1
|
Plümers R, Jelinek S, Lindenkamp C, Osterhage MR, Knabbe C, Hendig D. Investigation on ABCC6-Deficient Human Hepatocytes Generated by CRISPR-Cas9 Genome Editing. Cells 2025; 14:576. [PMID: 40277901 PMCID: PMC12025709 DOI: 10.3390/cells14080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Patients affected by the rare disease pseudoxanthoma elasticum (PXE) exhibit the calcification of elastic fibers in ocular, dermal, and vascular tissues. These symptoms are triggered by mutations in the ATP-binding cassette transporter subfamily C member 6 (ABCC6), whose substrate remains unknown. Interestingly, ABCC6 is predominantly expressed in the liver tissue, leading to the hypothesis that PXE is a metabolic disorder. We developed a genome-editing system targeting ABCC6 in human immortalized hepatocytes (HepIms) for further investigations. The HepIms were transfected with an ABCC6-specific clustered regulatory interspaced short palindromic repeat (CRISPR-Cas9) genome-editing plasmid, resulting in the identification of a heterozygous (htABCC6HepIm) and a compound heterozygous (chtABCC6HepIm) clone. These clones were analyzed for key markers associated with the PXE pathobiochemistry. Hints of impaired lipid trafficking, defects in the extracellular matrix remodeling, the induction of calcification inhibitor expression, and the down regulation of senescence and inflammatory markers in ABCC6-deficienct HepIms were found. Our ABCC6 knock-out model of HepIms provides a valuable tool for studying the metabolic characteristics of PXE in vitro. The initial analysis of the clones mirrors various features of the PXE pathobiochemistry and provides an outlook on future research approaches.
Collapse
Affiliation(s)
- Ricarda Plümers
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Medizinische Fakultät OWL (Universität Bielefeld), Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Pfau K, Ansari G, Michels S, Dysli C, Liakopoulos S, Burghaus-Zhang J, Al-Sheikh M, Garweg JG, Quinodoz M, Kaminska K, Cancellieri F, Rivolta C, Terry SF, Feltgen N, Pfau M. Topography of Slowed Dark Adaptation in Pseudoxanthoma Elasticum: PROPXE Study Report 1. Invest Ophthalmol Vis Sci 2025; 66:17. [PMID: 39913163 PMCID: PMC11806436 DOI: 10.1167/iovs.66.2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/01/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose To determine the prevalence and spatial pattern of rod and cone dysfunction in patients with pseudoxanthoma elasticum (PXE) and to correlate these with Bruch's membrane (BrM) calcification. PXE is a rare genetic disorder that causes calcification of Bruch's membrane, which eventually leads to loss of central vision. Understanding the functional implications of BrM calcification is crucial for developing effective treatments. Methods In this prospective natural history study (PROPXE, ClinicalTrials.gov ID: NCT05662085), performed at a tertiary referral center, 26 patients with PXE (14 women, 12 men; median age, 55 years; interquartile range, 43-59 years), diagnosed according to the Plomp criteria, underwent comprehensive ophthalmic evaluations, including best-corrected visual acuity (BCVA), contrast sensitivity testing, and multimodal imaging. Dark adaptometry was tested following a 59% rhodopsin bleach at 8°, 15°, 30°, and 46° eccentricity from the fovea along the temporal retina. The eye without a history of exudative macular neovascularization (MNV) or the better-seeing eye was selected as the study eye. Results Of 26 participants, 12 had no history of exudative MNV in the study eye, while 14 had previous or current treatment for MNV with a median BCVA of -0.07 logMAR and 0.11 logMAR, respectively. In the macula at 8° eccentricity, rod intercept time (RIT) was prolonged in 83.3% of nonexudative and 92.9% of exudative eyes, while BCVA and cone thresholds at 8° eccentricity were affected in only 42.3% and 65.4% of eyes. The delay in RIT was most pronounced in regions at risk of calcification and increased markedly with age. In addition, prolonged cone recovery time constants were evident that correlated with RIT. Conclusions Patients with PXE exhibit significant slowing of both cone- and rod-mediated dark adaptation, particularly in regions prone to BrM calcification. These findings suggest that dark adaptometry and assessment of BrM calcification can serve as clinical tools for evaluating disease severity and monitoring progression in PXE, enabling earlier interventions before the onset of exudative MNV or atrophy.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Georg Ansari
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Stephan Michels
- Eye Clinic Zurich West, Zurich, Switzerland
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sandra Liakopoulos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Ophthalmology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jana Burghaus-Zhang
- Department of Dermatology, Venerology, and Allergology, University Medical Center, Ruprecht-Karls-University, Heidelberg, Germany
| | - Mayss Al-Sheikh
- Department of Ophthalmology, Stadtspital Zurich, Zurich, Switzerland
| | - Justus G. Garweg
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Berner Augenklinik, Bern, Switzerland
| | - Mathieu Quinodoz
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Karolina Kaminska
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Francesca Cancellieri
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Carlo Rivolta
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Maximilian Pfau
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| |
Collapse
|
3
|
Clotaire L, Rubera I, Duranton C, Gal J, Chamorey E, Humeau H, Yamani S, Chiaverini C, Willoteaux S, Padovani B, Mourozeau L, Mainguy A, Baillif S, Martin L, Leftheriotis G. The PROPHECI trial: a phase II, double-blind, placebo-controlled, randomized clinical trial for the treatment of pseudoxanthoma elasticum with oral pyrophosphate. Trials 2025; 26:30. [PMID: 39881395 PMCID: PMC11776210 DOI: 10.1186/s13063-024-08666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration. There is currently no reference treatment for this chronic debilitating disease. METHODS PROPHECI (PyROphosPHate supplementation to fight ECtopIc calcification in PseudoXanthoma Elasticum) is the first phase II, randomized, double-blind, placebo-controlled clinical trial (NTC 04868578) to evaluate the efficacy and safety of a daily oral PPi salt supplementation to attenuate and/or stabilize the progression of ectopic calcification in PXE patients. The primary endpoint is the change in arterial calcification volume quantified by non-contrast CT scan between baseline and 12 months of treatment. Secondary endpoints include the safety and efficacy of daily oral PPi administration on ocular and skin lesions and the evaluation of patients' quality of life. DISCUSSION The PROPHECI trial aims to provide safety and efficacy data on the use of daily oral PPi to reduce or stabilize ectopic calcification in PXE. It also aims to validate the best markers to include in the design of future trials for the treatment of PXE and other parent diseases. TRIAL REGISTRATION Trial registration number: NCT04868578. References can be found on the ClinicalTrials.gov website: https://clinicaltrials.gov/study/NCT04868578?cond=Pseudoxanthoma%20Elasticum&intr=pyrophosphate&rank=2.
Collapse
Affiliation(s)
- Laetitia Clotaire
- Université Côte d'Azur, CNRS, LP2M, Nice, France
- Research and Development Department, Laboratoires ProNutri, Carros, France
| | | | | | - Jocelyn Gal
- Statistics Department, Centre Antoine Lacassagne, Nice, France
| | | | - Hélène Humeau
- Ophthalmology Department, Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Samir Yamani
- Drug Safety Department, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Christine Chiaverini
- Dermatology Department, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Serge Willoteaux
- Radiology Department, Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Bernard Padovani
- Radiology Department, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Laurie Mourozeau
- Ophthalmology Department, Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Adam Mainguy
- Ophthalmology Department, Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Stéphanie Baillif
- Ophthalmology Department, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Ludovic Martin
- Centre Hospitalo-Universitaire d'Angers, PXE National Reference Center, Angers, France
- Dermatology Department, Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Georges Leftheriotis
- Université Côte d'Azur, CNRS, LP2M, Nice, France.
- National Center for Rare Arterial Diseases, Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Nice, France.
| |
Collapse
|
4
|
Antropoli A, Bianco L, Romano F, Trinco A, Arrigo A, Benadji A, Atia R, Palacci O, Dagostinoz D, Devisme C, Condroyer C, Antonio A, Bosello F, Casati S, Salvetti AP, Zaffalon C, Gaudric A, Sahel JA, Staurenghi G, Bandello F, Sennlaub F, Zeitz C, Meunier I, Battaglia Parodi M, Audo I. Extensive macular atrophy with pseudodrusen-like appearance (EMAP) clinical characteristics, diagnostic criteria, and insights from allied inherited retinal diseases and age-related macular degeneration. Prog Retin Eye Res 2025; 104:101320. [PMID: 39603590 DOI: 10.1016/j.preteyeres.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extensive macular atrophy with pseudodrusen-like appearance (EMAP) was first described in France in 2009 as a symmetric and rapidly progressive form of macular atrophy primarily affecting middle-aged individuals. Despite the recent identification of a significant number of cases in Italy and worldwide, EMAP remains an underrecognized condition. The clinical triad typical of EMAP consists of vertically oriented macular atrophy with multilobular borders, pseudodrusen-like deposits across the posterior pole and mid-periphery, and peripheral pavingstone degeneration. Nonetheless, recent research has portrayed EMAP as a highly stage-dependent condition, allowing the identification of novel disease hallmarks, including a diffuse separation between the Bruch's membrane and the retinal pigment epithelium, along with consistent sparing of a region temporal to the macula. Additionally, retinal electrophysiology is particularly useful in distinguishing EMAP from age-related macular degeneration (AMD). Supported by unpublished data from the largest EMAP cohorts worldwide, this review aims to provide a comprehensive and updated description of EMAP, now recognized as a severely blinding disease characterized by diffuse chorioretinal atrophy and photoreceptor dysfunction. Furthermore, we propose a set of diagnostic criteria that incorporate clinical, imaging, and functional tests, to facilitate the recognition of this clinical entity. Lastly, we aim to shed light on its pathogenesis by comparing it with AMD and monogenic retinal disorders exhibiting similar phenotypes.
Collapse
Affiliation(s)
- Alessio Antropoli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France; Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Romano
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Trinco
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Amine Benadji
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Raphaël Atia
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Oana Palacci
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Dorothée Dagostinoz
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Céline Devisme
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesca Bosello
- Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Casati
- Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Paola Salvetti
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Zaffalon
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alain Gaudric
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, AP-HP, Hôpital Lariboisière, Université Paris Cité, Paris, France
| | - José-Alain Sahel
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Giovanni Staurenghi
- Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Meunier
- National Reference Center for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | | | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France.
| |
Collapse
|
5
|
Jacobs IJ, Obiri-Yeboah D, Stabach PR, Braddock DT, Li Q. Novel treatment for PXE: Recombinant ENPP1 enzyme therapy. Mol Ther 2024; 32:3815-3820. [PMID: 39342427 PMCID: PMC11573614 DOI: 10.1016/j.ymthe.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic multisystem ectopic calcification disorder caused by inactivating mutations in the ABCC6 gene encoding ABCC6, a hepatic efflux transporter. ABCC6-mediated ATP secretion by the liver is the main source of a potent endogenous calcification inhibitor, plasma inorganic pyrophosphate (PPi); the deficiency of plasma PPi underpins PXE. Recent studies demonstrated that INZ-701, a recombinant human ENPP1 that generates PPi and is now in clinical trials, restored plasma PPi levels and prevented ectopic calcification in the muzzle skin of Abcc6-/-mice. This study examined the pharmacokinetics, pharmacodynamics, and potency of a new ENPP1-Fc isoform, BL-1118, in Abcc6-/- mice. When Abcc6-/- mice received a single subcutaneous injection of BL-1118 at 0.25, 0.5, or 1 mg/kg, they had dose-dependent elevations in plasma ENPP1 enzyme activity and PPi levels, with an enzyme half-life of approximately 100 h. When Abcc6-/- mice were injected weekly from 5 to 15 weeks of age, BL-1118 dose-dependently increased steady-state plasma ENPP1 activity and PPi levels and significantly reduced ectopic calcification in the muzzle skin and kidneys. These results suggest that BL-1118 is a promising second generation enzyme therapy for PXE, the first generation of which is currently in clinical testing.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dora Obiri-Yeboah
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Pomozi V, Terry SF, Váradi A. The 2023 PXE Calcification Meeting in Budapest: A Focus on Clinical Trials for this Disease. J Invest Dermatol 2024; 144:2351-2353. [PMID: 39152954 DOI: 10.1016/j.jid.2024.06.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Affiliation(s)
- Viola Pomozi
- Institute of Molecular Life Sciences, HUN-REN Hungarian Research Network, Budapest, Hungary.
| | | | - András Váradi
- Institute of Molecular Life Sciences, HUN-REN Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
7
|
Li Q, Troutman C, Peckiconis M, Wurst T, Terry SF. Inorganic pyrophosphate plasma levels in patients with GGCX-associated PXE-like phenotypes. Front Genet 2024; 15:1429320. [PMID: 39399214 PMCID: PMC11466855 DOI: 10.3389/fgene.2024.1429320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Pseudoxanthoma elasticum (PXE) is an autosomal recessive ectopic calcification disorder clinically affecting the skin, eyes, and vascular system. Most cases of PXE are caused by inactivating pathogenic variants in the ABCC6 gene encoding a hepatic transmembrane efflux transporter, which facilitates the extracellular release of ATP, the precursor of inorganic pyrophosphate (PPi), a potent endogenous inhibitor of calcification. Pathogenic variants in GGCX, encoding γ-glutamyl carboxylase required for activation of vitamin K-dependent coagulation factors as well as matrix Gla protein (MGP) and Gla-rich protein (GRP), two inhibitors of ectopic calcification, have also been reported to cause cutaneous changes like those seen in PXE. While ectopic calcification in ABCC6 deficiency has been associated with reduced plasma levels of PPi due to loss of ABCC6 transport activity in the liver, plasma PPi levels have not been reported in patients with GGCX-associated phenotypes. Methods We analyzed five patients from three unrelated families on their clinical, laboratory, and molecular findings who carry biallelic variants in GGCX and present with phenotypic characteristics associated with PXE. The variants were identified using a next-generation sequencing panel consisting of 29 genes associated with ectopic calcification. Results and conclusion This study demonstrates that in addition to ABCC6, GGCX variants can cause the PXE phenotype, expanding PXE and perhaps other heritable ectopic calcification disorders' clinical and genetic heterogeneity. The results also show that the plasma concentrations of PPi in these patients are not reduced compared to healthy control individuals, suggesting that plasma PPi does not govern ectopic calcification in GGCX deficiency.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, United States
| | | | | | - Tamara Wurst
- PXE International, Inc., Damascus, MD, United States
| | | |
Collapse
|
8
|
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, Scholl HPN, Feltgen N, Holz FG, Pfau M. Pseudoxanthoma elasticum - Genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res 2024; 102:101274. [PMID: 38815804 PMCID: PMC12004504 DOI: 10.1016/j.preteyeres.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal-recessively inherited multisystem disease. Mutations in the ABCC6-gene are causative, coding for a transmembrane transporter mainly expressed in hepatocytes, which promotes the efflux of adenosine triphosphate (ATP). This results in low levels of plasma inorganic pyrophosphate (PPi), a critical anti-mineralization factor. The clinical phenotype of PXE is characterized by the effects of elastic fiber calcification in the skin, the cardiovascular system, and the eyes. In the eyes, calcification of Bruch's membrane results in clinically visible lesions, including peau d'orange, angioid streaks, and comet tail lesions. Frequently, patients must be treated for secondary macular neovascularization. No effective therapy is available for treating the cause of PXE, but several promising approaches are emerging. Finding appropriate outcome measures remains a significant challenge for clinical trials in this slowly progressive disease. This review article provides an in-depth summary of the current understanding of PXE and its multi-systemic manifestations. The article offers a detailed overview of the ocular manifestations, including their morphological and functional consequences, as well as potential complications. Lastly, previous and future clinical trials of causative treatments for PXE are discussed.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000, Nice, France
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
9
|
Molin A. Human genetic diseases of phosphate and pyrophosphate metabolism. Arch Pediatr 2024; 31:4S13-4S20. [PMID: 39343468 DOI: 10.1016/s0929-693x(24)00152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In humans, physiological bone and tooth mineralization is a complex cell-mediated process. Prerequisites for proper mineralization include sufficient amounts of minerals (calcium and phosphate [Pi]) to initiate the formation and the growth of apatite crystals and adequate amounts of mineralization inhibitors, such as pyrophosphate (PPi), to prevent uncontrolled extraskeletal mineralization. In this review, we provide an overview of the genetics of human disorders of mineralization, focusing on Pi and PPi metabolism and transport diseases, as the Pi/PPi ratio is an important determinant of crystal production in vivo. Variants in genes implicated in the homeostasis of this ratio may lead to a systemic or local increased Pi/PPi ratio, either by increasing the Pi concentration or by decreasing the PPi concentration, resulting in ectopic calcifications; conversely, variants may lead to a decreased Pi/PPi ratio, resulting in defective mineralization. Owing to the implication of common pathways and, occasionally, to some extent of clinical overlap, an accurate diagnosis and understanding of the pathophysiology of these disorders may be challenging. However, precise molecular characterization of these conditions not only facilitates their diagnosis, but also helps to gather evidence regarding the pathophysiology and phenotype-genotype correlation to improve medical care and develop innovative therapeutics.
Collapse
Affiliation(s)
- Arnaud Molin
- Université de Caen Normandie, UFR Santé, CHU Caen Normandie, BIOTARGEN UR 7450, Centre de Référence Maladies rares du métabolisme du calcium et du phosphate, Service de Génétique, F-14000, Caen, France.
| |
Collapse
|
10
|
Stumpf MJ, Winkler T, Siebigteroth M, Lenzen A, Weinhold L, Nickenig G, Hendig D, Skowasch D, Schahab N, Schaefer CA. Influence of pseudoxanthoma elasticum on the lipid profile and prognostic implications. VASA 2024; 53:352-357. [PMID: 39017644 DOI: 10.1024/0301-1526/a001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Background: Pseudoxanthoma elasticum (PXE) is a rare, inherited disease characterised by specific skin lesions, progressive loss of vision and early onset atherosclerosis. Atherosclerosis in PXE leads to an increased rate of vascular occlusion and severe intermittent claudication. Although genetically determined, the individual course of PXE is highly variable. Up to now, there is no sufficient parameter to identify individuals at risk of rapid disease progression. This present study focused the lipid profile of patients with PXE and its possible influence on the clinical severity of peripheral artery disease (PAD). Patients and methods: 112 patients with PXE were retrospectively screened. Patients without a complete lipid profile consisting of total cholesterol (TC), triglycerides (TGC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and Lipoprotein(a) (Lp[a]) where excluded as well as patients with already initiated lipid-lowering therapy. 52 patients met the inclusion criteria. An age-adjusted ordinal regression model was applied to determine the association of each lipid fraction with the severity of PAD assessed as Fontaine classification. Results: The lipid profile of patients with PXE was unremarkable (TGC: 135.8±105.8 mg/dl; TC: 172.5±44.4 mg/dl; HDL: 63.0±18.2 mg/dl; Lp[a]: 64.7±93.5 nmol/l). Ordinal regression showed a significant association of Lp(a) with the severity of PAD with an odds ratio of 1.01 (1.00-1.02; p = 0.004), whereas the other fractions of the lipid profile had no significant influence. Conclusions: This study provides the largest evaluation of blood lipids up to now and the first characterization of Lp(a) levels in patients with PXE. We were able to provide first evidence of a correlation between elevated levels of Lp(a) and the severity of PAD. The present results suggest that determination of Lp(a) in early stages of PXE could help to identify patients at risk of rapid disease progression and with the need of intensified walking exercise training.
Collapse
Affiliation(s)
- Max Jonathan Stumpf
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Tim Winkler
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Marit Siebigteroth
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Annemarie Lenzen
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Doris Hendig
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre North Rhine Westphalia, University Hospital of the Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Nadjib Schahab
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| | - Christian A Schaefer
- Department of Internal Medicine II, Cardiology, Pneumology, and Angiology, University Hospital Bonn, Germany
| |
Collapse
|
11
|
Harmsen IM, van den Beukel T, Kok M, Visseren FLJ, de Jong PA, Papapoulos SE, Spiering W. Cyclical Etidronate Reduces the Progression of Arterial Calcifications in Patients with Pseudoxanthoma Elasticum: A 6-Year Prospective Observational Study. J Clin Med 2024; 13:4612. [PMID: 39200754 PMCID: PMC11354836 DOI: 10.3390/jcm13164612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE), a rare genetic disorder presenting with slowly progressing calcification of various tissues, including the arteries, is caused by mutations in the ABCC6 gene that lead to the reduction of pyrophosphate, a natural inhibitor of calcification. We showed that, compared to a placebo, the cyclical administration of etidronate, a stable pyrophosphate analog, significantly reduced arterial calcification assessed by low-dose CT scans after one year. The aim of the present prospective, single center, observational cohort study was the assessment of the efficacy and safety of cyclical etidronate in patients treated for periods longer than one year. Methods: Seventy-three patients were followed for a median of 3.6 years without etidronate and 2.8 years with etidronate, and each patient served as their own control. Results: The median absolute yearly progression of total calcification volume during the period with etidronate (388 [83-838] µL) was significantly lower than that without etidronate (761 [362-1415] µL; p < 0.001). The rates of the relative progression of arterial calcification were 11.7% (95% CI: 9.6-13.9) without etidronate compared to 5.3% (95% CI: 3.7-7.0) with etidronate, after adjustment for confounders. Conclusions: The cyclical administration of etidronate for nearly 3 years significantly reduced the progression rate of arterial calcification in patients with PXE with pre-existing calcifications without any serious adverse effects.
Collapse
Affiliation(s)
- Iris M. Harmsen
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Tim van den Beukel
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Madeleine Kok
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Radiology & Nuclear Medicine, Rijnstate, 6815 AD Arnhem, The Netherlands
| | - Frank L. J. Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Socrates E. Papapoulos
- Center for Bone Quality, Department of Endocrinology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
12
|
Brampton C, Pomozi V, Le Corre Y, Zoll J, Kauffenstein G, Ma C, Hoffmann PR, Martin L, Le Saux O. Bone Marrow-Derived ABCC6 Is an Essential Regulator of Ectopic Calcification In Pseudoxanthoma Elasticum. J Invest Dermatol 2024; 144:1772-1783.e3. [PMID: 38367909 PMCID: PMC11260544 DOI: 10.1016/j.jid.2024.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Bio-Rad Laboratories, Hercules, California, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Yannick Le Corre
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Gilles Kauffenstein
- UMR INSERM 1260, Nano Regenerative Medicine, University of Strasbourg, Strasbourg, France
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France; CNRS 6015, UMR INSERM U1083, MITOVASC Laboratory, University of Angers, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
13
|
MacRae VE. The Adaptive Immune System: A New Pseudoxanthoma Elasticum Protagonist? J Invest Dermatol 2024; 144:1670-1672. [PMID: 38597853 DOI: 10.1016/j.jid.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Vicky E MacRae
- The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom; The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
14
|
Berard M, Chassain K, Méry C, Gillaizeau F, Carton T, Humeau H, Navasiolava N, Rocour S, Schurgers L, Kempf M, Martin L. Changes in the gut microbiota of pseudoxanthoma elasticum patients. Ann Dermatol Venereol 2024; 151:103290. [PMID: 39003978 DOI: 10.1016/j.annder.2024.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Pseudoxanthoma elasticum (PXE) is a rare autosomal disorder with a variable phenotype that may be modulated by environmental factors. Plasma vitamin K (VK) levels may be involved in the ectopic calcification process observed in PXE. Since VK2 is predominantly produced by the gut microbiota, we hypothesized that changes in the gut microbiota of PXE patients might exacerbate the calcification process and disease symptoms. METHODS Twenty PXE patients were included in the study and 60 gut microbiota profiles from the Biofortis laboratory database were used as controls. RESULTS The Rhodospirillaceae family was more abundant in the PXE group while the Sphingomonadaceae family was more abundant in the control group. In a PXE severity subgroup analysis, microbiota dispersion was lower in "severe" than in "non-severe" patients, which was confirmed by permutation multivariate analysis of variance at the phylum, family and genus ranks. However, no significant association was found in a model incorporating relative abundance of bacterial families, severity score, and different blood and fecal VK species. CONCLUSION These results suggest slight compositional changes in the gut microbiota of PXE patients. Further studies are needed to substantiate their impact on VK metabolism and the calcification process.
Collapse
Affiliation(s)
- M Berard
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France
| | - K Chassain
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France
| | - C Méry
- Biofortis SAS, 44800 Saint Herblain, France
| | | | - T Carton
- Biofortis SAS, 44800 Saint Herblain, France
| | - H Humeau
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France
| | - N Navasiolava
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France
| | - S Rocour
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France
| | - L Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Netherlands
| | - M Kempf
- Laboratory of Bacteriology, Dept. of Infectious Agents, Angers University Hospital, F-49000 Angers, France; Nantes University, Angers University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - L Martin
- National Reference Center for PXE (MAGEC Nord), Dept. of Dermatology, Angers University Hospital, F-49000 Angers, France; Angers University, MitoVasc (INSERM U1083, CNRS 6015), SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
15
|
Rubera I, Clotaire L, Laurain A, Destere A, Martin L, Duranton C, Leftheriotis G. A Plasma Pyrophosphate Cutoff Value for Diagnosing Pseudoxanthoma Elasticum. Int J Mol Sci 2024; 25:6502. [PMID: 38928212 PMCID: PMC11203691 DOI: 10.3390/ijms25126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare inherited systemic disease responsible for a juvenile peripheral arterial calcification disease. The clinical diagnosis of PXE is only based on a complex multi-organ phenotypic score and/or genetical analysis. Reduced plasma inorganic pyrophosphate concentration [PPi]p has been linked to PXE. In this study, we used a novel and accurate method to measure [PPi]p in one of the largest cohorts of PXE patients, and we reported the valuable contribution of a cutoff value to PXE diagnosis. Plasma samples and clinical records from two French reference centers for PXE (PXE Consultation Center, Angers, and FAVA-MULTI South Competent Center, Nice) were assessed. Plasma PPi were measured in 153 PXE and 46 non-PXE patients. The PPi concentrations in the plasma samples were determined by a new method combining enzymatic and ion chromatography approaches. The best match between the sensitivity and specificity (Youden index) for diagnosing PXE was determined by ROC analysis. [PPi]p were lower in PXE patients (0.92 ± 0.30 µmol/L) than in non-PXE patients (1.61 ± 0.33 µmol/L, p < 0.0001), corresponding to a mean reduction of 43 ± 19% (SD). The PPi cutoff value for diagnosing PXE in all patients was 1.2 µmol/L, with a sensitivity of 83.3% and a specificity of 91.1% (AUC = 0.93), without sex differences. In patients aged <50 years (i.e., the age period for PXE diagnosis), the cutoff PPi was 1.2 µmol/L (sensitivity, specificity, and AUC of 93%, 96%, and 0.97, respectively). The [PPi]p shows high accuracy for diagnosing PXE; thus, quantifying plasma PPi represents the first blood assay for diagnosing PXE.
Collapse
Affiliation(s)
- Isabelle Rubera
- University Côte d’Azur, CNRS, LP2M, Labex ICST, 06107 Nice, France; (I.R.); (L.C.); (A.L.); (G.L.)
| | - Laetitia Clotaire
- University Côte d’Azur, CNRS, LP2M, Labex ICST, 06107 Nice, France; (I.R.); (L.C.); (A.L.); (G.L.)
| | - Audrey Laurain
- University Côte d’Azur, CNRS, LP2M, Labex ICST, 06107 Nice, France; (I.R.); (L.C.); (A.L.); (G.L.)
| | - Alexandre Destere
- Pharmacology Department, Nice University Hospital, 06000 Nice, France
- FAVA-MULTI South Competence Center for Rare Arterial Calcifying Disease, Nice University Hospital, 06000 Nice, France
| | - Ludovic Martin
- PXE Reference Center, MAGEC Nord, Angers University Hospital, 49000 Angers, France;
| | - Christophe Duranton
- University Côte d’Azur, CNRS, LP2M, Labex ICST, 06107 Nice, France; (I.R.); (L.C.); (A.L.); (G.L.)
| | - Georges Leftheriotis
- University Côte d’Azur, CNRS, LP2M, Labex ICST, 06107 Nice, France; (I.R.); (L.C.); (A.L.); (G.L.)
- FAVA-MULTI South Competence Center for Rare Arterial Calcifying Disease, Nice University Hospital, 06000 Nice, France
| |
Collapse
|
16
|
Raming K, Künzel SH, Pfau M, Hendig D, Holz FG, Pfau K. Optic Disc Drusen in Pseudoxanthoma Elasticum Are Associated with the Extent of Bruch's Membrane Calcification. J Clin Med 2024; 13:3395. [PMID: 38929924 PMCID: PMC11204570 DOI: 10.3390/jcm13123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: To assess the frequency, extent, localization and potential progression of optic disc drusen (ODD) and the correlation with the angioid streak (AS) length and retinal atrophy in patients with pseudoxanthoma elasticum (PXE). Methods: This retrospective study included patient data from a dedicated PXE clinic at the Department of Ophthalmology, University of Bonn, Germany (observation period from February 2008 to July 2023). Two readers evaluated the presence, localization, and the extent of the ODD on fundus autofluorescence (FAF) imaging at baseline and the follow-up assessments. Additionally, we measured the length of the longest AS visible at baseline and follow-up and the area of atrophy at baseline, both on FAF. Results: A total of 150 eyes of 75 PXE patients (median age at baseline 51.8 years, IRQ 46.3; 57.5 years, 49 female) underwent retrospective analysis. At baseline, 23 of 75 patients exhibited ODD in a minimum of one eye, resulting in an ODD prevalence of 30.7% in our cohort of PXE patients. Among these, 14 patients showed monocular and 9 binocular ODD that were localized predominantly nasally (46.9%). During the observational period (mean 97.5 ± 44.7 months), only one patient developed de novo ODD in one eye and one other patient showed a progression in the size of the existing ODD. The group of patients with ODD had significantly longer ASs (median 7020 µm, IQR 4604; 9183, vs. AS length without ODD: median 4404 µm, IQR 3512; 5965, p < 0.001). No association with the size of the atrophy was found at baseline (p = 0.27). Conclusions: This study demonstrates a prevalence of ODD of 30.7%. ODD presence is associated with longer ASs (an indicator of the severity and extent of ocular Bruch's membrane calcification), suggesting that ODD formation is tightly related to ectopic calcification-possibly secondary to calcification of the lamina cribrosa. Prospective studies investigating the impact of ODD (in conjunction with intraocular pressure) on visual function in PXE warrant consideration.
Collapse
Affiliation(s)
- Kristin Raming
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany
| | | | - Maximilian Pfau
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Doris Hendig
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes, Center North Rhine-Westphalia, University Hospital of the Ruhr University of Bochum, 32545 Bad Oeynhausen, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany
| | - Kristina Pfau
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
17
|
Cheng Y, Ru J, Feng C, Liu X, Zeng H, Tan S, Chen X, Chen F, Lu BQ. Inorganic Pyrophosphate at Serum Concentration May Not Be Able to Inhibit Mineralization: A Study in Aqueous Solutions and Serum. ACS OMEGA 2024; 9:17334-17343. [PMID: 38645335 PMCID: PMC11025097 DOI: 10.1021/acsomega.3c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several μmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.
Collapse
Affiliation(s)
- Yuxuan Cheng
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
| | - Jing Ru
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
| | - Chaobo Feng
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xiaohao Liu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hua Zeng
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shuo Tan
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xi Chen
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Chen
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Bing-Qiang Lu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
18
|
Risseeuw S, Pilgrim MG, Bertazzo S, Brown CN, Csincsik L, Fearn S, Thompson RB, Bergen AA, ten Brink JB, Kortvely E, Spiering W, Ossewaarde–van Norel J, van Leeuwen R, Lengyel I. Bruch's Membrane Calcification in Pseudoxanthoma Elasticum: Comparing Histopathology and Clinical Imaging. OPHTHALMOLOGY SCIENCE 2024; 4:100416. [PMID: 38170125 PMCID: PMC10758992 DOI: 10.1016/j.xops.2023.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Purpose To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design Experimental study with clinicopathological correlation. Subjects and Controls Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Matthew G. Pilgrim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Connor N. Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lajos Csincsik
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Richard B. Thompson
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Arthur A. Bergen
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
19
|
Villa-Bellosta R. Vascular Calcification: A Passive Process That Requires Active Inhibition. BIOLOGY 2024; 13:111. [PMID: 38392329 PMCID: PMC10886409 DOI: 10.3390/biology13020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The primary cause of worldwide mortality and morbidity stems from complications in the cardiovascular system resulting from accelerated atherosclerosis and arterial stiffening. Frequently, both pathologies are associated with the pathological calcification of cardiovascular structures, present in areas such as cardiac valves or blood vessels (vascular calcification). The accumulation of hydroxyapatite, the predominant form of calcium phosphate crystals, is a distinctive feature of vascular calcification. This phenomenon is commonly observed as a result of aging and is also linked to various diseases such as diabetes, chronic kidney disease, and several genetic disorders. A substantial body of evidence indicates that vascular calcification involves two primary processes: a passive process and an active process. The physicochemical process of hydroxyapatite formation and deposition (a passive process) is influenced significantly by hyperphosphatemia. However, the active synthesis of calcification inhibitors, including proteins and low-molecular-weight inhibitors such as pyrophosphate, is crucial. Excessive calcification occurs when there is a loss of function in enzymes and transporters responsible for extracellular pyrophosphate metabolism. Current in vivo treatments to prevent calcification involve addressing hyperphosphatemia with phosphate binders and implementing strategies to enhance the availability of pyrophosphate.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- The Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
21
|
Arima T, Sugimoto K, Taniwaki T, Maeda K, Shibata Y, Tateyama M, Karasugi T, Tokunaga T, Sueyoshi T, Hisanaga S, Masuda T, Uehara Y, Yugami M, Matsushita K, Yonemitsu R, Kawakami J, Yoshimura N, Tanimura S, Kato H, Ito N, Inoue K, Bando K, Nakamura T, Miyamoto T. Cartilage tissues regulate systemic aging via ectonucleotide pyrophosphatase/phosphodiesterase 1 in mice. J Biol Chem 2024; 300:105512. [PMID: 38042486 PMCID: PMC10777000 DOI: 10.1016/j.jbc.2023.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Aging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice. We then established a cartilage-specific Enpp1 conditional knockout mouse (Enpp1 cKO) by generating Enpp1 flox mice and crossing them with cartilage-specific type 2 collagen Cre mice. Relative to WT controls, Enpp1 cKO mice exhibited phenotypes resembling human aging, such as short life span, ectopic calcifications, and osteoporosis, as well as significantly lower serum pyrophosphate levels. We also observed significant weight loss and worsening of osteoporosis in Enpp1 cKO mice under phosphate overload conditions, similar to global Enpp1-deficient mice. Aging phenotypes seen in Enpp1 cKO mice under phosphate overload conditions were rescued by a low vitamin D diet, even under high phosphate conditions. These findings suggest overall that cartilage tissue plays an important role in regulating systemic aging via Enpp1.
Collapse
Affiliation(s)
- Takahiro Arima
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Sugimoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Taniwaki
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Maeda
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuto Shibata
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Tateyama
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanao Sueyoshi
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Hisanaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tetsuro Masuda
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Yugami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kozo Matsushita
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuji Yonemitsu
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Kawakami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoto Yoshimura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuntaro Tanimura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takayuki Nakamura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
22
|
Yao R, Yang F, Zhang Q, Yu T, Yu Y, Chang G, Wang X. Clinical and Molecular Characterization of a Patient with Generalized Arterial Calcification of Infancy Caused by Rare ABCC6 Mutation. J Pers Med 2023; 14:54. [PMID: 38248755 PMCID: PMC10817667 DOI: 10.3390/jpm14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Generalized arterial calcification of infancy (GACI) is a rare autosomal-recessive disease characterized by extensive arterial calcification in infancy, with clinical manifestations such as arterial stenoses and heart failure. The ENPP1 inactivation mutation has been identified as a potential defect in most of the cases of GACI, while mutations in ABCC6 are demonstrated in patients who are genotyped as pseudoxanthoma elasticum and only limited cases of GACI are reported. Whole-exome sequencing was applied for the detection of pathogenic variants. Copy-number variants of pathogenic genes were also evaluated through a bioinformatic process and were further validated by real-time quantitative PCR. In this report, we described the clinical information and treatment of a patient with extensive arterial calcification. We have identified the underlying cause as biallelic mutations in ABCC6 (NM_00117: exon30, c.4223_4227dupAGCTC p.(Leu1410Serfs*56)) and a unique exonic deletion that spans from the first to the fourth exons of ABCC6 (chr16:16313388-16330869)). This discovery was made by utilizing a combined genetic testing approach. With the review of previously reported GACI patients with ABCC6 mutation, our work contributed to enriching the mutation spectrum of GACI and providing further information on this rare form of inherited disorder.
Collapse
Affiliation(s)
- Ruen Yao
- Department of Medical Genetics and Antenatal Diagnostic Center, Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (R.Y.)
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Yu
- Department of Medical Genetics and Antenatal Diagnostic Center, Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (R.Y.)
| | - Guoying Chang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiumin Wang
- Clinical Research Ward, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (F.Y.)
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
23
|
Matera I, Miglionico R, Abruzzese V, Marchese G, Ventola GM, Castiglione Morelli MA, Bisaccia F, Ostuni A. A Regulator Role for the ATP-Binding Cassette Subfamily C Member 6 Transporter in HepG2 Cells: Effect on the Dynamics of Cell-Cell and Cell-Matrix Interactions. Int J Mol Sci 2023; 24:16391. [PMID: 38003580 PMCID: PMC10670978 DOI: 10.3390/ijms242216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.
Collapse
Affiliation(s)
- Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Rocchina Miglionico
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (G.M.); (G.M.V.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | | | | | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| |
Collapse
|
24
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedüs T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. Nat Commun 2023; 14:6868. [PMID: 37891162 PMCID: PMC10611759 DOI: 10.1038/s41467-023-42586-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.
Collapse
Affiliation(s)
- Naoto Soya
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Haijin Xu
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Ariel Roldan
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Haoxin Ye
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Aiswarya Premchandar
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - John Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Tamás Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
25
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedus T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563107. [PMID: 37905074 PMCID: PMC10614980 DOI: 10.1101/2023.10.19.563107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.
Collapse
|
26
|
Jacobs IJ, Li Q. Novel Treatments for PXE: Targeting the Systemic and Local Drivers of Ectopic Calcification. Int J Mol Sci 2023; 24:15041. [PMID: 37894722 PMCID: PMC10606721 DOI: 10.3390/ijms242015041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of age, before the development of ectopic calcification, were treated with ETD, Mino, or both for 18 weeks. Micro-computed tomography, histopathologic examination, and quantification of the calcium content in Abcc6-/- mice treated with both ETD and Mino revealed further reduced calcification than either treatment alone. The effects were associated with reduced serum alkaline phosphatase activity without changes in plasma PPi concentrations. These results suggest that ETD and Mino combination therapy might provide an effective therapeutic approach for PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Biomedical Sciences MS Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Sacconi R, Tombolini B, Zucchiatti I, Servillo A, Menean M, Alessandrini GF, Querques L, Prascina F, Charbel Issa P, Bandello F, Querques G. Subclinical Angioid Streaks with Pseudodrusen: A New Phenotype of Age-Related Macular Degeneration. Ophthalmol Ther 2023; 12:2729-2743. [PMID: 37542615 PMCID: PMC10441970 DOI: 10.1007/s40123-023-00778-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION To describe subclinical angioid streaks (AS) as a frequent, peculiar age-related macular degeneration (AMD) phenotype, comparing features of eyes with subclinical AS with those of eyes with AMD without AS. METHODS This was a retrospective, observational study. Among a patient cohort with AMD, we selected patients without known causes for AS whose eyes showed signs of angioid streaks (AS) on structural optical coherence tomography (OCT) but not on fundus examination. Selected OCT features of AS were Bruch's membrane (BM) breaks and large BM dehiscences. RESULTS Among 543 eyes of 274 patients with AMD (mean ± standard deviation: 82 ± 7 years), 73 eyes of 46 patients (81 ± 7 years; p = 0.432) showed AS features on OCT (OCT AS) that were not visible on fundus examination. Estimated prevalence of subclinical age-related AS was 13.4% (95% confidence interval 10.3-16.3%) in this AMD population. Fifty-three eyes (73%) with AS features were affected by peripapillary atrophy, often with a "petaloid-like" pattern, similar to typical features of AS disease. Almost all cases (97%) presented reticular pseudodrusen (RPD), with (41%) or without (59%) drusen showing a significant difference in RPD prevalence in OCT AS eyes in comparison to AMD eyes without subclinical AS using generalized estimating equations (P < 0.001). Among the 73 subclinical AS cases, 71 were affected by late AMD (57 with macular neovascularization, 14 with geographic atrophy), showing a more advanced AMD stage in comparison with AMD eyes without subclinical AS (P < 0.001). The following OCT features were disclosed: BM breaks in 100% of cases and BM dehiscences in 37%. CONCLUSIONS Subclinical AS in eyes with AMD is a peculiar phenotype of the disease, with features suggesting a primary involvement of Bruch's membrane and clinical similarities with mild, late-onset pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- Riccardo Sacconi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Tombolini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Zucchiatti
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Servillo
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Menean
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lea Querques
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Prascina
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Francesco Bandello
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Querques
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
28
|
Hardcastle M. QnAs with Piet Borst: Winner of the 2023 Lasker-Koshland Special Achievement Award in Medical Science. Proc Natl Acad Sci U S A 2023; 120:e2313668120. [PMID: 37732753 PMCID: PMC10523498 DOI: 10.1073/pnas.2313668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
|
29
|
Li Y, Bracha P, Aleman TS, Brucker AJ. ADULT-ONSET BEST1 -VITELLIFORM DYSTROPHY ASSOCIATED WITH ANGIOID STREAK-LIKE CHANGES IN TWO SIBLINGS. Retin Cases Brief Rep 2023; 17:256-260. [PMID: 34001763 DOI: 10.1097/icb.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE To describe the association between autosomal dominant Best disease and peripapillary angioid streak-like changes. METHODS Case report of two siblings. RESULTS A 76-year-old White man was referred for evaluation of bilateral macular changes and worsening visual distortion over the preceding 2 years. Best-corrected visual acuity measured 20/30 in the right eye and 20/80 in the left eye. Funduscopic examination revealed multifocal yellow lesions in the posterior pole that were hyperautofluorescent on short-wavelength excitation and corresponded with subretinal hyperreflective material on optical coherence tomography. The posterior pole examination was interesting because of the juxtapapillary involvement of the vitelliform lesions and the presence of bilateral peripapillary angioid streak-like changes despite no history of conditions associated with angioid streaks. On further workup, an electrooculogram revealed reduced Arden ratios and a known heterozygous missense mutation in BEST1 (c.903T>G; p .D301E) was found. The patient's 69-year-old younger brother was brought in and found to have a remarkably similar phenotype, including the presence of angioid streak-like changes associated with the same BEST1 mutation. CONCLUSION These two cases demonstrate the possibility of late-onset multifocal vitelliform disease due to dominantly inherited BEST1 . A consistent phenotype in this family with macular lesions extending into the peripapillary region, associated with angioid streak-like changes, suggests susceptibility of this region to changes in dominant BEST1 -vitelliform macular dystrophy.
Collapse
Affiliation(s)
- Yafeng Li
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania. Dr. P. Bracha is now at Gundersen Eye Institute, Gundersen Health System, La Crosse, Wisconsin
| | | | | | | |
Collapse
|
30
|
Plümers R, Lindenkamp C, Osterhage MR, Knabbe C, Hendig D. Matrix Metalloproteinases Contribute to the Calcification Phenotype in Pseudoxanthoma Elasticum. Biomolecules 2023; 13:672. [PMID: 37189419 PMCID: PMC10135689 DOI: 10.3390/biom13040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Ectopic calcification and dysregulated extracellular matrix remodeling are prominent hallmarks of the complex heterogenous pathobiochemistry of pseudoxanthoma elasticum (PXE). The disease arises from mutations in ABCC6, an ATP-binding cassette transporter expressed predominantly in the liver. Neither its substrate nor the mechanisms by which it contributes to PXE are completely understood. The fibroblasts isolated from PXE patients and Abcc6-/- mice were subjected to RNA sequencing. A group of matrix metalloproteinases (MMPs) clustering on human chromosome 11q21-23, respectively, murine chromosome 9, was found to be overexpressed. A real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescent staining confirmed these findings. The induction of calcification by CaCl2 resulted in the elevated expression of selected MMPs. On this basis, the influence of the MMP inhibitor Marimastat (BB-2516) on calcification was assessed. PXE fibroblasts (PXEFs) exhibited a pro-calcification phenotype basally. PXEF and normal human dermal fibroblasts responded with calcium deposit accumulation and the induced expression of osteopontin to the addition of Marimastat to the calcifying medium. The raised MMP expression in PXEFs and during cultivation with calcium indicates a correlation of ECM remodeling and ectopic calcification in PXE pathobiochemistry. We assume that MMPs make elastic fibers accessible to controlled, potentially osteopontin-dependent calcium deposition under calcifying conditions.
Collapse
Affiliation(s)
| | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
31
|
Khursigara G, Huertas P, Wenkert D, O'Brien K, Sabbagh Y. Effects of food, fasting, and exercise on plasma pyrophosphate levels and ENPP1 activity in healthy adults. Bone 2023; 171:116750. [PMID: 37003563 DOI: 10.1016/j.bone.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Inorganic pyrophosphate (PPi) is highly regulated as it plays a critical role in the regulation of physiological mineralization. Dysregulation of plasma PPi is associated with skeletal hypomineralization and pathogenic mineralization in soft connective tissue, arteries, and heart valves. There is no standard approach to measuring PPi, making it difficult to establish PPi as a biomarker of mineralization disorders. This study aims to determine the impact of time of day, meals, or exercise on plasma PPi homeostasis using a highly sensitive PPi assay. METHODS In this single-center trial, a clinical laboratory improvement amendment (CLIA) validated modified sulfurylase-based adenosine 5-triphosphate (ATP) assay was used to measure PPi levels throughout the day in 10 healthy adults under 3 conditions; normal diet (non-fasting), fasting, and normal diet with exercise. Serum ectonucleotide pyrophosphatase/phosphodiesterase 1 activity (ENPP1; an enzyme that produces PPi) was also measured to determine whether these conditions influence PPi levels through ENPP1 activity. RESULTS There is a circadian increase in mean PPi levels under fasting and non-fasting conditions between 8 am and 6 pm, followed by a rapid return to baseline overnight. A circadian increase in ENPP1 activity was also measured under fasting but was lost under non-fasting conditions. Meals increased the individual variability of PPi levels when compared to the same individual fasting. PPi levels and ENPP1 activity exhibited a short-term increase after intense exercise. We found PPi ranges from 1465 nM to 2969 nM (mean 2164 nM) after fasting overnight. Within this range, there was lower intra-subject variability in PPi, suggesting that each individual has a uniquely regulated normal PPi range. CONCLUSION Plasma levels of PPi can be reliably measured after an overnight fast and show promise as a biomarker of mineralization disorders.
Collapse
Affiliation(s)
- Gus Khursigara
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America.
| | - Pedro Huertas
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Deborah Wenkert
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Kevin O'Brien
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| |
Collapse
|
32
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
33
|
Ralph D, Levine M, Millán JL, Uitto J, Li Q. Weighing the Evidence for the Roles of Plasma Versus Local Pyrophosphate in Ectopic Calcification Disorders. J Bone Miner Res 2023; 38:457-463. [PMID: 36807615 PMCID: PMC10365072 DOI: 10.1002/jbmr.4791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Ectopic calcification is characterized by inappropriate deposition of calcium mineral in nonskeletal connective tissues and can cause significant morbidity and mortality, particularly when it affects the cardiovascular system. Identification of the metabolic and genetic determinants of ectopic calcification could help distinguish individuals at the greatest risk of developing these pathological calcifications and could guide development of medical interventions. Inorganic pyrophosphate (PPi ) has long been recognized as the most potent endogenous inhibitor of biomineralization. It has been intensively studied as both a marker and a potential therapeutic for ectopic calcification. Decreased extracellular concentrations of PPi have been proposed to be a unifying pathophysiological mechanism for disorders of ectopic calcification, both genetic and acquired. However, are reduced plasma concentrations of PPi a reliable predictor of ectopic calcification? This perspective article evaluates the literature in favor and against a pathophysiological role of plasma versus tissue PPi dysregulation as a determinant of, and as a biomarker for, ectopic calcification. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Levine
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
35
|
Lundkvist S, Niaziorimi F, Szeri F, Caffet M, Terry SF, Johansson G, Jansen RS, van de Wetering K. A new enzymatic assay to quantify inorganic pyrophosphate in plasma. Anal Bioanal Chem 2023; 415:481-492. [PMID: 36400967 PMCID: PMC9839608 DOI: 10.1007/s00216-022-04430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Inorganic pyrophosphate (PPi) is a crucial extracellular mineralization regulator. Low plasma PPi concentrations underlie the soft tissue calcification present in several rare hereditary mineralization disorders as well as in more common conditions like chronic kidney disease and diabetes. Even though deregulated plasma PPi homeostasis is known to be linked to multiple human diseases, there is currently no reliable assay for its quantification. We here describe a PPi assay that employs the enzyme ATP sulfurylase to convert PPi into ATP. Generated ATP is subsequently quantified by firefly luciferase-based bioluminescence. An internal ATP standard was used to correct for sample-specific interference by matrix compounds on firefly luciferase activity. The assay was validated and shows excellent precision (< 3.5%) and accuracy (93-106%) of PPi spiked into human plasma samples. We found that of several anticoagulants tested only EDTA effectively blocked conversion of ATP into PPi in plasma after blood collection. Moreover, filtration over a 300,000-Da molecular weight cut-off membrane reduced variability of plasma PPi and removed ATP present in a membrane-enclosed compartment, possibly platelets. Applied to plasma samples of wild-type and Abcc6-/- rats, an animal model with established low circulating levels of PPi, the new assay showed lower variability than the assay that was previously in routine use in our laboratory. In conclusion, we here report a new and robust assay to determine PPi concentrations in plasma, which outperforms currently available assays because of its high sensitivity, precision, and accuracy.
Collapse
Affiliation(s)
- Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
| | - Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | - Gunnar Johansson
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA.
| |
Collapse
|
36
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
37
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
39
|
Szeri F, Miko A, Navasiolava N, Kaposi A, Verschuere S, Molnar B, Li Q, Terry SF, Boraldi F, Uitto J, van de Wetering K, Martin L, Quaglino D, Vanakker OM, Tory K, Aranyi T. The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals. Hum Mutat 2022; 43:1872-1881. [PMID: 36317459 PMCID: PMC9772137 DOI: 10.1002/humu.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Agnes Miko
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nastassia Navasiolava
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Ambrus Kaposi
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Beatrix Molnar
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy,Interuniversity Consortium for Biotechnologies (CIB), Italy
| | | | - Kalman Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Molecular Biology, Semmelweis University, Budapest, Hungary.,Corresponding author:
| |
Collapse
|
40
|
Soma K, Watanabe K, Izumi M. Anticalcification effects of DS-1211 in pseudoxanthoma elasticum mouse models and the role of tissue-nonspecific alkaline phosphatase in ABCC6-deficient ectopic calcification. Sci Rep 2022; 12:19852. [PMID: 36400944 PMCID: PMC9674622 DOI: 10.1038/s41598-022-23892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a multisystem, genetic, ectopic mineralization disorder with no effective treatment. Inhibition of tissue-nonspecific alkaline phosphatase (TNAP) may prevent ectopic soft tissue calcification by increasing endogenous pyrophosphate (PPi). This study evaluated the anticalcification effects of DS-1211, an orally administered, potent, and highly selective small molecule TNAP inhibitor, in mouse models of PXE. Calcium content in vibrissae was measured in KK/HlJ and ABCC6-/- mice after DS-1211 administration for 13-14 weeks. Pharmacokinetic and pharmacodynamic effects of DS-1211 were evaluated, including plasma alkaline phosphatase (ALP) activity and biomarker changes in PPi and pyridoxal-phosphate (PLP). Anticalcification effects of DS-1211 through TNAP inhibition were further evaluated in ABCC6-/- mice with genetically reduced TNAP activity, ABCC6-/-/TNAP+/+ and ABCC6-/-/TNAP+/-. In KK/HlJ and ABCC6-/- mouse models, DS-1211 inhibited plasma ALP activity in a dose-dependent manner and prevented progression of ectopic calcification compared with vehicle-treated mice. Plasma PPi and PLP increased dose-dependently with DS-1211 in ABCC6-/- mice. Mice with ABCC6-/-/TNAP+/- phenotype had significantly less calcification and higher plasma PPi and PLP than ABCC6-/-/TNAP+/+ mice. TNAP plays an active role in pathomechanistic pathways of dysregulated calcification, demonstrated by reduced ectopic calcification in mice with lower TNAP activity. DS-1211 may be a potential therapeutic drug for PXE.
Collapse
Affiliation(s)
- Kaori Soma
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Kengo Watanabe
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Masanori Izumi
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| |
Collapse
|
41
|
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat 2022; 43:1162-1182. [PMID: 35642569 PMCID: PMC9357071 DOI: 10.1002/humu.24418] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily comprises membrane proteins that efflux various substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 human disorders or phenotypes with Mendelian inheritance, including cystic fibrosis, adrenoleukodystrophy, retinal degeneration, cholesterol, and bile transport defects. To provide tools to study the function of human ABC transporters we compiled data from multiple genomics databases. We analyzed ABC gene conservation within human populations and across vertebrates and surveyed phenotypes of ABC gene mutations in mice. Most mouse ABC gene disruption mutations have a phenotype that mimics human disease, indicating they are applicable models. Interestingly, several ABCA family genes, whose human function is unknown, have cholesterol level phenotypes in the mouse. Genome-wide association studies confirm and extend ABC traits and suggest several new functions to investigate. Whole-exome sequencing of tumors from diverse cancer types demonstrates that mutations in ABC genes are not common in cancer, but specific genes are overexpressed in select tumor types. Finally, an analysis of the frequency of loss-of-function mutations demonstrates that many human ABC genes are essential with a low level of variants, while others have a higher level of genetic diversity.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Translational Genomics, National Cancer Institute, Gaithersburg, Maryland 21702
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, 10032
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| |
Collapse
|
42
|
Paganelli A, Righi V, Tarentini E, Magnoni C. Current Knowledge in Skin Metabolomics: Updates from Literature Review. Int J Mol Sci 2022; 23:ijms23158776. [PMID: 35955911 PMCID: PMC9369191 DOI: 10.3390/ijms23158776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolomic profiling is an emerging field consisting of the measurement of metabolites in a biological system. Since metabolites can vary in relation to different stimuli, specific metabolic patterns can be closely related to a pathological process. In the dermatological setting, skin metabolomics can provide useful biomarkers for the diagnosis, prognosis, and therapy of cutaneous disorders. The main goal of the present review is to present a comprehensive overview of the published studies in skin metabolomics. A search for journal articles focused on skin metabolomics was conducted on the MEDLINE, EMBASE, Cochrane, and Scopus electronic databases. Only research articles with electronically available English full text were taken into consideration. Studies specifically focused on cutaneous microbiomes were also excluded from the present search. A total of 97 papers matched all the research criteria and were therefore considered for the present work. Most of the publications were focused on inflammatory dermatoses and immune-mediated cutaneous disorders. Skin oncology also turned out to be a relevant field in metabolomic research. Only a few papers were focused on infectious diseases and rarer genetic disorders. All the major metabolomic alterations published so far in the dermatological setting are described extensively in this review.
Collapse
Affiliation(s)
- Alessia Paganelli
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-059-4222347
| | - Valeria Righi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Elisabetta Tarentini
- Servizio Formazione, Ricerca e Innovazione, Modena University Hospital, 41124 Modena, Italy
| | - Cristina Magnoni
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| |
Collapse
|
43
|
O’Brien C, Khursigara G, Huertas P, Leiro B, Molloy L, Nester C. Lifelong impact of ENPP1 Deficiency and the early onset form of ABCC6 Deficiency from patient or caregiver perspective. PLoS One 2022; 17:e0270632. [PMID: 35895733 PMCID: PMC9328542 DOI: 10.1371/journal.pone.0270632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) and ATP-binding cassette subfamily C member 6 (ABCC6) proteins play a prominent role in inhibiting ectopic calcification and arterial stenosis. Patients with ENPP1 Deficiency or infant onset ABCC6 Deficiency often present with pathological calcification, narrowed blood vessels, multiorgan dysfunction and high infant mortality. The heterogenous presentation and progression is well documented. Our objective was to characterize how these morbidities lead to burden of illness and poor quality of life across ages from the patient/caregiver perspective. Patients/caregivers were interviewed via phone using Institutional Review Board–approved questionnaires. Patient-reported outcomes were collected via validated instruments. Thirty-one caregivers and 7 patients participated: infant onset ABCC6 Deficiency, n = 6 (infants/children); ENPP1 Deficiency, n = 32 (13 infants, 12 children, 7 adults). ENPP1 and ABCC6-deficient children aged <8 years and aged 8–18 years reported poor school functioning (0.69 vs 0.72 effect size, respectively) and poor physical health (0.88 vs 1, respectively). In the total ENPP1 cohort, 72% (23/32) reported bone/joint pain and/or mobility/fatigue issues. Three of seven ENPP1-deficient adults reported moderate to severe pain (>4), as measured by the Brief Pain Inventory (BPI), that interfered with daily activities despite pain medication. Top reported burdens for caregivers of infants with ABCC6/ENPP1 Deficiencies included heart-related issues and hospitalizations. Treatment/medications, and hearing loss were the highest burdens reported by caregivers/families of the pediatric ENPP1 Deficiency cohort, whereas adults reported bone/joint pain and mobility impairment as the greatest burdens. Individuals with ENPP1 Deficiency or infant onset ABCC6 Deficiency experience lifelong morbidity causing substantial physical and emotional burden to patients/caregivers.
Collapse
Affiliation(s)
| | - Gus Khursigara
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
| | - Pedro Huertas
- Mirror Neuron Partners LLC and Harvard–MIT Program in Health Sciences and Technology, Boston, Massachusetts, United States of America
| | - Beth Leiro
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
| | - Liz Molloy
- GACI Global, Argyle, Texas, United States of America
| | - Catherine Nester
- Inozyme Pharma Inc, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Laurain A, Rubera I, Razzouk-Cadet M, Bonnafous S, Albuquerque M, Paradis V, Patouraux S, Duranton C, Lesaux O, Lefthériotis G, Tran A, Anty R, Gual P, Iannelli A, Favre G. Arterial Calcifications in Patients with Liver Cirrhosis Are Linked to Hepatic Deficiency of Pyrophosphate Production Restored by Liver Transplantation. Biomedicines 2022; 10:1496. [PMID: 35884801 PMCID: PMC9312703 DOI: 10.3390/biomedicines10071496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is associated with arterial calcification (AC). Since the liver is a source of inorganic pyrophosphate (PPi), an anti-calcifying compound, we investigated the relationship between plasma PPi ([PPi]pl), liver fibrosis, liver function, AC, and the hepatic expression of genes regulating PPi homeostasis. To that aim, we compared [PPi]pl before liver transplantation (LT) and 3 months after LT. We also assessed the expression of four key regulators of PPi in liver tissues and established correlations between AC, and scores of liver fibrosis and liver failure in these patients. LT candidates with various liver diseases were included. AC scores were assessed in coronary arteries, abdominal aorta, and aortic valves. Liver fibrosis was evaluated on liver biopsies and from non-invasive tests (FIB-4 and APRI scores). Liver functions were assessed by measuring serum albumin, ALBI, MELD, and Pugh−Child scores. An enzymatic assay was used to dose [PPi]pl. A group of patients without liver alterations from a previous cohort provided a control group. Gene expression assays were performed with mRNA extracted from liver biopsies and compared between LT recipients and the control individuals. [PPi]pl negatively correlated with APRI (r = −0.57, p = 0.001, n = 29) and FIB-4 (r = −0.47, p = 0.006, n = 29) but not with interstitial fibrosis index from liver biopsies (r = 0.07, p = 0.40, n = 16). Serum albumin positively correlated with [PPi]pl (r = 0.71; p < 0.0001, n = 20). ALBI, MELD, and Pugh−Child scores correlated negatively with [PPi]pl (r = −0.60, p = 0.0005; r = −0.56, p = 0.002; r = −0.41, p = 0.02, respectively, with n = 20). Liver fibrosis assessed on liver biopsies by FIB-4 and by APRI positively correlated with coronary AC (r = 0.51, p = 0.02, n = 16; r = 0.58, p = 0.009, n = 20; r = 0.41, p = 0.04, n = 20, respectively) and with abdominal aorta AC (r = 0.50, p = 0.02, n = 16; r = 0.67, p = 0.002, n = 20; r = 0.61, p = 0.04, n = 20, respectively). FIB-4 also positively correlated with aortic valve calcification (r = 0.40, p = 0.046, n = 20). The key regulator genes of PPi production in liver were lower in patients undergoing liver transplantation as compared to controls. Three months after surgery, serum albumin levels were restored to physiological levels (40 [37−44] vs. 35 [30−40], p = 0.009) and [PPi]pl was normalized (1.40 [1.07−1.86] vs. 0.68 [0.53−0.80] µmol/L, p = 0.0005, n = 12). Liver failure and/or fibrosis correlated with AC in several arterial beds and were associated with low plasma PPi and dysregulation of key proteins involved in PPi homeostasis. Liver transplantation normalized these parameters.
Collapse
Affiliation(s)
- Audrey Laurain
- Department of Nephrology, Pasteur 1 University Hospital, 06001 Nice, France;
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | - Isabelle Rubera
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | | | - Stéphanie Bonnafous
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Miguel Albuquerque
- Pathology Department, Beaujon University Hospital, AP-HP, 92110 Clichy, France; (M.A.); (V.P.)
- Inserm U1149, Beaujon University Hospital, 92110 Clichy, France
| | - Valérie Paradis
- Pathology Department, Beaujon University Hospital, AP-HP, 92110 Clichy, France; (M.A.); (V.P.)
- Inserm U1149, Beaujon University Hospital, 92110 Clichy, France
| | - Stéphanie Patouraux
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Pathology Department, Pasteur 1 University Hospital, 06000 Nice, France
| | - Christophe Duranton
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | - Olivier Lesaux
- Department Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5534, USA;
| | - Georges Lefthériotis
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
- Department of Vascular Medicine and Surgery, Pasteur 1 University Hospital, 06000 Nice, France
| | - Albert Tran
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Rodolphe Anty
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Philippe Gual
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
| | - Antonio Iannelli
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Guillaume Favre
- Department of Nephrology, Pasteur 1 University Hospital, 06001 Nice, France;
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| |
Collapse
|
45
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
46
|
Kato H, Hidaka N, Koga M, Kinoshita Y, Makita N, Nangaku M, Ito N. Radiological evaluation of pseudofracture after the administration of asfotase alfa in an adult with benign prenatal hypophosphatasia: A case report. Bone Rep 2022; 16:101163. [PMID: 35024386 PMCID: PMC8728307 DOI: 10.1016/j.bonr.2021.101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
Hypophosphatasia (HPP) is a congenital disorder with decreased activity of tissue-nonspecific alkaline phosphatase. Asfotase alfa is the only treatment approved for HPP and improves the impairment of bone mineralization. Although several previous studies have reported the efficacy of asfotase alfa to treat fractures and pseudofractures in patients with HPP, there are only a few reports with a detailed description of the healing process. In this case report, we present an 18-year-old female patient with benign prenatal HPP who received asfotase alfa to treat her pseudofracture. At the age of 17, a pseudofracture developed in her left tibia after repetitive gymnastic exercise for months. Following observation over a year, she was referred to our department. X-ray images indicated a narrow radiolucent band in the mid-diaphysis of her left tibia, and bone scintigraphy showed nuclide accumulation in the same region. Replacement therapy with asfotase alfa was started, resulting in pain relief in two months, and the disappearance of nuclide accumulation on bone scintigraphy and union of the pseudofracture on X-ray after two years. This is the first case report describing the detailed pseudofracture healing process in a patient with benign prenatal HPP initiating asfotase alfa.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Japan
| |
Collapse
|
47
|
Kato H, Ansh AJ, Lester ER, Kinoshita Y, Hidaka N, Hoshino Y, Koga M, Taniguchi Y, Uchida T, Yamaguchi H, Niida Y, Nakazato M, Nangaku M, Makita N, Takamura T, Saito T, Braddock DT, Ito N. Identification of ENPP1 Haploinsufficiency in Patients With Diffuse Idiopathic Skeletal Hyperostosis and Early-Onset Osteoporosis. J Bone Miner Res 2022; 37:1125-1135. [PMID: 35340077 PMCID: PMC9177665 DOI: 10.1002/jbmr.4550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Anenya J. Ansh
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Taisuke Uchida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Yamaguchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Taku Saito
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
48
|
Kawai K, Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Ghosh S, Kutys R, Virmani R, Finn AV. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:1261-1276. [PMID: 35677616 PMCID: PMC9167688 DOI: 10.2147/jmdh.s251861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
It is very unusual to see evidence of arterial calcification in infants and children, and when detected, genetic disorders of calcium metabolism should be suspected. Generalized arterial calcification of infancy (GACI) is a hereditary disease, which is characterized by severe arterial calcification of medium sized arteries, mostly involving the media with marked intimal proliferation and ectopic mineralization of the extravascular tissues. It is caused by inactivating variants in genes encoding either ENPP1, in a majority of cases (70–75%), or ABCC6, in a minority (9–10%). Despite similar histologic appearances between ENPP1 and ABCC6 deficiencies, including arterial calcification, organ calcification, and cardiovascular calcification, mortality is higher in subjects carrying the ENPP1 versus ABCC6 variants (40% vs 10%, respectively). Overall mortality in individuals with GACI is high (55%) before the age of 6 months, with 24.4% dying in utero or being stillborn. Rare cases show spontaneous regression with age, while others who survive into adulthood often manifest musculoskeletal complications (osteoarthritis and interosseous membrane ossification), enthesis mineralization, and cervical spine fusion. Despite recent advances in the understanding of the genetic mechanisms underlying this disease, there is still no ideal therapy for the resolution of vascular calcification in GACI. Although bisphosphonates with anti-calcification properties have been commonly used for the treatment of CAGI, their benefit is controversial, with favorable results reported at one year and questionable benefit with delayed initiation of treatment. Enzyme replacement therapy with administration of recombinant form of ENPP1 prevents calcification and mortality, improves hypertension and cardiac function, and prevents intimal proliferation and osteomalacia in mouse models of ENPP1 deficiency. Therefore, newer treatments targeting genes are on the horizon. In this article, we review up to date knowledge of the understanding of GACI, its clinical, pathologic, and etiologic understanding and treatment in support of more comprehensive care of GACI patients.
Collapse
Affiliation(s)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD, USA
- University of Maryland, School of Medicine, Baltimore, MD, USA
- Correspondence: Aloke V Finn, 19 Firstfield Road, Gaithersburg, MD, 20878, USA, Tel +301.208.3570, Fax +301.208.3745, Email
| |
Collapse
|
49
|
Abruzzese V, Sukowati CHC, Tiribelli C, Matera I, Ostuni A, Bisaccia F. The Expression Level of ABCC6 Transporter in Colon Cancer Cells Correlates with the Activation of Different Intracellular Signaling Pathways. PATHOPHYSIOLOGY 2022; 29:173-186. [PMID: 35645325 PMCID: PMC9149812 DOI: 10.3390/pathophysiology29020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3'-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers.
Collapse
Affiliation(s)
- Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (C.H.C.S.); (C.T.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (C.H.C.S.); (C.T.)
| | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| |
Collapse
|
50
|
Pelttari S, Väärämäki S, Vanakker O, Verschuere S, Uusitalo H, Huhtala H, Hinkka T, Pörsti I, Nevalainen PI. Various vascular malformations are prevalent in Finnish pseudoxanthoma elasticum (PXE) patients: a national registry study. Orphanet J Rare Dis 2022; 17:185. [PMID: 35525997 PMCID: PMC9077871 DOI: 10.1186/s13023-022-02341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pseudoxanthoma elasticum (PXE, OMIM# 264800) is an inborn error of metabolism causing ectopic soft tissue calcification due to low plasma pyrophosphate concentration. We aimed to assess the prevalence of PXE in Finland and to characterize the Finnish PXE population. A nationwide registry search was performed to identify patients with ICD-10 code Q82.84. Information was gathered from available medical records which were requisitioned from hospitals and health centers. Misdiagnosed patients and patients with insufficient records were excluded. Results The prevalence of PXE in Finland was 1:260,000 with equal sex distribution. Patients with high conventional cardiovascular risk had more visual and vascular complications than patients with low risk. Four patients (19%) had at least one vascular malformation. A high proportion (33%) of ABCC6 genotypes were of the common homozygous c.3421C > T, p.Arg1141Ter variant. Nine other homozygous or compound heterozygous allelic variants were found. Conclusions The prevalence of diagnosed PXE appears to be lower in Finland than in estimates from other countries. Decreased visual acuity is the most prevalent complication. We suggest that various vascular malformations may be an unrecognized feature of PXE.
Collapse
Affiliation(s)
- Saku Pelttari
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | - Suvi Väärämäki
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannu Uusitalo
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Tero Hinkka
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Teiskontie 35, 33521, Tampere, Finland
| | - Pasi I Nevalainen
- Department of Internal Medicine, Tampere University Hospital, Teiskontie 35, 33521, Tampere, Finland.
| |
Collapse
|