1
|
Stefani A, Antelmi E, Arnaldi D, Arnulf I, During E, Högl B, Hu MMT, Iranzo A, Luke R, Peever J, Postuma RB, Videnovic A, Gan-Or Z. From mechanisms to future therapy: a synopsis of isolated REM sleep behavior disorder as early synuclein-related disease. Mol Neurodegener 2025; 20:19. [PMID: 39934903 PMCID: PMC11817540 DOI: 10.1186/s13024-025-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy are synucleinopathies, characterized by neuronal loss, gliosis and the abnormal deposition of α-synuclein in vulnerable areas of the nervous system. Neurodegeneration begins however several years before clinical onset of motor, cognitive or autonomic symptoms. The isolated form of REM sleep behavior disorder (RBD), a parasomnia with dream enactment behaviors and excessive muscle activity during REM sleep, is an early stage synucleinopathy. The neurophysiological hallmark of RBD is REM sleep without atonia (RWSA), i.e. the loss of physiological muscle atonia during REM sleep. RBD pathophysiology is not fully clarified yet, but clinical and basic science suggest that ɑ-syn pathology begins in the lower brainstem where REM atonia circuits are located, including the sublaterodorsal tegmental/subcoeruleus nucleus and the ventral medulla, then propagates rostrally to brain regions such as the substantia nigra, limbic system, cortex. Genetically, there is only a partial overlap between RBD, PD and DLB, and individuals with iRBD may represent a specific subpopulation. A genome-wide association study identified five loci, which all seem to revolve around the GBA1 pathway. iRBD patients often show subtle motor, cognitive, autonomic and/or sensory signs, neuroimaging alterations as well as biofluid and tissue markers of neurodegeneration (in particular pathologic α-synuclein aggregates), which can be useful for risk stratification. Patients with iRBD represent thus the ideal population for neuroprotective/neuromodulating trials. This review provides insights into these aspects, highlighting and substantiating the central role of iRBD in treatment development strategies for synucleinopathies.
Collapse
Affiliation(s)
| | - Elena Antelmi
- DIMI Department of Engineering and Medicine of Innovation, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurophysiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | - Isabelle Arnulf
- Sleep Clinic, Pitié-Salpêtrière Hospital, APHP - Sorbonne University, Paris, France
- Paris Brain Institute, Paris, France
| | - Emmanuel During
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Högl
- Medical University Innsbruck, Innsbruck, Austria
| | - Michele M T Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Universitat de Barcelona,, Barcelona, Spain
| | - Russell Luke
- Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - John Peever
- Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Ronald B Postuma
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QC, Canada
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
3
|
Zhao Y, Miettinen K, Kampranis SC. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102615. [PMID: 39128271 DOI: 10.1016/j.pbi.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Celastrol, a triterpenoid found in the root of the traditional medicinal plant Tripterygium wilfordii, is a potent anti-inflammatory and antiobesity agent. However, pharmacological exploitation of celastrol has been hindered by the limited accessibility of plant material, the co-existence of other toxic compounds in the same plant tissue, and the lack of an efficient chemical synthesis method. In this review, we highlight recent progress in elucidating celastrol biosynthesis and discuss how this knowledge can facilitate its scalable bioproduction using cell factories and its further development as an antiobesity and anti-inflammatory drug.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
5
|
Gu J, Shi YN, Zhu N, Li HF, Zhang CJ, Qin L. Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential. Biomed Pharmacother 2023; 164:114981. [PMID: 37285754 DOI: 10.1016/j.biopha.2023.114981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Lipid metabolism disorders are pivotal in the development of various lipid-related diseases, such as obesity, atherosclerosis, non-alcoholic fatty liver disease, type 2 diabetes, and cancer. Celastrol, a bioactive compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has recently demonstrated potent lipid-regulating abilities and promising therapeutic effects for lipid-related diseases. There is substantial evidence indicating that celastrol can ameliorate lipid metabolism disorders by regulating lipid profiles and related metabolic processes, including lipid synthesis, catabolism, absorption, transport, and peroxidation. Even wild-type mice show augmented lipid metabolism after treatment with celastrol. This review aims to provide an overview of recent advancements in the lipid-regulating properties of celastrol, as well as to elucidate its underlying molecular mechanisms. Besides, potential strategies for targeted drug delivery and combination therapy are proposed to enhance the lipid-regulating effects of celastrol and avoid the limitations of its clinical application.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
6
|
Mechanistic Insight into the Mode of Action of Acid β-Glucosidase Enhancer Ambroxol. Int J Mol Sci 2022; 23:ijms23073536. [PMID: 35408914 PMCID: PMC8998264 DOI: 10.3390/ijms23073536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Ambroxol (ABX) is a mucolytic agent used for the treatment of respiratory diseases. Bioactivity has been demonstrated as an enhancement effect on lysosomal acid β-glucosidase (β-Glu) activity in Gaucher disease (GD). The positive effects observed have been attributed to a mechanism of action similar to pharmacological chaperones (PCs), but an exact mechanistic description is still pending. The current study uses cell culture and in vitro assays to study the effects of ABX on β-Glu activity, processing, and stability upon ligand binding. Structural analogues bromohexine, 4-hydroxybromohexine, and norbromohexine were screened for chaperone efficacy, and in silico docking was performed. The sugar mimetic isofagomine (IFG) strongly inhibits β-Glu, while ABX exerts its inhibitory effect in the micromolar range. In GD patient fibroblasts, IFG and ABX increase mutant β-Glu activity to identical levels. However, the characteristics of the banding patterns of Endoglycosidase-H (Endo-H)-digested enzyme and a substantially lower half-life of ABX-treated β-Glu suggest different intracellular processing. In line with this observation, IFG efficiently stabilizes recombinant β-Glu against thermal denaturation in vitro, whereas ABX exerts no significant effect. Additional β-Glu enzyme activity testing using Bromohexine (BHX) and two related structures unexpectedly revealed that ABX alone can refunctionalize β-Glu in cellula. Taken together, our data indicate that ABX has little in vitro ability to act as PC, so the mode of action requires further clarification.
Collapse
|
7
|
Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta CT, Negrut N, Bustea C, Bungau S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson's disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021; 10:4. [PMID: 33446243 PMCID: PMC7809876 DOI: 10.1186/s40035-020-00226-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Current therapies for Parkinson's disease (PD) are palliative, of which the levodopa/carbidopa therapy remains the primary choice but is unable to modulate the progression of neurodegeneration. Due to the complication of such a multifactorial disorder and significant limitations of the therapy, numerous genetic approaches have been proved effective in finding out genes and mechanisms implicated in this disease. Following the observation of a higher frequency of PD in Gaucher's disease (GD), a lysosomal storage condition, mutations of glycosylceramidase beta (GBA) encoding glucocerebrosidase (GCase) have been shown to be involved and have been explored in the context of PD. GBA mutations are the most common genetic risk factor of PD. Various studies have revealed the relationships between PD and GBA gene mutations, facilitating a better understanding of this disorder. Various hypotheses delineate that the pathological mutations of GBA minimize the enzymatic activity of GCase, which affects the proliferation and clearance of α-synuclein; this affects the lysosomal homeostasis, exacerbating the endoplasmic reticulum stress or encouraging the mitochondrial dysfunction. Identification of the pathological mechanisms underlying the GBA-associated parkinsonism (GBA + PD) advances our understanding of PD. This review based on current literature aims to elucidate various genetic and clinical characteristics correlated with GBA mutations and to identify the numerous pathological processes underlying GBA + PD. We also delineate the therapeutic strategies to interfere with the mutant GCase function for further improvement of the related α-synuclein-GCase crosstalks. Moreover, the various therapeutic approaches such as gene therapy, chaperone proteins, and histone deacetylase inhibitors for the treatment of GBA + PD are discussed.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Bihor County, Romania
| | - Claudia Teodora Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Bihor County, Romania
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
8
|
Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta CT, Negrut N, Bustea C, Bungau S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021. [DOI: https://doi.org/10.1186/s40035-020-00226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractCurrent therapies for Parkinson’s disease (PD) are palliative, of which the levodopa/carbidopa therapy remains the primary choice but is unable to modulate the progression of neurodegeneration. Due to the complication of such a multifactorial disorder and significant limitations of the therapy, numerous genetic approaches have been proved effective in finding out genes and mechanisms implicated in this disease. Following the observation of a higher frequency of PD in Gaucher’s disease (GD), a lysosomal storage condition, mutations of glycosylceramidase beta (GBA) encoding glucocerebrosidase (GCase) have been shown to be involved and have been explored in the context of PD. GBA mutations are the most common genetic risk factor of PD. Various studies have revealed the relationships between PD and GBA gene mutations, facilitating a better understanding of this disorder. Various hypotheses delineate that the pathological mutations of GBA minimize the enzymatic activity of GCase, which affects the proliferation and clearance of α-synuclein; this affects the lysosomal homeostasis, exacerbating the endoplasmic reticulum stress or encouraging the mitochondrial dysfunction. Identification of the pathological mechanisms underlying the GBA-associated parkinsonism (GBA + PD) advances our understanding of PD. This review based on current literature aims to elucidate various genetic and clinical characteristics correlated with GBA mutations and to identify the numerous pathological processes underlying GBA + PD. We also delineate the therapeutic strategies to interfere with the mutant GCase function for further improvement of the related α-synuclein–GCase crosstalks. Moreover, the various therapeutic approaches such as gene therapy, chaperone proteins, and histone deacetylase inhibitors for the treatment of GBA + PD are discussed.
Collapse
|
9
|
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, Aarsand AK, Martinez A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci 2021; 22:E675. [PMID: 33445488 PMCID: PMC7827610 DOI: 10.3390/ijms22020675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Collapse
Affiliation(s)
- Helene J. Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Juha P. Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
| | - Valeria Fiorentino
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Caroline Schmitt
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| |
Collapse
|
10
|
Song J, Malwal SR, Baig N, Schurig-Briccio LA, Gao Z, Vaidya GS, Yang K, Abutaleb NS, Seleem MN, Gennis RB, Pogorelov TV, Oldfield E, Feng X. Discovery of Prenyltransferase Inhibitors with In Vitro and In Vivo Antibacterial Activity. ACS Infect Dis 2020; 6:2979-2993. [PMID: 33085463 DOI: 10.1021/acsinfecdis.0c00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cis-prenyltransferases such as undecaprenyl diphosphate synthase (UPPS) and decaprenyl diphosphate synthase (DPPS) are essential enzymes in bacteria and are involved in cell wall biosynthesis. UPPS and DPPS are absent in the human genome, so they are of interest as targets for antibiotic development. Here, we screened a library of 750 compounds from National Cancer Institute Diversity Set V for the inhibition of Mycobacterium tuberculosis DPPS and found 17 hits, and then IC50s were determined using dose-response curves. Compounds were tested for growth inhibition against a panel of bacteria, for in vivo activity in a Staphylococcus aureus/Caenorhabditis elegans model, and for mammalian cell toxicity. The most active DPPS inhibitor was the dicarboxylic acid redoxal (compound 10), which also inhibited undecaprenyl diphosphate synthase (UPPS) as well as farnesyl diphosphate synthase. 10 was active against S. aureus, Clostridiodes difficile, Bacillus anthracis Sterne, and Bacillus subtilis, and there was a 3.4-fold increase in IC50 on addition of a rescue agent, undecaprenyl monophosphate. We found that 10 was also a weak protonophore uncoupler, leading to the idea that it targets both isoprenoid biosynthesis and the proton motive force. In an S. aureus/C. elegans in vivo model, 10 reduced the S. aureus burden 3 times more effectively than did ampicillin.
Collapse
Affiliation(s)
- Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | | | | | | | | | | | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | | | | | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
12
|
Hansen NL, Miettinen K, Zhao Y, Ignea C, Andreadelli A, Raadam MH, Makris AM, Møller BL, Stærk D, Bak S, Kampranis SC. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microb Cell Fact 2020; 19:15. [PMID: 31992268 PMCID: PMC6988343 DOI: 10.1186/s12934-020-1284-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.
Collapse
Affiliation(s)
- Nikolaj L Hansen
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karel Miettinen
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Yong Zhao
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Codruta Ignea
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences-Centre for Research and Technology Hellas (INAB-CERTH), P.O. Box 60361, 57001, Thermi, Thessaloniki, Greece
| | - Morten H Raadam
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences-Centre for Research and Technology Hellas (INAB-CERTH), P.O. Box 60361, 57001, Thermi, Thessaloniki, Greece
| | - Birger L Møller
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren Bak
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Sotirios C Kampranis
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener 2019; 14:36. [PMID: 31464647 PMCID: PMC6716912 DOI: 10.1186/s13024-019-0336-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, are among the most common known genetic risk factors for the development of Parkinson disease and related synucleinopathies. A great deal is known about GBA1, as mutations in GBA1 are causal for the rare autosomal storage disorder Gaucher disease. Over the past decades, significant progress has been made in understanding the genetics and cell biology of glucocerebrosidase. A least 495 different mutations, found throughout the 11 exons of the gene are reported, including both common and rare variants. Mutations in GBA1 may lead to degradation of the protein, disruptions in lysosomal targeting and diminished performance of the enzyme in the lysosome. Gaucher disease is phenotypically diverse and has both neuronopathic and non-neuronopathic forms. Both patients with Gaucher disease and heterozygous carriers are at increased risk of developing Parkinson disease and Dementia with Lewy Bodies, although our understanding of the mechanism for this association remains incomplete. There appears to be an inverse relationship between glucocerebrosidase and α-synuclein levels, and even patients with sporadic Parkinson disease have decreased glucocerebrosidase. Glucocerebrosidase may interact with α-synuclein to maintain basic cellular functions, or impaired glucocerebrosidase could contribute to Parkinson pathogenesis by disrupting lysosomal homeostasis, enhancing endoplasmic reticulum stress or contributing to mitochondrial impairment. However, the majority of patients with GBA1 mutations never develop parkinsonism, so clearly other risk factors play a role. Treatments for Gaucher disease have been developed that increase visceral glucocerebrosidase levels and decrease lipid storage, although they have yet to properly address the neurological defects associated with impaired glucocerebrosidase. Mouse and induced pluripotent stem cell derived models have improved our understanding of glucocerebrosidase function and the consequences of its deficiency. These models have been used to test novel therapies including chaperone proteins, histone deacetylase inhibitors, and gene therapy approaches that enhance glucocerebrosidase levels and could prove efficacious in the treatment of forms of parkinsonism. Consequently, this rare monogenic disorder, Gaucher disease, provides unique insights directly applicable to our understanding and treatment of Parkinson disease, a common and complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Jenny Do
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Cindy McKinney
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Pankaj Sharma
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA.
| |
Collapse
|
14
|
GBA, Gaucher Disease, and Parkinson's Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019; 8:cells8040364. [PMID: 31010158 PMCID: PMC6523296 DOI: 10.3390/cells8040364] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common degenerative disorder. Although the disease was described more than 200 years ago, its pathogenetic mechanisms have not yet been fully described. In recent years, the discovery of the association between mutations of the GBA gene (encoding for the lysosomal enzyme glucocerebrosidase) and PD facilitated a better understating of this disorder. GBA mutations are the most common genetic risk factor of the disease. However, mutations of this gene can be found in different phenotypes, such as Gaucher’s disease (GD), PD, dementia with Lewy bodies (DLB) and rapid eye movements (REM) sleep behavior disorders (RBDs). Understanding the pathogenic role of this mutation and its different manifestations is crucial for geneticists and scientists to guide their research and to select proper cohorts of patients. Moreover, knowing the implications of the GBA mutation in the context of PD and the other associated phenotypes is also important for clinicians to properly counsel their patients and to implement their care. With the present review we aim to describe the genetic, clinical, and therapeutic features related to the mutation of the GBA gene.
Collapse
|
15
|
Zhang C, Wang R, Liu Z, Bunker E, Lee S, Giuntini M, Chapnick D, Liu X. The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20. J Biol Chem 2019; 294:7472-7487. [PMID: 30885942 DOI: 10.1074/jbc.ra118.006506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Rongchun Wang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and.,the Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jinshi Street, Licheng District, Jinan 250103, China
| | - Zeyu Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Michelle Giuntini
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Douglas Chapnick
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| |
Collapse
|
16
|
Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity - transcriptome-wide microarray analysis of neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:246-260. [PMID: 30668345 DOI: 10.1016/j.phymed.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Toxicity of chemotherapeutics is a serious problem in cancer therapy. Adaptogens are known to increase adaptability and survival organisms. AIM The aim of this study was to assess the effects of selected adaptogenic herbal extracts on FEC (fixed combination of 5-fluorouracil, epirubicin and cyclophosphamide) induced changes in transcriptome-wide microarray profiles of neuroglia cells. Another task of the study was to identify those genes, which are associated with FEC-induced hepato-, cardio- and nephrotoxicity to predict potential effects of andrographolide (AND), Andrographis herb, Eleutherococcus roots genuine extracts (ES), their fixed combination (AE) and the combination of Rhodiola roots, Schisandra berries and Eleutherococcus roots (RSE) on the organismal level. METHODS Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human T98G neuroglia cells after treatment with adaptogens. Interactive pathways downstream analysis was performed with data sets of significantly up- or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software. RESULT Significant differences of transcriptome-wide microarray profiles were observed after treatment of T98G cells with FEC and after co-incubation with adaptogens. FEC induced deregulation of certain genes with suggested toxicity associated with liver fibroses, necrosis and congenital heart diseases. Co-incubation of AE with FEC prevented FEC-induced deregulation of 66 genes increasing organismal death, 37 genes decreasing cell survival, 37 genes decreasing DNA repair, 37 genes decreasing viral infection and some other functions, indicating on potential beneficial effects of AE. Furthermore, FEC-induced hepato-, nephro- and cardiotoxicity related to deregulation of genes was predictably attenuated by AE. Moreover, co-incubation of AE with FEC caused differential expression of genes, which presumably are beneficial for an organism during chemotherapy. They include predicted activation of DNA repair, activation of movement of antigen presenting cells and inhibition of muscle cells death. The main active constituent of AE is AND. Co-incubation of FEC only with AND results in deregulation of 10 genes causing death of breast cancer cells, decrease of liver toxicity and attenuation of organismal death. Co-incubation of ES extract with FEC showed that ES suppressed FEC-induced deregulation of genes, which inhibit organismal death and fertility. Co-incubation of FEC with RSE indicated potential hepatoprotective effect against FEC-induced apoptosis of liver cells presumably due to suppression of FEC-induced expressions of genes, which increased liver cell apoptosis. Simultaneously, RSE activated expression of genes inhibiting tumor growth. Though, microarray analysis did not provide final proof that the genes induced by the AE, AP and ES are responsible for the physiological effects observed in human patients following their oral administration, it provided insights into putative genes and directions for future research and possible implementation into practice. CONCLUSION Application of cytostatic drugs in combination with adaptogenic plant extracts induced significant changes in transcriptome-wide microarray profiles of neuroglial cells. These changes indicate on potential beneficial effects of adaptogens on FEC induced adverse events in cancer chemotherapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, WI 54311; Phytomed AB, Vaxtorp, Halland, Sweden.
| |
Collapse
|
17
|
Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson's disease. Neurobiol Dis 2019; 122:72-82. [PMID: 29550539 PMCID: PMC6138580 DOI: 10.1016/j.nbd.2018.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
The finding that mutations in the Gaucher's Disease (GD) gene GBA1 are a strong risk factor for Parkinson's Disease (PD) has allowed for unique insights into pathophysiology centered on disruption of the autophagic-lysosomal pathway. Protein aggregations in the form of Lewy bodies and the effects of canonical PD mutations that converge on the lysosomal degradation system suggest that neurodegeneration in PD is mediated by dysregulation of protein homeostasis. The well-characterized clinical and pathological relationship between PD and the lysosomal storage disorder GD emphasizes the importance of dysregulated protein metabolism in neurodegeneration, and one intriguing piece of this relationship is a shared phenotype of autophagic-lysosomal dysfunction in both diseases. Translational application of these findings may be accelerated by the use of midbrain dopamine neuronal models derived from induced pluripotent stem cells (iPSCs) that recapitulate several pathological features of GD and PD. In this review, we discuss evidence linking autophagic dysfunction to the pathophysiology of GD and GBA1-linked parkinsonism and focus more specifically on studies performed recently in iPSC-derived neurons.
Collapse
Affiliation(s)
- Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Willayat Yousuf Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 2019; 74:18-30. [PMID: 30710597 DOI: 10.1016/j.plipres.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.
Collapse
|
19
|
Fog CK, Zago P, Malini E, Solanko LM, Peruzzo P, Bornaes C, Magnoni R, Mehmedbasic A, Petersen NHT, Bembi B, Aerts JFMG, Dardis A, Kirkegaard T. The heat shock protein amplifier arimoclomol improves refolding, maturation and lysosomal activity of glucocerebrosidase. EBioMedicine 2018; 38:142-153. [PMID: 30497978 PMCID: PMC6306395 DOI: 10.1016/j.ebiom.2018.11.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gaucher Disease is caused by mutations of the GBA gene which encodes the lysosomal enzyme acid beta-glucosidase (GCase). GBA mutations commonly affect GCase function by perturbing its protein homeostasis rather than its catalytic activity. Heat shock proteins are well known cytoprotective molecules with functions in protein homeostasis and lysosomal function and their manipulation has been suggested as a potential therapeutic strategy for GD. The investigational drug arimoclomol, which is in phase II/III clinical trials, is a well-characterized HSP amplifier and has been extensively clinically tested. Importantly, arimoclomol efficiently crosses the blood-brain-barrier presenting an opportunity to target the neurological manifestations of GD, which remains without a disease-modifying therapy. METHODS We used a range of biological and biochemical in vitro assays to assess the effect of arimoclomol on GCase activity in ex vivo systems of primary fibroblasts and neuronal-like cells from GD patients. FINDINGS We found that arimoclomol induced relevant HSPs such as ER-resident HSP70 (BiP) and enhanced the folding, maturation, activity, and correct cellular localization of mutated GCase across several genotypes including the common L444P and N370S mutations in primary cells from GD patients. These effects where recapitulated in a human neuronal model of GD obtained by differentiation of multipotent adult stem cells. INTERPRETATION These data demonstrate the potential of HSP-targeting therapies in GCase-deficiencies and strongly support the clinical development of arimoclomol as a potential therapeutic option for the neuronopathic forms of GD. FUNDING The research was funded by Orphazyme A/S, Copenhagen, Denmark.
Collapse
Affiliation(s)
- Cathrine K Fog
- Orphazyme A/S, Ole Maaloes vej 3, DK-2200 Copenhagen, Denmark
| | - Paola Zago
- Regional Coordinator Centre for Rare Diseases, Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Erika Malini
- Regional Coordinator Centre for Rare Diseases, Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | | | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Claus Bornaes
- Orphazyme A/S, Ole Maaloes vej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | | | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | | |
Collapse
|
20
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol 2018; 9:104. [PMID: 29491837 PMCID: PMC5817256 DOI: 10.3389/fphar.2018.00104] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Triptolide and celastrol are predominantly active natural products isolated from the medicinal plant Tripterygium wilfordii Hook F. These compounds exhibit similar pharmacological activities, including anti-cancer, anti-inflammation, anti-obesity, and anti-diabetic activities. Triptolide and celastrol also provide neuroprotection and prevent cardiovascular and metabolic diseases. However, toxicity restricts the further development of triptolide and celastrol. In this review, we comprehensively review therapeutic targets and mechanisms of action, and translational study of triptolide and celastrol. We systemically discuss the structure-activity-relationship of triptolide, celastrol, and their derivatives. Furthermore, we propose the use of structural derivatives, targeted therapy, and combination treatment as possible solutions to reduce toxicity and increase therapeutic window of these potent natural products from T. wilfordii Hook F.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Dai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
23
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
24
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E. Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
25
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
26
|
García-Moreno MI, de la Mata M, Sánchez-Fernández EM, Benito JM, Díaz-Quintana A, Fustero S, Nanba E, Higaki K, Sánchez-Alcázar JA, García Fernández JM, Ortiz Mellet C. Fluorinated Chaperone-β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease. J Med Chem 2017; 60:1829-1842. [PMID: 28171725 DOI: 10.1021/acs.jmedchem.6b01550] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amphiphilic glycomimetics encompassing a rigid, undistortable nortropane skeleton based on 1,6-anhydro-l-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β-glucocerebrosidase mutants associated with the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βCD complexes, the determination of the selectivity profiles toward a panel of commercial and human lysosomal glycosidases, the evaluation of the chaperoning activity in type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (adult neuronopathic) GD fibroblasts, the confirmation of the rescuing mechanism by immunolabeling, and the analysis of the PC:GCase binding mode by docking experiments.
Collapse
Affiliation(s)
- M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla , c/Profesor García González 1, 41011 Sevilla, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC, Universidad Pablo de Olavide, and Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla , c/Profesor García González 1, 41011 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, and Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), CSIC, and Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia , 46100 Burjassot, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe , 46012 Valencia, Spain
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University , 86 Nishi-cho, Yonago 683-8503, Japan
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University , 86 Nishi-cho, Yonago 683-8503, Japan
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC, Universidad Pablo de Olavide, and Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, and Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla , c/Profesor García González 1, 41011 Sevilla, Spain
| |
Collapse
|
27
|
Aerts JM, Cox TM. Roscoe O. Brady: Physician whose pioneering discoveries in lipid biochemistry revolutionized treatment and understanding of lysosomal diseases. Blood Cells Mol Dis 2017; 68:4-8. [PMID: 28118958 DOI: 10.1016/j.bcmd.2016.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Johannes M Aerts
- Department of Medical Biochemistry, Leiden University, The Netherlands
| | - Timothy M Cox
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
28
|
Jian J, Tian QY, Hettinghouse A, Zhao S, Liu H, Wei J, Grunig G, Zhang W, Setchell KDR, Sun Y, Overkleeft HS, Chan GL, Liu CJ. Progranulin Recruits HSP70 to β-Glucocerebrosidase and Is Therapeutic Against Gaucher Disease. EBioMedicine 2016; 13:212-224. [PMID: 27789271 PMCID: PMC5264254 DOI: 10.1016/j.ebiom.2016.10.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Gaucher disease (GD), the most common lysosomal storage disease, is caused by mutations in GBA1 encoding of β-glucocerebrosidase (GCase). Recently it was reported that progranulin (PGRN) insufficiency and deficiency associated with GD in human and mice, respectively. However the underlying mechanisms remain unknown. Here we report that PGRN binds directly to GCase and its deficiency results in aggregation of GCase and its receptor LIMP2. Mass spectrometry approaches identified HSP70 as a GCase/LIMP2 complex-associated protein upon stress, with PGRN as an indispensable adaptor. Additionally, 98 amino acids of C-terminal PGRN, referred to as Pcgin, are required and sufficient for the binding to GCase and HSP70. Pcgin effectively ameliorates the disease phenotype in GD patient fibroblasts and animal models. These findings not only demonstrate that PGRN is a co-chaperone of HSP70 and plays an important role in GCase lysosomal localization, but may also provide new therapeutic interventions for lysosomal storage diseases, in particular GD.
Collapse
Affiliation(s)
- Jinlong Jian
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Qing-Yun Tian
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Shuai Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Helen Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Jianlu Wei
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States
| | - Wujuan Zhang
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Kenneth D R Setchell
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gerald L Chan
- Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, United States
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
29
|
Liu YJ, Zhao YJ, Su P, Zhang M, Tong YR, Hu TY, Huang LQ, Gao W. The MVA pathway genes expressions and accumulation of celastrol in Tripterygium wilfordii suspension cells in response to methyl jasmonate treatment. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:619-628. [PMID: 26785825 DOI: 10.1080/10286020.2015.1134504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Celastrol is an important bioactive triterpenoid in traditional Chinese medicinal plant, Tripterygium wilfordii. Methyl Jasmonate (MJ) is a common plant hormone which can regulate the secondary metabolism in higher plants. In this study, the mevalonate (MVA) pathway genes in T. wilfordii were firstly cloned. The suspension cells of T. wilfordii were elicited by MJ, and the expressions of MVA pathway genes were all enhanced in different levels ranging from 2.13 to 22.33 times of that at 0 h. The expressions were also enhanced compared with the CK group separately. The accumulation of celastrol in the suspension cells after the treatment was quantified and co-analyzed with the genes expression levels. The production of celastrol was significantly increased to 0.742 mg g(-1) after MJ treatment in 288 h which is consistent with the genes expressions. The results provide plenty of gene information for the biosynthesis of terpenoids in T. wilfordii and a viable way to improve the accumulation of celastrol in T. wilfordii suspension cells.
Collapse
Affiliation(s)
- Yu-Jia Liu
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
| | - Yu-Jun Zhao
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
| | - Ping Su
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
- b National Resource Center for Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Meng Zhang
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
| | - Yu-Ru Tong
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
- b National Resource Center for Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Tian-Yuan Hu
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
| | - Lu-Qi Huang
- b National Resource Center for Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Wei Gao
- a School of Traditional Chinese Medicine , Capital Medical University , Beijing 100069 , China
| |
Collapse
|
30
|
Barkhuizen M, Anderson DG, Grobler AF. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies. Neurochem Int 2015; 93:6-25. [PMID: 26743617 DOI: 10.1016/j.neuint.2015.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
GBA mutations are to date the most common genetic risk factor for Parkinson's disease. The GBA gene encodes the lysomal hydrolase glucocerebrosidase. Whilst bi-allelic GBA mutations cause Gaucher disease, both mono- and bi-allelic mutations confer risk for Parkinson's disease. Clinically, Parkinson's disease patients with GBA mutations resemble idiopathic Parkinson's disease patients. However, these patients have a modest reduction in age-of-onset of disease and a greater incidence of cognitive decline. In some cases, GBA mutations are also responsible for familial Parkinson's disease. The accumulation of α-synuclein into Lewy bodies is the central neuropathological hallmark of Parkinson's disease. Pathologic GBA mutations reduce enzymatic function. A reduction in glucocerebrosidase function increases α-synuclein levels and propagation, which in turn inhibits glucocerebrosidase in a feed-forward cascade. This cascade is central to the neuropathology of GBA-associated Parkinson's disease. The lysosomal integral membrane protein type-2 is necessary for normal glucocerebrosidase function. Glucocerebrosidase dysfunction also increases in the accumulation of β-amyloid and amyloid-precursor protein, oxidative stress, neuronal susceptibility to metal ions, microglial and immune activation. These factors contribute to neuronal death. The Mendelian Parkinson's disease genes, Parkin and ATP13A2, intersect with glucocerebrosidase. These factors sketch a complex circuit of GBA-associated neuropathology. To clinically interfere with this circuit, central glucocerebrosidase function must be improved. Strategies based on reducing breakdown of mutant glucocerebrosidase and increasing the fraction that reaches the lysosome has shown promise. Breakdown can be reduced by interfering with the ability of heat-shock proteins to recognize mutant glucocerebrosidase. This underlies the therapeutic efficacy of certain pharmacological chaperones and histone deacetylase inhibitors. These therapies are promising for Parkinson's disease, regardless of mutation status. Recently, there has been a boom in studies investigating the role of glucocerebrosidase in the pathology of Parkinson's disease. This merits a comprehensive review of the current cell biological processes and pathological pictures involving Parkinson's disease associated with GBA mutations.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa; Department of Paediatrics, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229, The Netherlands.
| | - David G Anderson
- Department of Neurology, Witwatersrand University Donald Gordon Medical Centre, Parktown, Johannesburg, 2193, South Africa
| | - Anne F Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
31
|
Abstract
The majority of bones in the vertebrate skeleton develop by endochondral ossification, a process during which an intermediate cartilage template is successively replaced by bone. Many aspects of this process are relatively well understood; nevertheless, the origin of trabecular bone-forming osteoblasts and mesenchymal stem cells of the stroma has long remained under debate. Until recently, progenitors of these cell types were thought to enter the bone-forming structures from the periosteum together with the invading vasculature. Recent unexpected results revealed, however, that under physiological conditions differentiated hypertrophic chondrocytes give rise to both, osteoblasts and mesenchymal progenitor cells, thereby contributing to the formation of trabecular bone and bone marrow.
Collapse
Affiliation(s)
- A-C Severmann
- Abteilung für Entwicklungsbiologie, Zentrum für medizinische Biotechnologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Deutschland
| | - A Vortkamp
- Abteilung für Entwicklungsbiologie, Zentrum für medizinische Biotechnologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Deutschland.
| |
Collapse
|
32
|
Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells. Neurobiol Dis 2015; 82:235-242. [PMID: 26094596 DOI: 10.1016/j.nbd.2015.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022] Open
Abstract
Heterozygous mutations in GBA1 gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are a major risk factor for sporadic Parkinson's disease (PD). Defective GCase has been reported in fibroblasts of GBA1-mutant PD patients and pharmacological chaperone ambroxol has been shown to correct such defect. To further explore this issue, we investigated GCase and elements supporting GCase function and trafficking in fibroblasts from sporadic PD patients--with or without heterozygous GBA1 mutations--and healthy subjects, in basal conditions and following in vitro exposure to ambroxol. We assessed protein levels of GCase, lysosomal integral membrane protein-2 (LIMP-2), which mediates GCase trafficking to lysosomes, GCase endogenous activator saposin (Sap) C and parkin, which is involved in degradation of defective GCase. We also measured activities of GCase and cathepsin D, which cleaves Sap C from precursor prosaposin. GCase activity was reduced in fibroblasts from GBA1-mutant patients and ambroxol corrected this defect. Ambroxol increased cathepsin D activity, GCase and Sap C protein levels in all groups, while LIMP-2 levels were increased only in GBA1-mutant PD fibroblasts. Parkin levels were slightly increased only in the PD group without GBA1 mutations and were not significantly modified by ambroxol. Our study confirms that GCase activity is deficient in fibroblasts of GBA1-mutant PD patients and that ambroxol corrects this defect. The drug increased Sap C and LIMP-2 protein levels, without interfering with parkin. These results confirm that chemical chaperone ambroxol modulates lysosomal markers, further highlighting targets that may be exploited for innovative PD therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosi
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristina Ghezzi
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Roberta Zangaglia
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Giovanna Levandis
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Claudio Pacchetti
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy.
| |
Collapse
|
33
|
Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation. Proc Natl Acad Sci U S A 2015; 112:1137-42. [PMID: 25583479 DOI: 10.1073/pnas.1424288112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation.
Collapse
|
34
|
Ferencz B, Gerritsen L. Genetics and underlying pathology of dementia. Neuropsychol Rev 2015; 25:113-24. [PMID: 25567624 DOI: 10.1007/s11065-014-9276-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/21/2014] [Indexed: 12/14/2022]
Abstract
As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.
Collapse
Affiliation(s)
- Beata Ferencz
- Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
35
|
Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015; 125:47-62. [PMID: 25573151 DOI: 10.1016/j.pneurobio.2014.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Gaucher disease, the most common lysosomal storage disease, is caused by a recessively inherited deficiency in glucocerebrosidase and subsequent accumulation of toxic lipid substrates. Heterozygous mutations in the lysosomal glucocerebrosidase gene (GBA1) have recently been recognized as the highest genetic risk factor for the development of α-synuclein aggregation disorders ("synucleinopathies"), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Despite the wealth of experimental, clinical and genetic evidence that supports the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Decreased glucocerebrosidase activity has been demonstrated to promote α-synuclein misprocessing. Furthermore, aberrant α-synuclein species have been reported to downregulate glucocerebrosidase activity, which further contributes to disease progression. In this review, we summarize the recent findings that highlight the complexity of this pathogenetic link and how several pathways that connect glucocerebrosidase insufficiency with α-synuclein misprocessing have emerged as potential therapeutic targets. From a translational perspective, we discuss how various therapeutic approaches to lysosomal dysfunction have been explored for the treatment of GBA1-related synucleinopathies, and potentially, for non-GBA1-associated neurodegenerative diseases. In summary, the link between GBA1 and synucleinopathies has become the paradigm of how the study of a rare lysosomal disease can transform the understanding of the etiopathology, and hopefully the treatment, of a more prevalent and multifactorial disorder.
Collapse
Affiliation(s)
- S Pablo Sardi
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Seng H Cheng
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA
| | | |
Collapse
|
36
|
Zancan I, Bellesso S, Costa R, Salvalaio M, Stroppiano M, Hammond C, Argenton F, Filocamo M, Moro E. Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling. Hum Mol Genet 2014; 24:1280-94. [PMID: 25326392 DOI: 10.1093/hmg/ddu538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of lysosomal glucocerebrosidase (GBA1) function is responsible for several organ defects, including skeletal abnormalities in type 1 Gaucher disease (GD). Enhanced bone resorption by infiltrating macrophages has been proposed to lead to major bone defects. However, while more recent evidences support the hypothesis that osteoblastic bone formation is impaired, a clear pathogenetic mechanism has not been depicted yet. Here, by combining different molecular approaches, we show that Gba1 loss of function in zebrafish is associated with defective canonical Wnt signaling, impaired osteoblast differentiation and reduced bone mineralization. We also provide evidence that increased reactive oxygen species production precedes the Wnt signaling impairment, which can be reversed upon human GBA1 overexpression. Type 1 GD patient fibroblasts similarly exhibit reduced Wnt signaling activity, as a consequence of increased β-catenin degradation. Our results support a novel model in which a primary defect in canonical Wnt signaling antecedes bone defects in type 1 GD.
Collapse
Affiliation(s)
| | | | | | | | - Marina Stroppiano
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche Istituto Giannina Gaslini, Genova 16147, Italy and
| | - Chrissy Hammond
- Department of Biochemistry, Physiology & Pharmacology, University of Bristol, BS8 1TD Bristol, UK
| | | | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche Istituto Giannina Gaslini, Genova 16147, Italy and
| | | |
Collapse
|
37
|
Zanphorlin LM, Alves FR, Ramos CHI. The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90kDa heat shock protein Hsp90α, a chaperone implicated in the stabilization of the tumor phenotype. Biochim Biophys Acta Gen Subj 2014; 1840:3145-52. [PMID: 24954307 DOI: 10.1016/j.bbagen.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. RESULTS In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Collapse
Affiliation(s)
- Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fernanda R Alves
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
38
|
Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Proc Natl Acad Sci U S A 2014; 111:E2530-9. [PMID: 24927548 DOI: 10.1073/pnas.1409061111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼ 20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼ 1-3 µM (as compared with ∼ 0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg(2+) to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads.
Collapse
|
39
|
Brooks P, Tagle DA, Groft S. Expanding rare disease drug trials based on shared molecular etiology. Nat Biotechnol 2014; 32:515-8. [PMID: 24911489 PMCID: PMC4548299 DOI: 10.1038/nbt.2924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- P.J. Brooks
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| | - Danilo A. Tagle
- Office of Special Initiatives, Office of the Director, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| | - Steve Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-7518
| |
Collapse
|
40
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|