1
|
Freindorf M, Antonio JJ, Kraka E. Iron-histidine bonding in bishistidyl hemoproteins-A local vibrational mode study. J Comput Chem 2024; 45:574-588. [PMID: 38041830 DOI: 10.1002/jcc.27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants ka (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. ka (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in ka (FeN), allowing one to compare trends in diverse protein groups. Moreover, ka (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Juliana J Antonio
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Elfi Kraka
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
2
|
Devi Tulsiyan K, Rani Prusty M, Biswal HS. Effect of Choline Amino Acid-Based Ionic Liquids on Stability and Structure of Hemoglobin. Chemphyschem 2023; 24:e202300201. [PMID: 37272734 DOI: 10.1002/cphc.202300201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) can stabilize or destabilize proteins, which motivates us to examine their effect on hemoglobin. The native state of hemoglobin (Hb) is disrupted at different physical conditions such as pressure, temperature, and solvents. Herein, we have monitored the stability of Hb in a nontoxic and biocompatible IL, i. e., choline amino acid-based Ils (ChAAILs), using various spectroscopic techniques like UV-Vis and fluorescence spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC) measurements. It was observed that Hb stays neither in its native state nor in its fully denatured state; rather, it achieves an intermediate state in the presence of ChAAILs. The research on the intermediate state of Hb is still unexplored. Research has been pursued to find a suitable ligand or IL that can stabilize the intermediate state of Hb. In that context, ChAAILs are among the best choices. Molecular docking studies unravel the binding of ChAAILs with Hb. The obtained binding energies of the docked complex are -7.2 kcal/mol and -8.7 kcal/mol for binding of Hb with [Chl][Gly] and [Chl][Met], respectively, which was in line with the ITC results. The quantum chemical calculations show that H-bond plays a significant role for the interaction between Hb and ChAAILs.
Collapse
Affiliation(s)
- Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mallika Rani Prusty
- School of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
4
|
Su P, Wei B, Guo C, Hu Y, Tang R, Zhang S, He C, Lin J, Yu X, Chen Z, Li H, Wang H, Li X. Metallo-Supramolecular Hexagonal Wreath with Four Switchable States Based on a pH-Responsive Tridentate Ligand. J Am Chem Soc 2023; 145:3131-3145. [PMID: 36696285 DOI: 10.1021/jacs.2c12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In biological systems, many biomacromolecules (e.g., heme proteins) are capable of switching their states reversibly in response to external stimuli, endowing these natural architectures with a high level of diversity and functionality. Although tremendous efforts have been made to advance the complexity of artificial supramolecules, it remains a challenge to construct metallo-supramolecular systems that can carry out reversible interconversion among multiple states. Here, a pH-responsive tridentate ligand, 2,6-di(1H-imidazole-2-yl)pyridine (H2DAP), is incorporated into the multitopic building block for precise construction of giant metallo-supramolecular hexagonal wreaths with three metal ions, i.e., Fe(II), Co(II), and Ni(II), through coordination-driven self-assembly. In particular, a Co-linked wreath enables in situ reversible interconversion among four states in response to pH and oxidant/reductant with highly efficient conversion without losing structural integrity. During the state interconversion cycles, the physical properties of the assembled constructs are finely tuned, including the charge states of the backbone, valency of metal ions, and paramagnetic/diamagnetic features of complexes. Such discrete wreath structures with a charge-switchable backbone further facilitate layer-by-layer assembly of metallo-supramolecules on the substrate.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Biaowen Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jing Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, Guangdong, China
| |
Collapse
|
5
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
6
|
Balasco N, Paladino A, Graziano G, D'Abramo M, Vitagliano L. Atomic-Level View of the Functional Transition in Vertebrate Hemoglobins: The Case of Antarctic Fish Hbs. J Chem Inf Model 2022; 62:3874-3884. [PMID: 35930673 PMCID: PMC9400108 DOI: 10.1021/acs.jcim.2c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrameric hemoglobins (Hbs) are prototypal systems for studies aimed at unveiling basic structure-function relationships as well as investigating the molecular/structural basis of adaptation of living organisms to extreme conditions. However, a chronological analysis of decade-long studies conducted on Hbs is illuminating on the difficulties associated with the attempts of gaining functional insights from static structures. Here, we applied molecular dynamics (MD) simulations to explore the functional transition from the T to the R state of the hemoglobin of the Antarctic fish Trematomus bernacchii (HbTb). Our study clearly demonstrates the ability of the MD technique to accurately describe the transition of HbTb from the T to R-like states, as shown by a number of global and local structural indicators. A comparative analysis of the structural states that HbTb assumes in the simulations with those detected in previous MD analyses conducted on HbA (human Hb) highlights interesting analogies (similarity of the transition pathway) and differences (distinct population of intermediate states). In particular, the ability of HbTb to significantly populate intermediate states along the functional pathway explains the observed propensity of this protein to assume these structures in the crystalline state. It also explains some functional data reported on the protein that indicate the occurrence of other functional states in addition to the canonical R and T ones. These findings are in line with the emerging idea that the classical two-state view underlying tetrameric Hb functionality is probably an oversimplification and that other structural states play important roles in these proteins. The ability of MD simulations to accurately describe the functional pathway in tetrameric Hbs suggests that this approach may be effectively applied to unravel the molecular and structural basis of Hbs exhibiting peculiar functional properties as a consequence of the environmental adaptation of the host organism.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento 82100, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
7
|
Liang C, Qi PX, Garcia RA, Lee C. Molecular basis for the performance and mechanisms of methylated decolorized bovine hemoglobin flocculants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Giordano D, Verde C, Corti P. Nitric Oxide Production and Regulation in the Teleost Cardiovascular System. Antioxidants (Basel) 2022; 11:957. [PMID: 35624821 PMCID: PMC9137985 DOI: 10.3390/antiox11050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Nitric Oxide (NO) is a free radical with numerous critical signaling roles in vertebrate physiology. Similar to mammals, in the teleost system the generation of sufficient amounts of NO is critical for the physiological function of the cardiovascular system. At the same time, NO amounts are strictly controlled and kept within basal levels to protect cells from NO toxicity. Changes in oxygen tension highly influence NO bioavailability and can modulate the mechanisms involved in maintaining the NO balance. While NO production and signaling appears to have general similarities with mammalian systems, the wide range of environmental adaptations made by fish, particularly with regards to differing oxygen availabilities in aquatic habitats, creates a foundation for a variety of in vivo models characterized by different implications of NO production and signaling. In this review, we present the biology of NO in the teleost cardiovascular system and summarize the mechanisms of NO production and signaling with a special emphasis on the role of globin proteins in NO metabolism.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Balasco N, Alba J, D'Abramo M, Vitagliano L. Quaternary Structure Transitions of Human Hemoglobin: An Atomic-Level View of the Functional Intermediate States. J Chem Inf Model 2021; 61:3988-3999. [PMID: 34375114 PMCID: PMC9473481 DOI: 10.1021/acs.jcim.1c00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human hemoglobin (HbA) is one of the prototypal systems used to investigate structure-function relationships in proteins. Indeed, HbA has been used to develop the basic concepts of protein allostery, although the atomic-level mechanism underlying the HbA functionality is still highly debated. This is due to the fact that most of the three-dimensional structural information collected over the decades refers to the endpoints of HbA functional transition with little data available for the intermediate states. Here, we report molecular dynamics (MD) simulations by focusing on the relevance of the intermediate states of the protein functional transition unraveled by the crystallographic studies carried out on vertebrate Hbs. Fully atomistic simulations of the HbA T-state indicate that the protein undergoes a spontaneous transition toward the R-state. The inspection of the trajectory structures indicates that the protein significantly populates the intermediate HL-(C) state previously unraveled by crystallography. In the structural transition, it also assumes the intermediate states crystallographically detected in Antarctic fish Hbs. This finding suggests that HbA and Antarctic fish Hbs, in addition to the endpoints of the transitions, also share a similar deoxygenation pathway despite a distace of hundreds of millions of years in the evolution scale. Finally, using the essential dynamic sampling methodology, we gained some insights into the reverse R to T transition that is not spontaneously observed in classic MD simulations.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Josephine Alba
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
10
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
11
|
Initial biophysical characterization of Amynthas gracilis giant extracellular hemoglobin (HbAg). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:473-484. [PMID: 32813035 DOI: 10.1007/s00249-020-01455-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present work was the biophysical characterization of the Amynthas gracilis hemoglobin (HbAg). The oxy-HbAg optical absorption data, with Soret and Q bands centered at 415, 540 and 575 nm, were stable and unchanged at pH 7.0. An increase in pH promotes decrease in the intensity in the optical absorption bands, suggesting an oligomeric dissociation and partial oxidation. Identical stability at pH 7.0 was observed in DLS results that presented a hydrodynamic diameter of 28 nm, characteristic of the whole oligomer. DLS shows that HbAg undergoes oligomeric dissociation and an aggregation/denaturation process that corroborates spectroscopic data. Our results showed that the monomer d presents four isoforms with molecular mass (MM) ranging from 16,244 to 16,855 Da; the trimer subunit presents two isoforms, (abc)1 and (abc)2, with MM of 51,415 ± 20 Da and 51,610 ± 14 Da, respectively, and a less intense species, at 67,793 Da, assigned to the tetramer abcd. Monomeric chains a, obtained from reduction of the disulfide-bonded trimer abc, present four isoforms with MM 17,015 Da, 17,061 Da, 17,138 Da and 17,259 Da. DLS and LSI revealed an isoeletric point (pI) of oxy-HbAg of 6.0 ± 0.3 and 5.5, respectively. Data analysis by IEF-SDS-PAGE revealed that the pI of oxy-HbAg is 6.11, correlating with DLS and LSI data. These studies indicate that oxy-HbAg is very stable, at pH 7.0, and has differing properties from orthologous giant hemoglobins.
Collapse
|
12
|
Jia F, Schröder HV, Yang LP, von Essen C, Sobottka S, Sarkar B, Rissanen K, Jiang W, Schalley CA. Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls. J Am Chem Soc 2020; 142:3306-3310. [PMID: 32013425 DOI: 10.1021/jacs.9b11685] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
"Naphthocage", a naphthalene-based organic cage, reveals very strong binding (up to 1010 M-1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C-H···O, C-H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to future applications in redox-controlled guest release or novel stimuli-responsive materials.
Collapse
Affiliation(s)
- Fei Jia
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Liu-Pan Yang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Carolina von Essen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstraße 34/36 , 14195 Berlin , Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstraße 34/36 , 14195 Berlin , Germany
| | - Kari Rissanen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wei Jiang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Xueyuan Boulevard 1088 , Shenzhen 518055 , China
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
13
|
Balasco N, Vitagliano L, Merlino A, Verde C, Mazzarella L, Vergara A. The unique structural features of carbonmonoxy hemoglobin from the sub-Antarctic fish Eleginops maclovinus. Sci Rep 2019; 9:18987. [PMID: 31831781 PMCID: PMC6908587 DOI: 10.1038/s41598-019-55331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Tetrameric hemoglobins (Hbs) are prototypical systems for the investigations of fundamental properties of proteins. Although the structure of these proteins has been known for nearly sixty years, there are many aspects related to their function/structure that are still obscure. Here, we report the crystal structure of a carbonmonoxy form of the Hb isolated from the sub-Antarctic notothenioid fish Eleginops maclovinus characterised by either rare or unique features. In particular, the distal site of the α chain results to be very unusual since the distal His is displaced from its canonical position. This displacement is coupled with a shortening of the highly conserved E helix and the formation of novel interactions at tertiary structure level. Interestingly, the quaternary structure is closer to the T-deoxy state of Hbs than to the R-state despite the full coordination of all chains. Notably, these peculiar structural features provide a rationale for some spectroscopic properties exhibited by the protein in solution. Finally, this unexpected structural plasticity of the heme distal side has been associated with specific sequence signatures of various Hbs.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy.
| | - Antonello Merlino
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Alessandro Vergara
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
14
|
Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics 2019; 49:100724. [PMID: 31735579 DOI: 10.1016/j.margen.2019.100724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
15
|
Takamura A, Watanabe D, Shimada R, Ozawa T. Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics. Commun Chem 2019. [DOI: 10.1038/s42004-019-0217-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AbstractBlood, as a cardinal biological system, is a challenging target for biochemical characterization because of sample complexity and a lack of analytical approaches. To reveal and evaluate aging process of blood compositions is an unexplored issue in forensic analysis, which is useful to elucidate the details of a crime. Here we demonstrate a spectral deconvolution model of near-infrared Raman spectra of bloodstain to comprehensively describe the aging process based on the chemical mechanism, particularly the kinetics. The bloodstain spectra monitored over several months at different temperatures are decomposed into significant spectral components by multivariate calculation. The kinetic schemes of the spectral components are explored and subsequently incorporated into the developed algorithm for the optimal spectral resolution. Consequently, the index of bloodstain aging is proposed, which can be used under different experimental conditions. This work provides a novel perspective on the chemical mechanisms in bloodstain aging and facilitates forensic applications.
Collapse
|
16
|
Wu H, Chen Y, Zhang L, Anamimoghadam O, Shen D, Liu Z, Cai K, Pezzato C, Stern CL, Liu Y, Stoddart JF. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. J Am Chem Soc 2018; 141:1280-1289. [DOI: 10.1021/jacs.8b10526] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Crystal structure of the ferric homotetrameric β 4 human hemoglobin. Biophys Chem 2018; 240:9-14. [DOI: 10.1016/j.bpc.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022]
|
18
|
In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Ioannou A, Varotsis C. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs). PLoS One 2017; 12:e0188095. [PMID: 29136023 PMCID: PMC5685578 DOI: 10.1371/journal.pone.0188095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.
Collapse
Affiliation(s)
- Aristos Ioannou
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
20
|
Jue T, Simond G, Wright TJ, Shih L, Chung Y, Sriram R, Kreutzer U, Davis RW. Effect of fatty acid interaction on myoglobin oxygen affinity and triglyceride metabolism. J Physiol Biochem 2017; 73:359-370. [PMID: 28357578 DOI: 10.1007/s13105-017-0559-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
Recent studies have suggested myoglobin (Mb) may have other cellular functions in addition to storing and transporting O2. Indeed, NMR experiments have shown that the saturated fatty acid (FA) palmitate (PA) can interact with myoglobin (Mb) in its ligated state (MbCO and MbCN) but does not interact with Mb in its deoxygenated state. The observation has led to the hypothesis that Mb can also serve as a fatty acid transporter. The present study further investigates fatty acid interaction with the physiological states of Mb using the more soluble but unsaturated fatty acid, oleic acid (OA). OA binds to MbCO but does not bind to deoxy Mb. OA binding to Mb, however, does not alter its O2 affinity. Without any Mb, muscle has a significantly lower level of triglyceride (TG). In Mb knock-out (MbKO) mice, both heart and skeletal muscles have lower level of TG relative to the control mice. Training further decreases the relative TG in the MbKO skeletal muscle. Nevertheless, the absence of Mb and lower TG level in muscle does not impair the MbKO mouse performance as evidenced by voluntary wheel running measurements. The results support the hypothesis of a complex physiological role for Mb, especially with respect to fatty acid metabolism.
Collapse
Affiliation(s)
- Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA.
| | - Gregory Simond
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA
| | - Traver J Wright
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Lifan Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA
| | - Renuka Sriram
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA
| | - Ulrike Kreutzer
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616-8635, USA
| | - Randall W Davis
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
21
|
Vitagliano L, Mazzarella L, Merlino A, Vergara A. Fine Sampling of the R→T Quaternary-Structure Transition of a Tetrameric Hemoglobin. Chemistry 2016; 23:605-613. [DOI: 10.1002/chem.201603421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Antonello Merlino
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Alessandro Vergara
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
- CEINGE Biotecnologie Avanzate scarlm; Via G. Salvatore Napoli Italy
| |
Collapse
|
22
|
Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, di Prisco G, Nardini M, Estrin D, Smulevich G, Bolognesi M, Verde C. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 2015; 282:2948-65. [PMID: 26040838 DOI: 10.1111/febs.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | | | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Elena Caldelli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Barry D Howes
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Italy.,CNR-Institute of Biophysics and CIMAINA, University of Milano, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy.,Department of Biology, Roma 3 University, Italy
| |
Collapse
|
23
|
Merlino A, Vergara A, Vitagliano L. Comments on structural studies of haemoglobin from pisces species shortfin mako shark (Isurus oxyrinchus) at 1.9 Å resolution by P. Ramesh et al. (2013). J. Synchrotron Rad.20, 843-847. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:832-833. [PMID: 24971983 DOI: 10.1107/s1600577514010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| |
Collapse
|
24
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
25
|
Ronda L, Merlino A, Bettati S, Verde C, Balsamo A, Mazzarella L, Mozzarelli A, Vergara A. Role of tertiary structures on the Root effect in fish hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1885-93. [PMID: 23376186 DOI: 10.1016/j.bbapap.2013.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH6.2 and pH8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T-R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Goto H, Sudoh M, Kawamoto K, Sugimoto H, Inoue S. Isocyanurates with Planar Chirality: Design, Optical Resolution, and Isomerization. Chirality 2012; 24:867-78. [DOI: 10.1002/chir.22093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/06/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Hidetoshi Goto
- Department of Industrial Chemistry, Faculty of Engineering; Tokyo University of Science; Tokyo Japan
| | - Masanao Sudoh
- Department of Industrial Chemistry, Faculty of Engineering; Tokyo University of Science; Tokyo Japan
| | - Keiko Kawamoto
- Department of Industrial Chemistry, Faculty of Engineering; Tokyo University of Science; Tokyo Japan
| | - Hiroshi Sugimoto
- Department of Industrial Chemistry, Faculty of Engineering; Tokyo University of Science; Tokyo Japan
| | - Shohei Inoue
- Department of Industrial Chemistry, Faculty of Engineering; Tokyo University of Science; Tokyo Japan
| |
Collapse
|
27
|
Balsamo A, Sannino F, Merlino A, Parrilli E, Tutino ML, Mazzarella L, Vergara A. Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins. Biochimie 2012; 94:953-60. [DOI: 10.1016/j.biochi.2011.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
28
|
Enyenihi AA, Yang H, Ytterberg AJ, Lyutvinskiy Y, Zubarev RA. Heme binding in gas-phase holo-myoglobin cations: distal becomes proximal? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1763-70. [PMID: 21952890 DOI: 10.1007/s13361-011-0182-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 05/11/2023]
Abstract
His64 and His93 are the two well-known sites of heme binding in water-dissolved holo-myoglobin, with His93 being a proximal, strongly binding partner, while the distal His64 weakly coordinates to the heme through a small-molecule ligand, e.g., water or O(2). The heme bonding scheme in a water-free environment is as yet unclear. Here we employed electron transfer dissociation tandem mass spectrometry to study the preferential attachment site of the ferri-heme (Fe(3+)) in electrospray-produced 12+, 14+, and 16+ holo-myoglobin ions. Contrary to expectations, in lower-charge complexes that should have a structure resembling that in solution, the heme seems to be preferentially attached to the "distal" histidine. In contrast, in the highest studied charge state, the "proximal" histidine is the site of preferential attachment; the 14+ charge state is an intermediate case. This surprising finding raises a question of heme coordination in proteins transferred to water-free environment, as well as the effect of the protonation sites on heme bonding.
Collapse
Affiliation(s)
- Atim A Enyenihi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelesväg 2, SE-17 177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Merlino A, Howes BD, Prisco GD, Verde C, Smulevich G, Mazzarella L, Vergara A. Occurrence and formation of endogenous histidine hexa-coordination in cold-adapted hemoglobins. IUBMB Life 2011; 63:295-303. [PMID: 21491555 DOI: 10.1002/iub.446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/11/2011] [Indexed: 11/06/2022]
Abstract
Spectroscopic and crystallographic evidence of endogenous (His) ligation at the sixth coordination site of the heme iron has been reported for monomeric, dimeric, and tetrameric hemoglobins (Hbs) in both ferrous (hemochrome) and ferric (hemichrome) oxidation states. In particular, the ferric bis- histidyl adduct represents a common accessible ordered state for the β chains of all tetrameric Hbs isolated from Antarctic and sub-Antarctic fish. Indeed, the crystal structures of known tetrameric Hbs in the bis-His state are characterized by a different binding state of the α and β chains. An overall analysis of the bis-histidyl adduct of globin structures deposited in the Protein Data Bank reveals a marked difference between hemichromes in tetrameric Hbs compared to monomeric/dimeric Hbs. Herein, we review the structural, spectroscopic and stability features of hemichromes in tetrameric Antarctic fish Hbs. The role of bis-histidyl adducts is also addressed in a more evolutionary context alongside the concept of its potential physiological role.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemistry "Paolo Corradini," University of Naples "Federico II," Complesso Universitario Monte S. Angelo, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Qin P, Liu R, Teng Y. Perfluorodecanoic acid binding to hemoproteins: new insights from spectroscopic studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3246-52. [PMID: 21391606 DOI: 10.1021/jf200092y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perfluorodecanoic acid (PFDA), a representative of the perfluoroalkyl acids, poses a great threat to humans and animals via food and other potential sources. In this work, we determined the effects of PFDA binding to two hemoproteins, bovine hemoglobin (BHb) and myoglobin (Mb). Using fluorescence spectroscopy, we found that PFDA greatly enhanced the fluorescence intensity of both hemoproteins, while perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPA) have minimal effects on the fluorescence. UV-vis absorption (UV) spectroscopy showed that PFDA induced the unfolding of the hemoproteins accompanied by exposure of the heme pocket and facilitating the formation of hemichrome. Additionally, as shown by the circular dichroism (CD) data, PFDA altered the secondary structure of both BHb and Mb. This work elucidates the interaction mechanism of PFDA with two hemoproteins.
Collapse
Affiliation(s)
- Pengfei Qin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | |
Collapse
|
31
|
Vergara A, Vitagliano L, Merlino A, Sica F, Marino K, Verde C, di Prisco G, Mazzarella L. An order-disorder transition plays a role in switching off the root effect in fish hemoglobins. J Biol Chem 2010; 285:32568-75. [PMID: 20610398 PMCID: PMC2952259 DOI: 10.1074/jbc.m110.143537] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/17/2010] [Indexed: 11/06/2022] Open
Abstract
The Root effect is a widespread property among fish hemoglobins whose structural basis remains largely obscure. Here we report a crystallographic and spectroscopic characterization of the non-Root-effect hemoglobin isolated from the Antarctic fish Trematomus newnesi in the deoxygenated form. The crystal structure unveils that the T state of this hemoglobin is stabilized by a strong H-bond between the side chains of Asp95α and Asp101β at the α(1)β(2) and α(2)β(1) interfaces. This unexpected finding undermines the accepted paradigm that correlates the presence of this unusual H-bond with the occurrence of the Root effect. Surprisingly, the T state is characterized by an atypical flexibility of two α chains within the tetramer. Indeed, regions such as the CDα corner and the EFα pocket, which are normally well ordered in the T state of tetrameric hemoglobins, display high B-factors and non-continuous electron densities. This flexibility also leads to unusual distances between the heme iron and the proximal and distal His residues. These observations are in line with Raman micro-spectroscopy studies carried out both in solution and in the crystal state. The findings here presented suggest that in fish hemoglobins the Root effect may be switched off through a significant destabilization of the T state regardless of the presence of the inter-aspartic H-bond. Similar mechanisms may also operate for other non-Root effect hemoglobins. The implications of the flexibility of the CDα corner for the mechanism of the T-R transition in tetrameric hemoglobins are also discussed.
Collapse
Affiliation(s)
- Alessandro Vergara
- From the Department of Chemistry, University of Naples “Federico II,” Naples I-80126, Italy
- the Istituto di Biostrutture e Bioimmagini, CNR, Naples I-80134, Italy, and
| | - Luigi Vitagliano
- the Istituto di Biostrutture e Bioimmagini, CNR, Naples I-80134, Italy, and
| | - Antonello Merlino
- From the Department of Chemistry, University of Naples “Federico II,” Naples I-80126, Italy
- the Istituto di Biostrutture e Bioimmagini, CNR, Naples I-80134, Italy, and
| | - Filomena Sica
- From the Department of Chemistry, University of Naples “Federico II,” Naples I-80126, Italy
- the Istituto di Biostrutture e Bioimmagini, CNR, Naples I-80134, Italy, and
| | - Katia Marino
- From the Department of Chemistry, University of Naples “Federico II,” Naples I-80126, Italy
- the Institute of Protein Biochemistry, CNR, Naples I-80131, Italy
| | - Cinzia Verde
- the Institute of Protein Biochemistry, CNR, Naples I-80131, Italy
| | - Guido di Prisco
- the Institute of Protein Biochemistry, CNR, Naples I-80131, Italy
| | - Lelio Mazzarella
- From the Department of Chemistry, University of Naples “Federico II,” Naples I-80126, Italy
- the Istituto di Biostrutture e Bioimmagini, CNR, Naples I-80134, Italy, and
| |
Collapse
|
32
|
Zou AH, Liu J, Mu BZ. Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin: A spectroscopic and electrochemical investigation. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Russo R, Giordano D, Riccio A, di Prisco G, Verde C. Cold-adapted bacteria and the globin case study in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mar Genomics 2010; 3:125-31. [PMID: 21798206 DOI: 10.1016/j.margen.2010.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022]
Abstract
Environmental oxygen availability may play an important role in the evolution of polar marine organisms, as suggested by the physiological and biochemical strategies adopted by these organisms to acquire, deliver and scavenge oxygen. Stress conditions such as extreme temperatures increase the production of reactive oxygen species (ROS) in cells. Thus, in order to prevent cellular damage, adjustments in antioxidant defences are needed to maintain the steady-state concentration of ROS. Cold-adapted bacteria are generally acknowledged to achieve their physiological and ecological success in cold environments through structural and functional properties developed in their genomes. A short overview on the molecular adaptations of polar bacteria and in particular on the biological function of oxygen-binding proteins in Pseudoalteromonas haloplanktis TAC125, selected as a model, will be provided together with the role of oxygen and oxidative/nitrosative stress in regulating adaptive responses at cellular and molecular levels.
Collapse
|
34
|
Zou A, Liu J, Garamus VM, Zheng K, Willumeit R, Mu B. Interaction between the natural lipopeptide [Glu1, Asp5)] surfactin-C15 and hemoglobin in aqueous solution. Biomacromolecules 2010; 11:593-9. [PMID: 20099842 DOI: 10.1021/bm9011453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between natural lipopeptide [Glu(1), Asp(5)] surfactin-C15 (surfactin) and hemoglobin (Hb) has been studied. Surface tension measurements show that the critical micelle concentration (cmc) of surfactin increases from 1.54 x 10(-5) to 3.86 x 10(-5) mol/L with Hb. The UV spectra display that the effect of surfactin on Hb exhibits strong concentration-dependent fashion and the aquometHb convert to hemichrome at high surfactin concentration. Small-angle neutron scattering (SANS) and freeze-fracture transmission electron microscopy (FF-TEM) measurements show that surfactin result in the formation of a fractal structure representing a "necklace model" of micelle-like clusters randomly distributed along the protein polypeptide chain at high surfactin concentration. Far-UV circular dichroism (CD) results confirmed that surfactin can disrupt the helical structure of protein at high concentrations, although the enhanced native-like behavior of protein by low concentration of surfactin was observed. The microenvironment change around Phe amino residues and disulfide bonds of Hb was obtained from near-UV CD spectra.
Collapse
Affiliation(s)
- Aihua Zou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Merlino A, Vergara A, Sica F, Aschi M, Amadei A, Di Nola A, Mazzarella L. Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method. J Phys Chem B 2010; 114:7002-8. [DOI: 10.1021/jp908525s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alessandro Vergara
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Filomena Sica
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Massimiliano Aschi
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Andrea Amadei
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alfredo Di Nola
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Lelio Mazzarella
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| |
Collapse
|
36
|
Kuwada T, Hasegawa T, Takagi T, Sato I, Shishikura F. pH-dependent structural changes in haemoglobin component V from the midge larvaPropsilocerus akamusi(Orthocladiinae, Diptera). ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:258-67. [DOI: 10.1107/s0907444909055760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022]
Abstract
Haemoglobin component V (Hb V) from the midge larvaPropsilocerus akamusiexhibits oxygen affinity despite the replacement of HisE7 and a pH-dependence of its functional properties. In order to understand the contribution of the distal residue to the ligand-binding properties and the pH-dependent structural changes in this insect Hb, the crystal structure of Hb V was determined under five different pH conditions. Structural comparisons of these Hb structures indicated that at neutral pH ArgE10 contributes to the stabilization of the haem-bound ligand molecule as a functional substitute for the nonpolar E7 residue. However, ArgE10 does not contribute to stabilization at acidic and alkaline pH because of the swinging movement of the Arg side chain under these conditions. This pH-dependent behaviour of Arg results in significant differences in the hydrogen-bond network on the distal side of the haem in the Hb V structures at different pH values. Furthermore, the change in pH results in a partial movement of the F helix, considering that coupled movements of ArgE10 and the F helix determine the haem location at each pH. These results suggested that Hb V retains its functional properties by adapting to the structural changes caused by amino-acid replacements.
Collapse
|
37
|
Giordano D, Russo R, Coppola D, di Prisco G, Verde C. Molecular adaptations in haemoglobins of notothenioid fishes. JOURNAL OF FISH BIOLOGY 2010; 76:301-318. [PMID: 20738709 DOI: 10.1111/j.1095-8649.2009.02528.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since haemoglobins of all animal species have the same haem group, differences in their properties, including oxygen affinity, electrophoretic mobility and pH sensitivity, must result from the interaction of the prosthetic group with specific amino-acid residues in the primary structure. For this reason, fish globins have been the subject of extensive studies in recent years, not only for their structural characteristics, but also because they offer the possibility to investigate the evolutionary history of these ancient molecules in marine and freshwater species living in a great variety of environmental conditions. This review summarizes the current knowledge on the structure, function and phylogeny of haemoglobins of notothenioid fishes. On the basis of crystallographic analysis, the evolution of the Root effect is analysed. Adaptation of the oxygen transport system in notothenioids seems to be based on evolutionary changes, involving levels of biological organization higher than the structure of haemoglobin. These include changes in the rate of haemoglobin synthesis or in regulation by allosteric effectors, which affect the amount of oxygen transported in blood. These factors are thought to be more important for short-term response to environmental challenges than previously believed.
Collapse
Affiliation(s)
- D Giordano
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | | | |
Collapse
|
38
|
Combined crystallographic and spectroscopic analysis ofTrematomus bernacchiihemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Biopolymers 2009; 91:1117-25. [DOI: 10.1002/bip.21206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Abstract
One of the least recognized causes of cellular damage during ex vivo preservation of red blood cells is oxidative injury to the hemoglobin. The latter has been associated with hemolysis through the release of toxic substances and oxidation of vital cell components. This review delineates some of the major pathways that link hemoglobin oxidation and cellular damage, and summarizes the incidence of red blood cell oxidative injury during hypothermic storage, cryopreservation and desiccation stress. Red blood cell hypothermic storage, despite its success, is not exempt from oxidative injury. Growing evidence portrays a time-dependant oxidative assault including formation of reactive oxygen species, attachment of denatured hemoglobin to membrane phospholipids and the release of hemoglobin-containing membrane microvesicles throughout storage. Similar symptoms have been observed in attempts to stabilize red blood cells in the dried state, in which methemoglobin levels of reconstituted red blood cells reached 50%. Factors affecting the rate of hemoglobin oxidation during red blood cell ex vivo storage include compromised antioxidant activity, high concentrations of glucose in the storage media and the presence of molecular oxygen. Hemoglobin oxidation largely dictates our ability to effectively preserve red blood cells. Understanding its origins along with investigating methods to minimize it can significantly improve the quality of our future blood products.
Collapse
Affiliation(s)
- Tamir Kanias
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
40
|
Gell DA, Feng L, Zhou S, Jeffrey PD, Bendak K, Gow A, Weiss MJ, Shi Y, Mackay JP. A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin. J Biol Chem 2009; 284:29462-9. [PMID: 19706593 PMCID: PMC2785579 DOI: 10.1074/jbc.m109.027045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/16/2009] [Indexed: 11/06/2022] Open
Abstract
alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.
Collapse
Affiliation(s)
- David A Gell
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vergara A, Franzese M, Merlino A, Bonomi G, Verde C, Giordano D, di Prisco G, Lee HC, Peisach J, Mazzarella L. Correlation between hemichrome stability and the root effect in tetrameric hemoglobins. Biophys J 2009; 97:866-74. [PMID: 19651045 DOI: 10.1016/j.bpj.2009.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022] Open
Abstract
Oxidation of Hbs leads to the formation of different forms of Fe(III) that are relevant to a range of biochemical and physiological functions. Here we report a combined EPR/x-ray crystallography study performed at acidic pH on six ferric tetrameric Hbs. Five of the Hbs were isolated from the high-Antarctic notothenioid fishes Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, and one was isolated from the sub-Antarctic notothenioid Cottoperca gobio. Our EPR analysis reveals that 1), in all of these Hbs, at acidic pH the aquomet form and two hemichromes coexist; and 2), only in the three Hbs that exhibit the Root effect is a significant amount of the pentacoordinate (5C) high-spin Fe(III) form found. The crystal structure at acidic pH of the ferric form of the Root-effect Hb from T. bernacchii is also reported at 1.7 A resolution. This structure reveals a 5C state of the heme iron for both the alpha- and beta-chains within a T quaternary structure. Altogether, the spectroscopic and crystallographic results indicate that the Root effect and hemichrome stability at acidic pH are correlated in tetrameric Hbs. Furthermore, Antarctic fish Hbs exhibit higher peroxidase activity than mammalian and temperate fish Hbs, suggesting that a partial hemichrome state in tetrameric Hbs, unlike in monomeric Hbs, does not remove the need for protection from peroxide attack, in contrast to previous results from monomeric Hbs.
Collapse
Affiliation(s)
- Alessandro Vergara
- Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moschetti T, Mueller U, Schulze J, Brunori M, Vallone B. The structure of neuroglobin at high Xe and Kr pressure reveals partial conservation of globin internal cavities. Biophys J 2009; 97:1700-8. [PMID: 19751675 PMCID: PMC2741589 DOI: 10.1016/j.bpj.2009.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the brain of vertebrates. Ferrous Ngb binds dioxygen with high affinity and the O(2) adduct is able to scavenge NO. Convincing in vitro and in vivo data indicate that Ngb is involved in neuroprotection during hypoxia and ischemia. The 3D structure of Ngb reveals the presence of a wide internal cavity connecting its heme active site with the bulk. To explore the role of this "tunnel" in the control of ligand binding, we determined the structure of metNgb and NgbCO equilibrated with Xe or Kr. We show four docking sites for Xe (only two for Kr); two of the four Xe sites are within the large cavity. They are only partially conserved in globins, since the two proximal Xe sites identified in myoglobin (Xe1 and Xe2) are absent in Ngb, as well as in cytoglobin. The Xe docking sites in Ngb map a pathway within the protein matrix, leading to the heme, which becomes more accessible in the ligand-bound species. This may be of significance in connection with the redox chemistry that may be the primary function of this hexacoordinate globin.
Collapse
Affiliation(s)
- Tommaso Moschetti
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Uwe Mueller
- Macromolecular Crystallography Group, Helmholtz Zentrum Berlin für Materialien und Energie, BESSY-II, Berlin, Germany
| | - Jörg Schulze
- Macromolecular Crystallography Group, Helmholtz Zentrum Berlin für Materialien und Energie, BESSY-II, Berlin, Germany
| | - Maurizio Brunori
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
43
|
Balakrishnan G, Ibrahim M, Mak PJ, Hata J, Kincaid JR, Spiro TG. Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids. J Biol Inorg Chem 2009; 14:741-50. [PMID: 19288145 PMCID: PMC2880192 DOI: 10.1007/s00775-009-0487-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
Abstract
Time-resolved resonance Raman (RR) spectra are reported for hemoglobin (Hb) tetramers, in which the alpha and beta chains are selectively substituted with mesoheme. The Soret absorption band shift in mesoheme relative to protoheme permits chain-selective recording of heme RR spectra. The evolution of these spectra following HbCO photolysis shows that the geminate recombination rates and the yields are the same for the two chains, consistent with recent results on (15)N-heme isotopomer hybrids. The spectra also reveal systematic shifts in the deoxyheme nu (4) and nu (Fe-His) RR bands, which are anticorrelated. These shifts are resolved for the successive intermediates in the protein structure, which have previously been determined from time-resolved UV RR spectra. Both chains show Fe-His bond compression in the immediate photoproduct, which relaxes during the formation of the first intermediate, R(deoxy) (0.07 micros), in which the proximal F-helix is proposed to move away from the heme. Subsequently, the Fe-His bond weakens, more so for the alpha chains than for the beta chains. The weakening is gradual for the beta chains, but is abrupt for the alpha chains, coinciding with completion of the R-T quaternary transition, at 20 micros. Since the transition from fast- to slow-rebinding Hb also occurs at 20 micros, the drop in the alpha chain nu (Fe-His) supports the localization of ligation restraint to tension in the Fe-His bond, at least in the alpha chains. The mechanism is more complex in the beta chains.
Collapse
|
44
|
Merlino A, Vergara A, Sica F, Mazzarella L. The bis-histidyl complex in hemoproteins: A detailed conformational analysis of database protein structures and the case of Antarctic fish hemoglobins. Mar Genomics 2009; 2:51-6. [DOI: 10.1016/j.margen.2009.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
45
|
Verde C, Giordano D, Russo R, Riccio A, Vergara A, Mazzarella L, di Prisco G. Hemoproteins in the cold. Mar Genomics 2009; 2:67-73. [DOI: 10.1016/j.margen.2009.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/16/2009] [Accepted: 03/02/2009] [Indexed: 11/25/2022]
|
46
|
Vitagliano L, Vergara A, Bonomi G, Merlino A, Verde C, Prisco GD, Howes BD, Smulevich G, Mazzarella L. Spectroscopic and Crystallographic Characterization of a Tetrameric Hemoglobin Oxidation Reveals Structural Features of the Functional Intermediate Relaxed/Tense State. J Am Chem Soc 2008; 130:10527-35. [DOI: 10.1021/ja803363p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Vergara
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giovanna Bonomi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Antonello Merlino
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Guido di Prisco
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Barry D. Howes
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lelio Mazzarella
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
47
|
Vergara A, Vitagliano L, Verde C, di Prisco G, Mazzarella L. Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins. Methods Enzymol 2008; 436:425-44. [PMID: 18237647 DOI: 10.1016/s0076-6879(08)36024-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hemoglobins (Hbs) are important proteins devoted to oxygen transport. Hbs carry out their function by keeping the iron atom, which binds the oxygen molecule, in its reduced Fe(II) state. Nonetheless, it is well known that Hbs frequently undergo, even under physiological conditions, spontaneous oxidation. Although these processes have been widely investigated, their role and impact in different biological contexts are still highly debated. In vertebrate Hbs, assembled in alpha2beta2 tetramers, it has traditionally been assumed that oxidized forms endowed with nativelike structures are either aquo-met or hydroxy-met states, depending on the pH of the medium. This view has been questioned by several independent investigations. In the past, indirect evidence of the existence of alternative nativelike oxidized forms was obtained from spectroscopic analyses. Indeed, it was suggested that, in tetrameric Hbs, bis-histidyl hemichrome states could be compatible with folded structures. Recent studies performed by complementing spectroscopic and crystallographic methodologies have provided a detailed picture of hemichrome structure and formation in these proteins. Here we review the methodological approaches adopted to achieve these results, the main structural features of these states, and the current hypotheses on their possible functional implications.
Collapse
Affiliation(s)
- Alessandro Vergara
- Department of Chemistry and Consorzio Bioteknet, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
48
|
Kuwada T, Hasegawa T, Sato S, Sato I, Ishikawa K, Takagi T, Shishikura F. Crystal structures of two hemoglobin components from the midge larva Propsilocerus akamusi (Orthocladiinae, Diptera). Gene 2007; 398:29-34. [PMID: 17590288 DOI: 10.1016/j.gene.2007.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/08/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
The polymorphic components of hemoglobin (Hb) of the midge larva Propsilocerus akamusi were classified into two distinct types dependent on their spectroscopic properties, normal absorption (N) and low absorption (L). Analyses of the amino acid sequences of component VII (N-type Hb) and component V (L-type Hb) from P. akamusi indicated that one remarkable difference is the replacement of the distal histidine (His) with isoleucine (Ile) in component V. To clarify the structural differences between the two Hb components, we determined the crystal structures of components V and VII at resolutions of 1.64 A and 1.50 A, respectively. These crystal structures indicated a short additional helix comprising three amino acid residues at the C-terminal region in component V, and a typical globin fold including eight helices in component VII. Comparison of the heme regions of the Hb components suggests that the structural changes of the heme region in component V on ligation differ from that of usual Hb.
Collapse
Affiliation(s)
- Takao Kuwada
- Advanced Research Institute for the Sciences and Humanities, Nihon University, Chiyoda-ku, Tokyo 102-8251, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Vergara A, Franzese M, Merlino A, Vitagliano L, Verde C, di Prisco G, Lee HC, Peisach J, Mazzarella L. Structural characterization of ferric hemoglobins from three antarctic fish species of the suborder notothenioidei. Biophys J 2007; 93:2822-9. [PMID: 17545238 PMCID: PMC1989692 DOI: 10.1529/biophysj.107.105700] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous autoxidation of tetrameric Hbs leads to the formation of Fe (III) forms, whose physiological role is not fully understood. Here we report structural characterization by EPR of the oxidized states of tetrameric Hbs isolated from the Antarctic fish species Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, as well as the x-ray crystal structure of oxidized Trematomus bernacchii Hb, redetermined at high resolution. The oxidation of these Hbs leads to formation of states that were not usually detected in previous analyses of tetrameric Hbs. In addition to the commonly found aquo-met and hydroxy-met species, EPR analyses show that two distinct hemichromes coexist at physiological pH, referred to as hemichromes I and II, respectively. Together with the high-resolution crystal structure (1.5 A) of T. bernacchii and a survey of data available for other heme proteins, hemichrome I was assigned by x-ray crystallography and by EPR as a bis-His complex with a distorted geometry, whereas hemichrome II is a less constrained (cytochrome b5-like) bis-His complex. In four of the five Antartic fish Hbs examined, hemichrome I is the major form. EPR shows that for HbCTn, the amount of hemichrome I is substantially reduced. In addition, the concomitant presence of a penta-coordinated high-spin Fe (III) species, to our knowledge never reported before for a wild-type tetrameric Hb, was detected. A molecular modeling investigation demonstrates that the presence of the bulkier Ile in position 67beta in HbCTn in place of Val as in the other four Hbs impairs the formation of hemichrome I, thus favoring the formation of the ferric penta-coordinated species. Altogether the data show that ferric states commonly associated with monomeric and dimeric Hbs are also found in tetrameric Hbs.
Collapse
Affiliation(s)
- Alessandro Vergara
- Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, I-80126 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mazzarella L, Vergara A, Vitagliano L, Merlino A, Bonomi G, Scala S, Verde C, di Prisco G. High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the root effect. Proteins 2006; 65:490-8. [PMID: 16909420 DOI: 10.1002/prot.21114] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Root effect is a widespread property in fish hemoglobins (Hbs) that produces a drastic reduction of cooperativity and oxygen-binding ability at acidic pH. Here, we report the high-resolution structure of the deoxy form of Hb isolated from the Antarctic fish Trematomus bernacchii (HbTb) crystallized at pH 6.2 and 8.4. The structure at acidic pH has been previously determined at a moderate resolution (Ito et al., J Mol Biol 1995;250:648-658). Our results provide a clear picture of the events occurring upon the pH increase from 6.2 to 8.4, observed within a practically unchanged crystal environment. In particular, at pH 8.4, the interaspartic hydrogen bond at the alpha(1)beta(2) interface is partially broken, suggesting a pK(a) close to 8.4 for Asp95alpha. In addition, a detailed survey of the histidine modifications, caused by the change in pH, also indicates that at least three hot regions of the molecule are modified (Ebeta helix, Cbeta-tail, CDalpha corner) and can be considered to be involved at various levels in the release of the Root protons. Most importantly, at the CDalpha corner, the break of the salt bridge Asp48alpha-His55alpha allows us to describe a detailed mechanism that transmits the modification from the CDalpha corner far to the alpha heme. More generally, the results shed light on the role played by the histidine residues in modulating the strength of the Root effect and also support the emerging idea that the structural determinants, at least for a part of the Root effect, are specific of each Hb endowed with this property.
Collapse
Affiliation(s)
- Lelio Mazzarella
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia, I-80126 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|