, Patzke S, Martens P, Ohlsen SK, Quinodoz M, Nikopoulos K, Suleiman R, Damsø Jeppesen MP, Weiss C, Christensen ST, Rivolta C, Andersen JS, Farinelli P, Pedersen LB. CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels. eLife 2021; 10:63731. [PMID: 34259627 PMCID: PMC8354638 DOI: 10.7554/elife.63731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.
Collapse
Affiliation(s)
- André Brás Gonçalves
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Kirstine Hasselbalch
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Beinta Biskopstø Joensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Pernille Martens
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Krogh Ohlsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Reem Suleiman
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Per Damsø Jeppesen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Catja Weiss
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Zhou G, Sun S, Yuan Q, Zhang R, Jiang P, Li G, Wang Y, Li X. Multiple-Tissue and Multilevel Analysis on Differentially Expressed Genes and Differentially Correlated Gene Pairs for HFpEF. Front Genet 2021; 12:668702. [PMID: 34306013 PMCID: PMC8296822 DOI: 10.3389/fgene.2021.668702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex disease characterized by dysfunctions in the heart, adipose tissue, and cerebral arteries. The elucidation of the interactions between these three tissues in HFpEF will improve our understanding of the mechanism of HFpEF. In this study, we propose a multilevel comparative framework based on differentially expressed genes (DEGs) and differentially correlated gene pairs (DCGs) to investigate the shared and unique pathological features among the three tissues in HFpEF. At the network level, functional enrichment analysis revealed that the networks of the heart, adipose tissue, and cerebral arteries were enriched in the cell cycle and immune response. The networks of the heart and adipose tissues were enriched in hemostasis, G-protein coupled receptor (GPCR) ligand, and cancer-related pathway. The heart-specific networks were enriched in the inflammatory response and cardiac hypertrophy, while the adipose-tissue-specific networks were enriched in the response to peptides and regulation of cell adhesion. The cerebral-artery-specific networks were enriched in gene expression (transcription). At the module and gene levels, 5 housekeeping DEGs, 2 housekeeping DCGs, 6 modules of merged protein–protein interaction network, 5 tissue-specific hub genes, and 20 shared hub genes were identified through comparative analysis of tissue pairs. Furthermore, the therapeutic drugs for HFpEF-targeting these genes were examined using molecular docking. The combination of multitissue and multilevel comparative frameworks is a potential strategy for the discovery of effective therapy and personalized medicine for HFpEF.
Collapse
Affiliation(s)
- Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaoyan Sun
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Qiuyue Yuan
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Run Zhang
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Ping Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangyu Li
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Li
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Chang CF, Brown KM, Yang Y, Brugmann SA. Centriolar Protein C2cd3 Is Required for Craniofacial Development. Front Cell Dev Biol 2021; 9:647391. [PMID: 34211969 PMCID: PMC8239364 DOI: 10.3389/fcell.2021.647391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a ubiquitous, microtubule-based cellular organelle. Primary cilia dysfunction results in a group of disorders termed ciliopathies. C2 domain containing 3 centriole elongation regulator (C2cd3), encodes a centriolar protein essential for ciliogenesis. Mutations in human C2CD3 are associated with the human ciliopathy Oral-Facial-Digital syndrome type 14 (OFD14). In order to better understand the etiology of ciliopathies including OFD14, we generated numerous murine models targeting C2cd3. Initial analysis revealed several tissue-specific isoforms of C2cd3, and while the loss of C2cd3 has previously been reported to result in exencephaly, tight mesencephalic flexure, pericardial edema, abnormal heart looping and a twisted body axis, further analysis revealed that genetic background may also contribute to phenotypic variation. Additional analyses of a conditional allelic series targeting C-terminal PKC-C2 domains or the N-terminal C2CD3N-C2 domain of C2cd3 revealed a variable degree of phenotypic severity, suggesting that while the N-terminal C2CD3N-C2 domain was critical for early embryonic development as a whole, there was also a craniofacial specific role for the C2CD3N-C2 domains. Together, through generation of novel models and evaluation of C2cd3 expression, these data provide valuable insight into mechanisms of pathology for craniofacial ciliopathies that can be further explored in the future.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kari M Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Shriners Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
35
|
Douanne T, Stinchcombe JC, Griffiths GM. Teasing out function from morphology: Similarities between primary cilia and immune synapses. J Cell Biol 2021; 220:212075. [PMID: 33956049 PMCID: PMC8105739 DOI: 10.1083/jcb.202102089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immune synapses are formed between immune cells to facilitate communication and coordinate the immune response. The reorganization of receptors involved in recognition and signaling creates a transient area of plasma membrane specialized in signaling and polarized secretion. Studies on the formation of the immune synapse between cytotoxic T lymphocytes (CTLs) and their targets uncovered a critical role for centrosome polarization in CTL function and suggested a striking parallel between the synapse and primary cilium. Since these initial observations, a plethora of further morphological, functional, and molecular similarities have been identified between these two fascinating structures. In this review, we describe how advances in imaging and molecular techniques have revealed additional parallels as well as functionally significant differences and discuss how comparative studies continue to shed light on the molecular mechanisms underlying the functions of both the immune synapse and primary cilium.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
36
|
May EA, Sroka TJ, Mick DU. Phosphorylation and Ubiquitylation Regulate Protein Trafficking, Signaling, and the Biogenesis of Primary Cilia. Front Cell Dev Biol 2021; 9:664279. [PMID: 33912570 PMCID: PMC8075051 DOI: 10.3389/fcell.2021.664279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
The primary cilium is a solitary, microtubule-based membrane protrusion extending from the surface of quiescent cells that senses the cellular environment and triggers specific cellular responses. The functions of primary cilia require not only numerous different components but also their regulated interplay. The cilium performs highly dynamic processes, such as cell cycle-dependent assembly and disassembly as well as delivery, modification, and removal of signaling components to perceive and process external signals. On a molecular level, these processes often rely on a stringent control of key modulatory proteins, of which the activity, localization, and stability are regulated by post-translational modifications (PTMs). While an increasing number of PTMs on ciliary components are being revealed, our knowledge on the identity of the modifying enzymes and their modulation is still limited. Here, we highlight recent findings on cilia-specific phosphorylation and ubiquitylation events. Shedding new light onto the molecular mechanisms that regulate the sensitive equilibrium required to maintain and remodel primary cilia functions, we discuss their implications for cilia biogenesis, protein trafficking, and cilia signaling processes.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Tommy J Sroka
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - David U Mick
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
37
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
38
|
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos. J Dev Biol 2021; 9:jdb9020012. [PMID: 33805906 PMCID: PMC8103285 DOI: 10.3390/jdb9020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
Collapse
|
39
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
40
|
Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J, Holland AJ. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 2021; 40:e105106. [PMID: 33350495 PMCID: PMC7883295 DOI: 10.15252/embj.2020105106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Centriole copy number is tightly maintained by the once-per-cycle duplication of these organelles. Centrioles constitute the core of centrosomes, which organize the microtubule cytoskeleton and form the poles of the mitotic spindle. Centrosome amplification is frequently observed in tumors, where it promotes aneuploidy and contributes to invasive phenotypes. In non-transformed cells, centrosome amplification triggers PIDDosome activation as a protective response to inhibit cell proliferation, but how extra centrosomes activate the PIDDosome remains unclear. Using a genome-wide screen, we identify centriole distal appendages as critical for PIDDosome activation in cells with extra centrosomes. The distal appendage protein ANKRD26 is found to interact with and recruit the PIDDosome component PIDD1 to centriole distal appendages, and this interaction is required for PIDDosome activation following centrosome amplification. Furthermore, a recurrent ANKRD26 mutation found in human tumors disrupts PIDD1 localization and PIDDosome activation in cells with extra centrosomes. Our data support a model in which ANKRD26 initiates a centriole-derived signal to limit cell proliferation in response to centrosome amplification.
Collapse
Affiliation(s)
- Lauren T Evans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Taylor Anglen
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Phillip Scott
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
41
|
Tischer J, Carden S, Gergely F. Accessorizing the centrosome: new insights into centriolar appendages and satellites. Curr Opin Struct Biol 2021; 66:148-155. [PMID: 33279729 DOI: 10.1016/j.sbi.2020.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes comprise two centrioles, the mother and daughter, embedded within a multi-layered proteinaceous matrix known as the pericentriolar material. In proliferating cells, centrosomes duplicate once per cell cycle and organise interphase and mitotic microtubule arrays, whereas in quiescent cells, the mother centriole templates primary cilium formation. Centrosomes have acquired various accessory structures to facilitate these disparate functions. In some eukaryotic lineages, mother centrioles can be distinguished from their daughter by the presence of appendages at their distal end, which anchor microtubule minus ends and tether Golgi-derived vesicles involved in ciliogenesis. Moreover, in vertebrate cells, centrosomes are surrounded by a system of cytoplasmic granules known as centriolar satellites. In this review, we will discuss these centriolar accessories and outline recent findings pertaining to their composition, assembly and regulation.
Collapse
Affiliation(s)
- Julia Tischer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah Carden
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, UK.
| |
Collapse
|
42
|
Kobayashi T, Tanaka K, Mashima Y, Shoda A, Tokuda M, Itoh H. CEP164 Deficiency Causes Hyperproliferation of Pancreatic Cancer Cells. Front Cell Dev Biol 2020; 8:587691. [PMID: 33251215 PMCID: PMC7674857 DOI: 10.3389/fcell.2020.587691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are hair-like projections that protrude from most mammalian cells and mediate various extracellular signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) cells are known to lose their primary cilia, but the relevance of this phenomenon remains unclear. In this study, we generated PDAC-originated Panc1 cells devoid of primary cilia by mutating a centriolar protein, centrosomal protein 164 (CEP164), which is required for ciliogenesis. CEP164 depletion enhanced the clonogenicity of Panc1 cells, along with chemically induced elimination of primary cilia, suggesting that a lack of these organelles promotes PDAC cells proliferation. In addition, the loss of CEP164 altered the cell cycle progression irrespective of absence of primary cilia. We found that CEP164 was co-localized with the GLI2 transcription factor at the mother centriole and controlled its activation, thus inducing Cyclin D-CDK6 expression. Furthermore, CEP164-mutated Panc1 cells were significantly tolerant to KRAS depletion-dependent growth inhibition. This study suggests that CEP164 deficiency is advantageous for PDAC cells proliferation due to not only lack of ciliation but also cilia-independent GLI2-Cyclin D/CDK6 activation, and that CEP164 is a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kosuke Tanaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yu Mashima
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ayano Shoda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mio Tokuda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
43
|
Kumar D, Reiter J. How the centriole builds its cilium: of mothers, daughters, and the acquisition of appendages. Curr Opin Struct Biol 2020; 66:41-48. [PMID: 33160100 DOI: 10.1016/j.sbi.2020.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/23/2022]
Abstract
Centrioles are microtubule-based structures in eukaryotic cells. From organizing the microtubule cytoskeleton during interphase to focusing the mitotic spindle during mitosis, centrioles are busy at all stages of the cell cycle. One crucial interphase function of centrioles is to assemble cilia, microtubular projections that can either be motile or nonmotile. Motile cilia function in sperm locomotion and propulsion of extracellular fluids, as in mucus flow in the lung. Immotile primary cilia are critical for some forms of intercellular signaling. Here, we review how procentrioles mature into daughter and, then, mother centrioles. We highlight key steps in ciliogenesis, including the acquisition of appendages by the mother centriole, as well as the distal centriole, an understudied domain critical for ciliogenesis. Importantly, several genes mutated in ciliopathies encode distal centriolar components. We propose that understanding how centrioles are remodeled to support cilium assembly will provide insights into the molecular etiologies of ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
45
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
48
|
Hou Y, Wu Z, Zhang Y, Chen H, Hu J, Guo Y, Peng Y, Wei Q. Functional Analysis of Hydrolethalus Syndrome Protein HYLS1 in Ciliogenesis and Spermatogenesis in Drosophila. Front Cell Dev Biol 2020; 8:301. [PMID: 32509774 PMCID: PMC7253586 DOI: 10.3389/fcell.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cilia and flagella are conserved subcellular organelles, which arise from centrioles and play critical roles in development and reproduction of eukaryotes. Dysfunction of cilia leads to life-threatening ciliopathies. HYLS1 is an evolutionarily conserved centriole protein, which is critical for ciliogenesis, and its mutation causes ciliopathy–hydrolethalus syndrome. However, the molecular function of HYLS1 remains elusive. Here, we investigated the function of HYLS1 in cilia formation using the Drosophila model. We demonstrated that Drosophila HYLS1 is a conserved centriole and basal body protein. Deletion of HYLS1 led to sensory cilia dysfunction and spermatogenesis abnormality. Importantly, we found that Drosophila HYLS1 is essential for giant centriole/basal body elongation in spermatocytes and is required for spermatocyte centriole to efficiently recruit pericentriolar material and for spermatids to assemble the proximal centriole-like structure (the precursor of the second centriole for zygote division). Hence, by taking advantage of the giant centriole/basal body of Drosophila spermatocyte, we uncover previously uncharacterized roles of HYLS1 in centriole elongation and assembly.
Collapse
Affiliation(s)
- Yanan Hou
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhimao Wu
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huicheng Chen
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
49
|
Clinical and Molecular Diagnosis of Joubert Syndrome and Related Disorders. Pediatr Neurol 2020; 106:43-49. [PMID: 32139166 DOI: 10.1016/j.pediatrneurol.2020.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joubert syndrome and related disorders are a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosis. Joubert syndrome is a clinically and genetically heterogeneous disorder involving mutations in 35 ciliopathy-related genes. We present a large cohort of 59 patients with Joubert syndrome from 55 families. Molecular analysis was performed in 35 families (trio). METHODS Clinical exome analysis was performed to identify causal mutations, and genotype-phenotype correlations were evaluated. RESULTS All of the cases were stratified into pure Joubert syndrome (62.7%), Joubert syndrome with retinal disease (22.0%), polydactyly (8.5%), and liver (1.7%) and kidney (1.7%) involvement. Joubert syndrome-related disorders include Meckel-Gruber syndrome in 5.1% cases and Leber congenital amaurosis (1.7%). Of the 35 Joubert syndrome-related genes, 11 were identified in these patients, i.e., CEP290, C5ORF, TCTN1, CC2D2A, RPGRP1L, TCTN3, AHI1, INPP5E, TCTN2, NPHP1, and TMEM237. For the first time, we identified a ciliopathy gene, CCDC28B, as a causal gene in Joubert syndrome in one family. CEP290 accounted for 37.8% cases of pure Joubert syndrome, Joubert syndrome with retinal and renal disease, and Meckel-Gruber syndrome. The p.G1890∗ allele in CEP290 is highly recurrent. Of the six families with Joubert syndrome who had a prenatal diagnosis, one fetus was normal, two were carriers, and three were affected. CONCLUSIONS This is the largest study of Joubert syndrome from India. Although a high degree of locus and allelic heterogeneity was observed, CEP290 variants were the most common among these patients.
Collapse
|
50
|
Chong WM, Wang WJ, Lo CH, Chiu TY, Chang TJ, Liu YP, Tanos B, Mazo G, Tsou MFB, Jane WN, Yang TT, Liao JC. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. eLife 2020; 9:53580. [PMID: 32242819 PMCID: PMC7173962 DOI: 10.7554/elife.53580] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.
Collapse
Affiliation(s)
- Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Chien-Hui Lo
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - You-Pi Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Barbara Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Gregory Mazo
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - T Tony Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|