1
|
Zhu B, Feng J, Liang X, Fu Z, Liao M, Deng T, Wang K, Xie J, Chi J, Yang L, Gao Y, Nie K, Wang L, Zhang P, Zhang Y. TREM2 deficiency exacerbates cognitive impairment by aggravating α-Synuclein-induced lysosomal dysfunction in Parkinson's disease. Cell Death Discov 2025; 11:243. [PMID: 40393958 DOI: 10.1038/s41420-025-02538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/27/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Cognitive impairment in Parkinson's disease (PD) is a widespread and rapidly progressive feature that impacts prognosis. Although TREM2 has been implicated in neuroprotection across various neurodegenerative diseases, its specific role in PD remains to be clarified. In this study, we first detected the hippocampus of human PD specimens and of the mutant A53T α-Synuclein transgenic mice (A53T mice), and found a significant increase in the number of TREM2+ microglia. To evaluate the effects of TREM2 deficiency, TREM2-deficient A53T mice (TREM2-/-/A53T mice) were generated. In these mice, exacerbated cognitive impairment, neurodegeneration, disruption of synaptic plasticity, and accumulation of pathological α-Synuclein (α-Syn) in the hippocampus were observed, without any detected motor dysfunction. Despite increased infiltration of activated microglia surrounding α-Syn aggregates, lysosomal dysfunction in microglia was aggravated in the TREM2-/-/A53T mice. In addition, transcriptional analyses and in vitro experiments further found that TREM2 knockdown inhibited the nuclear distribution of TFEB via the ERK1/2 pathway, exacerbating α-Syn-induced lysosomal dysfunction and causing more pathological α-Syn accumulation. Finally, HT22 cells were cocultured with TREM2 knockdown of BV-2 cells pretreated with recombinant human A53T α-Syn preformed fibrils (PFFs). The coculture experiments showed that TREM2 knockdown in BV-2 cells pretreated with PFFs enhanced the phosphorylation of α-Syn and promoted apoptosis in HT22 cells via inhibiting α-Syn degradation. In conclusion, TREM2 deficiency exacerbates cognitive impairment in PD by exacerbating α-Syn-induced microglial lysosomal dysfunction, identifying TREM2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Jiezhu Feng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Zhongling Fu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Mengshi Liao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Tongtong Deng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Kaicheng Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Jianwei Xie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
- Department of Neurology, Longyan First Hospital, Fujian Province, China
| | - Jieshan Chi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Lu Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Soto Linan V, Rioux V, Peralta M, Dupré N, Hébert M, Lévesque M. Early detection of Parkinson's disease: Retinal functional impairments as potential biomarkers. Neurobiol Dis 2025; 208:106872. [PMID: 40090470 DOI: 10.1016/j.nbd.2025.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Parkinson's disease is typically diagnosed after substantial neurodegeneration despite early non-motor symptoms manifesting decades earlier. These changes offer a promising avenue for diagnostic exploration, especially within the eye, which has been proposed as a "window to the brain." OBJECTIVE The aim was to identify biomarkers by validating the use of electroretinography, a non-invasive technique, to detect early retinal function anomalies reflecting central dysfunction. METHODS Homozygous M83 transgenic mice (n = 10 males, 11 females), overexpressing human A53T α-synuclein, underwent behavioral tests and electroretinography measurements. Histological evaluation was performed at four months to analyze synucleinopathies and neurodegeneration. Electroretinography was also conducted with idiopathic PD patients (mean age 63.35 ± 7.73; disease duration 4.15 ± 2.06; H&Y score 2.07 ± 0.59; n = 12 males, 8 females) and healthy age-matched controls (mean age 61.65 ± 8.39; n = 9 males, 11 females). RESULTS Rodent electroretinography revealed reduced photopic b-wave, PhNR b-wave, and PhNR-wave amplitudes at two and four months, particularly in females, indicating bipolar and retinal ganglion cell impairment. Based on retinal histological assessment, these changes might arise from α-synuclein pathology occurring in outer retinal layers. Likewise, the scotopic b-wave and PhNR waveform were similarly impaired in female participants with Parkinson's disease. The scotopic oscillatory potentials isolated further identified an attenuated amacrine cell output in females. CONCLUSIONS Findings from both mice and human cohorts indicate that retinal functional impairments can be detected early in the progression of Parkinson's disease, particularly among females. These tools show promise in facilitating early diagnosis, disease monitoring, therapeutic intervention, and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Victoria Soto Linan
- Department of Psychiatry and Neurosciences, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Véronique Rioux
- Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Modesto Peralta
- Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec-Université Laval, 2705 Bd Laurier, Québec G1V 4G2, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada.
| | - Marc Hébert
- Department of Ophthalmology and Otorhinolaryngology, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Clinical and Cognitive Neuroscience Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, 1050 Av. de la Médecine, Québec G1V 0A6, Québec, Canada; Integrative Neuroscience and Experimental Therapies Axis, CERVO Brain Research Center, 2301 Av. D'Estimauville, Québec G1E 1T2, Québec, Canada.
| |
Collapse
|
3
|
Liu X, Hebron ML, Stevenson M, Moussa C. A Novel Small Molecule Enhances Stable Dopamine Delivery to the Brain in Models of Parkinson's Disease. Int J Mol Sci 2025; 26:4251. [PMID: 40362491 PMCID: PMC12072186 DOI: 10.3390/ijms26094251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Levodopa is the gold standard symptomatic treatment for Parkinson's disease. Disease progression due to alpha-synuclein accumulation, brain inflammation, and the loss of dopamine neurons, as well as motor fluctuations, due to variations in levodopa plasma levels, remain a significant problem for Parkinson's patients. Developing a therapeutic option that can simultaneously reduce the neuropathology associated with alpha-synuclein aggregation, attenuate oxidative stress and inflammation, and overcome variations in levodopa plasma levels is an unmet need to treat Parkinson's disease. We determined the pharmacokinetics and pharmacodynamics of a small molecule, dubbed Pegasus, that conjugates dopamine with a nonantibiotic doxycycline derivative via a molecular linker. Mice harboring the human A53T mutation of alpha-synuclein or treated with MPTP were injected once daily with 50 mg/kg Pegasus for 2 weeks and assessed for motor, behavioral, and cognitive effects, followed by biochemical and histochemical analysis. Pegasus is a poor brain penetrant but it was metabolized to stable dopamine and tetracycline derivatives, and abundant plasma and brain levels of these metabolites were detected. Pegasus reduced soluble and insoluble alpha-synuclein levels, protected dopamine-producing neurons, and reduced astrocytic activation in A53T mice. Mice treated with Pegasus exhibited motor improvement (6.5 h) and reduction in anxiety-like behavior. Rotarod and grip strength improved in MPTP-treated mice when mice were treated with Pegasus or levodopa. Pegasus may be a multi-modal therapeutic option that can deliver stable dopamine into the CNS and reduce misfolded alpha-synuclein, activate dopamine receptors, and attenuate variations in dopamine levels.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA; (M.L.H.); (M.S.)
| | | | | | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA; (M.L.H.); (M.S.)
| |
Collapse
|
4
|
Umeda T, Sakai A, Uekado R, Shigemori K, Nakajima R, Yamana K, Tomiyama T. Simply crushed zizyphi spinosi semen prevents neurodegenerative diseases and reverses age-related cognitive decline in mice. eLife 2025; 13:RP100737. [PMID: 40266679 PMCID: PMC12017767 DOI: 10.7554/elife.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Neurodegenerative diseases are age-related disorders characterized by the cerebral accumulation of amyloidogenic proteins, and cellular senescence underlies their pathogenesis. Thus, it is necessary for preventing these diseases to remove toxic proteins, repair damaged neurons, and suppress cellular senescence. As a source for such prophylactic agents, we selected zizyphi spinosi semen (ZSS), a medicinal herb used in traditional Chinese medicine. Oral administration of ZSS hot water extract ameliorated Aβ and tau pathology and cognitive impairment in mouse models of Alzheimer's disease and frontotemporal dementia. Non-extracted ZSS simple crush powder showed stronger effects than the extract and improved α-synuclein pathology and cognitive/motor function in Parkinson's disease model mice. Furthermore, when administered to normal aged mice, the ZSS powder suppressed cellular senescence, reduced DNA oxidation, promoted brain-derived neurotrophic factor expression and neurogenesis, and enhanced cognition to levels similar to those in young mice. The quantity of known active ingredients of ZSS, jujuboside A, jujuboside B, and spinosin was not proportional to the nootropic activity of ZSS. These results suggest that ZSS simple crush powder is a promising dietary material for the prevention of neurodegenerative diseases and brain aging.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Rumi Uekado
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Ryota Nakajima
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Kei Yamana
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| |
Collapse
|
5
|
Gui M, Lv L, Hu S, Qin L, Wang C. Sarcopenia in Parkinson's disease: from pathogenesis to interventions. Metabolism 2025; 169:156272. [PMID: 40258411 DOI: 10.1016/j.metabol.2025.156272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Parkinson's disease (PD) and sarcopenia are prevalent age-related conditions that often coexist in affected individuals. Sarcopenia is particularly common among PD patients, with severe cases affecting approximately one in five individuals with the disease. Furthermore, sarcopenia is closely linked to the accelerated progression of PD, diminished quality of life, greater susceptibility to falls and fractures, and increased mortality risk. Although the precise mechanisms remain unclear, numerous studies suggest that factors such as the accumulation of α-Synuclein in skeletal muscle, loss of motor neurons, inflammation, phosphate toxicity, hormonal dysregulation, vitamin D deficiency, intestinal flora imbalances, and dysfunction of the gut-muscle-brain axis contribute to sarcopenia in PD. Understanding these mechanisms provides valuable insights into the relationship between PD and sarcopenia and establishes a foundation for future research and therapeutic strategies. This review examines the mechanisms underlying sarcopenia in PD, methods for its screening and assessment, and potential avenues for future research, including strategies for risk reduction and treatment.
Collapse
Affiliation(s)
- Meilin Gui
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lingling Lv
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shenglan Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China; Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China; Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Di Sarno A, Romano F, Arianna R, Serpico D, Lavorgna M, Savastano S, Colao A, Di Somma C. Lipid Metabolism and Statin Therapy in Neurodegenerative Diseases: An Endocrine View. Metabolites 2025; 15:282. [PMID: 40278411 PMCID: PMC12029512 DOI: 10.3390/metabo15040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Background/aim: A growing body of evidence suggests a link between dyslipidemias and neurodegenerative diseases, highlighting the crucial role of lipid metabolism in the health of the central nervous system. The aim of our work was to provide an update on this topic, with a focus on clinical practice from an endocrinological point of view. Endocrinologists, being experts in the management of dyslipidemias, can play a key role in the prevention and treatment of neurodegenerative conditions, through precocious and effective lipid profile optimization. Methods: The literature was scanned to identify clinical trials and correlation studies on the association between dyslipidemia, statin therapy, and the following neurodegenerative diseases: Alzheimer's disease (AD), Parkisons's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Results: Impaired lipid homeostasis, such as that frequently observed in patients affected by obesity and diabetes, is related to neurodegenerative diseases, such as AD, PD, and other cognitive deficits related to aging. AD and related dementias are now a real priority health problem. In the United States, there are approximately 7 million subjects aged 65 and older living with AD and related dementias, and this number is projected to grow to 12 million in the coming decades. Lipid-lowering therapy with statins is an effective strategy in reducing serum low-density lipoprotein cholesterol to normal range concentrations and, therefore, cardiovascular disease risk; moreover, statins have been reported to have a positive effect on neurodegenerative diseases. Conclusions: Several pieces of research have found inconsistent information following our review. There was no association between statin use and ALS incidence. More positive evidence has emerged regarding statin use and AD/PD. However, further large-scale prospective randomized control trials are required to properly understand this issue.
Collapse
Affiliation(s)
- Antonella Di Sarno
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Fiammetta Romano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Rossana Arianna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Domenico Serpico
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Mariarosaria Lavorgna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Silvia Savastano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Annamaria Colao
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples Federico II, 80138 Naples, Italy
| | - Carolina Di Somma
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
7
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Scholz K, Pattanayak R, Ekkatine R, Pair FS, Nobles A, Stone WJ, Yacoubian TA. Rab27b Promotes Lysosomal Function and Alpha-Synuclein Clearance in Neurons. J Neurosci 2025; 45:e1579242025. [PMID: 39965930 PMCID: PMC11968537 DOI: 10.1523/jneurosci.1579-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Alpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture model. Here, we expanded our previous work and characterized the role of Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn-inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from male and female Rab27b knock-out (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify changes in acidic vesicle trafficking and in lysosomal enzyme maturation and localization, which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy body disease subjects relative to healthy controls. These data suggest the role of Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Kasandra Scholz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Amber Nobles
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - William J Stone
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
9
|
Dimoula K, Papagiannakis N, Maniati M, Stefanis L, Emmanouilidou E. Aggregated α-synuclein in erythrocytes as a potential biomarker for idiopathic Parkinson's Disease. Parkinsonism Relat Disord 2025; 133:107321. [PMID: 39938327 DOI: 10.1016/j.parkreldis.2025.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/03/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Mostly known for its implication in synucleinopathies, including Parkinson's disease (PD), α-synuclein is predominantly expressed in the nervous system. Most of the peripheral α-synuclein is found in erythrocytes, and several studies have examined a possible association between erythrocytic α-synuclein and PD. METHODS We have used a recently developed ELISA that selectively detects fibrillar and oligomeric α-synuclein to measure aggregated α-synuclein in red blood cells (RBCs) collected from PD patients and age/sex-matched control individuals (n = 35). The PD group included patients without any common mutation (genetically undetermined group, GU-PD, n = 56) as well as mutation carriers in the α-synuclein gene (A53T-PD, n = 28) and glucocerebrosidase gene (GBA-PD, n = 24). RESULTS We found that the concentration of aggregated α-synuclein in erythrocytes was significantly increased in GU-PD patients compared to controls. A53T-PD and GBA-PD patients exhibited similar levels of erythrocytic aggregated α-synuclein as the control group. The levels of fibrillar/oligomeric α-synuclein in RBCs were reduced in respect to the age of control individuals suggesting that the observed increase in the GU-PD cohort was not due to normal aging. Parallel assessment of monomeric α-synuclein revealed that aggregated, but not total, α-synuclein could discriminate PD patients from control individuals. CONCLUSIONS The elevation of aggregated α-synuclein in GU-PD erythrocytes, which is not related to aging, suggests that these forms may be indicative of PD pathology and possibly accumulate upon disease establishment. As such, aggregated α-synuclein in RBCs could be a potential biomarker for PD diagnosis.
Collapse
Affiliation(s)
- Konstantina Dimoula
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Han MN, Di Natale MR, Lei E, Furness JB, Finkelstein DI, Hao MM, Diwakarla S, McQuade RM. Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson's disease. Acta Neuropathol Commun 2025; 13:58. [PMID: 40075409 PMCID: PMC11899089 DOI: 10.1186/s40478-025-01956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) dysfunctions, including constipation and delayed stomach emptying, are prevalent and debilitating non-motor symptoms of Parkinson's disease (PD). These symptoms have been associated with damage in the enteric nervous system (ENS) and the accumulation of pathogenic alpha-synuclein (α-Syn) within the GI tract. While motor deficits and dopaminergic neuron loss in the central nervous system (CNS) of the A53T mouse model are well-characterised, the temporal relationship between GI dysfunction, ENS pathology, and motor symptoms remains unclear. This study aimed to investigate functional alterations in the GI tract at the early stages of the disease, before the appearance of motor deficits, both in vivo and ex vivo. Early colonic motility deficits observed in A53T mice, measured via bead expulsion, preceded motor impairments emerged at 36 weeks. Although whole-gut transit remained unchanged, reduced faecal output was concurrent with marked colonic dysmotility at 36 weeks. Despite a lack of significant neuronal loss, a greater number of enteric neurons in A53T mice showed signs of neuronal hypertrophy and increased nuclear translocation of HuC/D proteins indicative of neuronal stress at 12 and 36 weeks. Calcium imaging revealed differential enteric neuron activity, characterised by exaggerated calcium transients at 12 weeks that normalized by 36 weeks. Furthermore, a reduction in enteric glial populations was observed as early as 12 weeks in both the ileum and colon of A53T mice. These findings provide compelling evidence that ENS pathology, including neuronal stress, disrupted calcium signalling, and glial cell loss, precedes the onset of motor symptoms and may contribute to early GI dysfunction in PD.
Collapse
Affiliation(s)
- Myat Noe Han
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Madeleine R Di Natale
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
| |
Collapse
|
11
|
Szegvari E, Holec SAM, Woerman AL. Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research. J Neurochem 2025; 169:e70021. [PMID: 40026260 PMCID: PMC11874209 DOI: 10.1111/jnc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Rodent models that accurately recapitulate key aspects of human disease have long been fundamental to the successful development of clinical interventions. This is greatly underscored in the neurodegenerative disease field, where preclinical testing of anti-prion therapeutics against rodent-adapted prions resulted in the development of small molecules effective against rodent-adapted prions but not against human prions. These findings provided critical lessons for ongoing efforts to develop treatments for patients with neurodegenerative diseases caused by misfolding and accumulation of the proteins tau and α-synuclein, or tauopathies and synucleinopathies, respectively. To avoid the potential pitfalls previously identified in the prion field, this review focuses on rodent models currently available to study tau and α-synuclein disease pathogenesis, emphasizing the strengths and limitations of each with the particular goal of better supporting preclinical research.
Collapse
Affiliation(s)
- Emma Szegvari
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Sara A. M. Holec
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Amanda L. Woerman
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
12
|
Sharma N, Sharma M, Thakkar D, Kumar H, Smetanova S, Buresova L, Andrla P, Khairnar A. Chronic DSS-Induced Colitis Exacerbates Parkinson's Disease Phenotype and Its Pathological Features Following Intragastric Rotenone Exposure. ACS Pharmacol Transl Sci 2025; 8:346-367. [PMID: 39974653 PMCID: PMC11833723 DOI: 10.1021/acsptsci.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025]
Abstract
Background: Parkinson's disease (PD) is intricately linked to gastrointestinal inflammation and the presence of neurotoxins in the gut, integrating α-syn pathologic alterations and subsequent neurodegeneration into the brain. Objectives: This study aimed to explore the enduring impact of dextran sodium sulfate (DSS)-mediated colitis on the vulnerability of central dopaminergic neurons to subsequent rotenone exposure. Methods: To induce chronic colitis, 10-month-old C57BL/6 mice were pre-exposed to 3 cycles of 1 week of 1% (w/v) DSS administration in drinking water followed by 2 weeks of regular drinking water. After colitis induction, animals received a low dose of intragastric rotenone for the next 8 weeks, followed by testing for Parkinsonian behavior and GI phenotypes of inflammation. At the end of the 17th week, colon, brain stem, and midbrain tissue were isolated and analyzed for α-syn, inflammatory markers, and dopaminergic neuronal loss. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Results: We found that chronic rotenone administration in the presence of preexisting colitis led to a further increase in colonic pro-inflammatory mediator expressions, α-syn expression, and reduced colonic tight junction protein expressions. We also found early impairment of GI functions and worsened grip strength in rotenone-exposed colitic mice. Furthermore, α-syn pathology specific to the colitic mice exposed to rotenone showed dopaminergic neurons degeneration and astroglial activation in substantia nigra and striatum, including regions of the brain stem, i.e., dorsal motor of the vagus and locus coeruleus. Finally, the result of 16S rRNA gene sequencing analysis indicated that colitic mice, after being exposed to rotenone, exhibited a discernible trend in their microbiota composition (Catenibacterium, Turicibactor, and clostridium sensue stricto 1), linking it to the development of PD. Conclusions: These findings indicate that prolonged low-dose rotenone exposure, combined with an early inflammatory intestinal milieu, provides a preconditioning effect on α-syn pathology and exerts neurodegeneration in the intragastric rotenone PD mouse model.
Collapse
Affiliation(s)
- Nishant Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Monika Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Disha Thakkar
- Department
of Pharmaceutical Analysis, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Hemant Kumar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Sona Smetanova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Lucie Buresova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Petr Andrla
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Amit Khairnar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
- International
Clinical Research Centre, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
13
|
Savall ASP, De Mello JD, Fidelis EM, Bortolotto VC, Dahleh MMM, Guerra GP, Prigol M, Puntel R, Boldori JR, Denardin CC, Sampaio TB, Pinton S. Eugenia uniflora Effects on the Depressive-like Behavior of MPTP-Exposed Female Rats: Apoptosis and α-Synuclein Modulation. Brain Sci 2025; 15:41. [PMID: 39851409 PMCID: PMC11764100 DOI: 10.3390/brainsci15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder marked by motor deficits and non-motor symptoms, such as depression, which are associated with dopaminergic loss and α-synuclein aggregation in the brain. Objectives: This study investigated the neuroprotective effects of a hydroalcoholic extract of the purple fruit of Eugenia uniflora (PFEU) on motor ability and depressive-like behaviors in a PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in female Wistar rats. Methods: Rats received intranasal administration of MPTP or vehicle, followed by 14 days of oral administration of PFEU (300 or 2000 mg/kg, administered once daily) or vehicle. Depressive-like behavior was assessed using the splash and forced swimming tests, while motor ability was evaluated using the rotarod and open field tests. On day 15, hippocampal tissue was collected for immunoreactivity analysis. Results: MPTP treatment induced depressive-like behavior, which was significantly reversed by PFEU, as evidenced by increased grooming and decreased immobility. No motor coordination or locomotion deficits were observed. Furthermore, PFEU treatment prevented the MPTP-induced increase in hippocampal α-synuclein, p-p53, and Bax while restoring Bcl-2 levels, suggesting neuroprotective effects through the modulation of apoptotic pathways and α-synuclein. Conclusions: These findings support PFEU's potential as a neuroprotective agent for MPTP-induced depressive-like behavior in female rats, highlighting its molecular mechanisms.
Collapse
Affiliation(s)
- Anne Suély Pinto Savall
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (A.S.P.S.); (E.M.F.)
| | - Jhuly Dorneles De Mello
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (A.S.P.S.); (E.M.F.)
| | - Eduarda Monteiro Fidelis
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (A.S.P.S.); (E.M.F.)
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa—Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa—Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa—Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa—Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Robson Puntel
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (A.S.P.S.); (E.M.F.)
| | - Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (J.R.B.); (C.C.D.)
| | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (J.R.B.); (C.C.D.)
| | - Tuane Bazanella Sampaio
- Department of Pharmacy, State University of Centro-Oeste—Campus Cedeteg, Guarapuava 85040-167, PR, Brazil;
| | - Simone Pinton
- Research Group on Biochemistry and Toxicology in Eukaryotes, Federal University of Pampa—Campus Uruguaiana, Uruguaiana 97500-970, RS, Brazil; (A.S.P.S.); (E.M.F.)
| |
Collapse
|
14
|
Nie S, Li B, Wang M, Chen Z, Ren J, Li Z, Xu X, Qian Z, Xie Z, Han J, Zhang Z, Zhang Z, Zhu Y, Chen Z, Yang X, Ye K. Sox6 and ALDH1A1 Truncation by Asparagine Endopeptidase Defines Selective Neuronal Vulnerability in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409477. [PMID: 39573918 PMCID: PMC11727119 DOI: 10.1002/advs.202409477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Indexed: 01/14/2025]
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNpc) demonstrate regionally selective susceptibility in Parkinson's disease (PD) compared to those in the ventral tegmental area (VTA). However, the molecular mechanism for this distinct vulnerability remains unclear. Here, it is shown that Legumain, also known as asparagine endopeptidase (AEP), is activated in a subgroup of SRY-box transcription factor 6 /Aldehyde dehydrogenase 1 family member A1, (Sox6+/ALDH1A1+) neurons in the ventral tier of the SNpc and cleaves Sox6 and ALDH1A1, leading to repression of Special AT-rich sequence binding protein 1 (Satb1) that is a dimeric/tetrameric transcription factor specifically binding to AT-rich DNA sequences, and toxic dopamine metabolite accumulation. AEP cuts Sox6 and ALDH1A1 in dopaminergic neurons that project to the locus coeruleus (LC), abolishing Sox6's transcriptive and ALDH1A1's enzymatic activities. Co-expressing AEP-truncated Sox6 and ALDH1A1 fragments in 3-month-old A53T SNCA transgenic mice accelerates dopamine degeneration, whereas expressing AEP-resistant Sox6 N336A/N446A and ALDH1A1 N220A mutants alleviates rotenone-induced PD pathologies. Hence, different circuitries and intrinsic properties of dopaminergic neurons in the SNpc and VTA render differential predispositions in PD.
Collapse
Affiliation(s)
- Shuke Nie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Bowei Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Institute of Advanced TechnologyUniversity of Chinese Academy of ScienceShenzhenGuangdong518055China
| | - Mengmeng Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zijun Chen
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Jiayan Ren
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xinli Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhongyun Xie
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | - Jianxin Han
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
| | | | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug AddictionShenzhen Neher Neural Plasticity LaboratoryBCBDISIATChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhen518055China
| | - Zuxin Chen
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationBCBDISIATChinese Academy of SciencesShenzhen518055China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenGuangdong518055China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT)Chinese Academy of SciencesShenzhenGuangdong518055China
- Faculty of Life and Health SciencesShenzhen University of Advanced Technology (SUAT)ShenzhenGuangdong518107China
| |
Collapse
|
15
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Jishi A, Hu D, Shang Y, Wang R, Gunzler SA, Qi X. BCKDK loss impairs mitochondrial Complex I activity and drives alpha-synuclein aggregation in models of Parkinson's disease. Acta Neuropathol Commun 2024; 12:198. [PMID: 39709505 DOI: 10.1186/s40478-024-01915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function. Our findings reveal a consistent downregulation of BCKDK in dopaminergic (DA) neurons from A53T-αSyn mouse models, PD patient-derived induced pluripotent stem (iPS) cells, and postmortem brain tissues. BCKDK deficiency leads to mitochondrial dysfunction, including reduced membrane potential and increased reactive oxygen species (ROS) production upon administration of a stressor, which in turn promotes αSyn oligomerization. Mechanistically, BCKDK interacts with the NDUFS1 subunit of Complex I to stabilize its function. Loss of BCKDK disrupts this interaction, leading to Complex I destabilization and enhanced αSyn aggregation. Notably, restoring BCKDK expression in neuron-like cells rescues mitochondrial integrity and restores Complex I activity. Similarly, in patient-derived iPS cells differentiated to form dopaminergic neurons, NDUFS1 and phosphorylated aSyn levels are partially restored upon BCKDK expression. These findings establish a mechanistic link between BCKDK deficiency, mitochondrial dysfunction, and αSyn pathology in PD, positioning BCKDK as a potential therapeutic target to mitigate mitochondrial impairment and neurodegeneration in PD.
Collapse
Affiliation(s)
- Aya Jishi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Steven A Gunzler
- Neurological Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
17
|
Swaminathan P, Klingstedt T, Theologidis V, Gram H, Larsson J, Hagen L, Liabakk NB, Gederaas OA, Hammarström P, Nilsson KPR, Van Den Berge N, Lindgren M. In Vitro Cell Model Investigation of Alpha-Synuclein Aggregate Morphology Using Spectroscopic Imaging. Int J Mol Sci 2024; 25:12458. [PMID: 39596523 PMCID: PMC11594916 DOI: 10.3390/ijms252212458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Recently, it has been hypothesized that alpha-synuclein protein strain morphology may be associated with clinical subtypes of alpha-synucleinopathies, like Parkinson's disease and multiple system atrophy. However, direct evidence is lacking due to the caveat of conformation-specific characterization of protein strain morphology. Here we present a new cell model based in vitro method to explore various alpha-synuclein (αsyn) aggregate morphotypes. We performed a spectroscopic investigation of the HEK293 cell model, transfected with human wildtype-αsyn and A53T-αsyn variants, using the amyloid fibril-specific heptameric luminescent oligomeric thiophene h-FTAA. The spectral profile of h-FTAA binding to aggregates displayed a blue-shifted spectrum with a fluorescence decay time longer than in PBS, suggesting a hydrophobic binding site. In vitro spectroscopic binding characterization of h-FTAA with αsyn pre-formed fibrils suggested a binding dissociation constant Kd < 100 nM. The cells expressing the A53T-αsyn and human wildtype-αsyn were exposed to recombinant pre-formed fibrils of human αsyn. The ensuing intracellular aggregates were stained with h-FTAA followed by an evaluation of the spectral features and fluorescence lifetime of intracellular αsyn/h-FTAA, in order to characterize aggregate morphotypes. This study exemplifies the use of cell culture together with conformation-specific ligands to characterize strain morphology by investigating the spectral profiles and fluorescence lifetime of h-FTAA, based upon its binding to a certain αsyn aggregate. This study paves the way for toxicity studies of different αsyn strains in vitro and in vivo. Accurate differentiation of specific alpha-synucleinopathies is still limited to advanced disease stages. However, early subtype-specific diagnosis is of the utmost importance for prognosis and treatment response. The potential association of αsyn aggregates morphotypes detected in biopsies or fluids to disease phenotypes would allow for subtype-specific diagnosis in subclinical disease stage and potentially reveal new subtype-specific treatment targets. Notably, the method may be applied to the entire spectrum of neurodegenerative diseases by using a combination of conformation-specific ligands in a physicochemical environment together with other types of polymorphic amyloid variants and assess the conformation-specific features of various protein pathologies.
Collapse
Affiliation(s)
- Priyanka Swaminathan
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Gløshaugen, Realfagbygget, NO-7491 Trondheim, Norway;
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Vasileios Theologidis
- Department of Clinical Medicine—Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, 8000 Aarhus, Denmark
| | - Hjalte Gram
- DANDRITE, Danish Research Institute of Translational Neuroscience & Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Johan Larsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Lars Hagen
- PROMEC—Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B. Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Odrun A. Gederaas
- Division of Natural Sciences, University of Agder, NO-4630 Kristiansand, Norway
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Nathalie Van Den Berge
- Department of Clinical Medicine—Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, 8000 Aarhus, Denmark
| | - Mikael Lindgren
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Gløshaugen, Realfagbygget, NO-7491 Trondheim, Norway;
| |
Collapse
|
18
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
19
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
21
|
Pradeloux S, Coulombe K, Ouamba AJK, Isenbrandt A, Calon F, Roy D, Soulet D. Oral Trehalose Intake Modulates the Microbiota-Gut-Brain Axis and Is Neuroprotective in a Synucleinopathy Mouse Model. Nutrients 2024; 16:3309. [PMID: 39408276 PMCID: PMC11478413 DOI: 10.3390/nu16193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting dopaminergic neurons in the nigrostriatal and gastrointestinal tracts, causing both motor and non-motor symptoms. This study examined the neuroprotective effects of trehalose. This sugar is confined in the gut due to the absence of transporters, so we hypothesized that trehalose might exert neuroprotective effects on PD through its action on the gut microbiota. We used a transgenic mouse model of PD (PrP-A53T G2-3) overexpressing human α-synuclein and developing GI dysfunctions. Mice were given water with trehalose, maltose, or sucrose (2% w/v) for 6.5 m. Trehalose administration prevented a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra (-25%), striatum (-38%), and gut (-18%) in PrP-A53T mice. It also modulated the gut microbiota, reducing the loss of diversity seen in PrP-A53T mice and promoting bacteria negatively correlated with PD in patients. Additionally, trehalose treatment increased the intestinal secretion of glucagon-like peptide 1 (GLP-1) by 29%. Maltose and sucrose, which break down into glucose, did not show neuroprotective effects, suggesting glucose is not involved in trehalose-mediated neuroprotection. Since trehalose is unlikely to cross the intestinal barrier at the given dose, the results suggest its effects are mediated indirectly through the gut microbiota and GLP-1.
Collapse
Affiliation(s)
- Solène Pradeloux
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Jules Kennang Ouamba
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Kim Y, McInnes J, Kim J, Liang YHW, Veeraragavan S, Garza AR, Belfort BDW, Arenkiel B, Samaco R, Zoghbi HY. Olfactory deficit and gastrointestinal dysfunction precede motor abnormalities in alpha-Synuclein G51D knock-in mice. Proc Natl Acad Sci U S A 2024; 121:e2406479121. [PMID: 39284050 PMCID: PMC11441490 DOI: 10.1073/pnas.2406479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/09/2024] [Indexed: 10/02/2024] Open
Abstract
Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.
Collapse
Affiliation(s)
- YoungDoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Joseph McInnes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Yan Hong Wei Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Alexandra Rae Garza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin David Webst Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Department of Neurology, Baylor College of Medicine, Houston, TX77030
- HHMI, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
23
|
McConnell EM, Chan D, Ventura K, Callahan JP, Harris K, Hunt VH, Boisjoli S, Knight D, Monk ET, Holahan MR, DeRosa MC. Selection of DNA aptamers that prevent the fibrillization of α-synuclein protein in cellular and mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102251. [PMID: 39377064 PMCID: PMC11456556 DOI: 10.1016/j.omtn.2024.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2024] [Indexed: 10/09/2024]
Abstract
A neuropathological hallmark of Parkinson's disease (PD) is the aggregation and spreading of misfolded α-synuclein (αSyn) protein. In this study, a selection method was developed to identify aptamers that showed affinity for monomeric αSyn and inhibition of αSyn aggregation. Aptamer a-syn-1 exhibited strong inhibition of αSyn aggregation in vitro by transmission electron microscopy and Thioflavin T fluorescence. A-syn-1-treated SH-SY5Y cells incubated with pre-formed fibrils (PFFs) showed less intracellular aggregation of αSyn in comparison with a scrambled oligonucleotide control, as observed with fluorescent microscopy. Systemic delivery of a-syn-1 to the brain was achieved using a liposome vehicle and confirmed with fluorescence microscopy and qPCR. Transgenic mice overexpressing the human A53T variant of αSyn protein were injected with a-syn-1 loaded liposomes at 5 months of age both acutely (single intraperitoneal [i.p.] injection) and repeatedly (5 i.p. injections over 5 days). Western blot protein quantification revealed that both acute and repeated injections of a-syn-1 decreased levels of the aggregated form of αSyn in the transgenic mice in the prefrontal cortex, caudate, and substania nigra (SNc). These results provide in vitro and in vivo evidence that a-syn-1 can inhibit pathological αSyn aggregation and may have implications in treatment strategies to target dysregulation in PD.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dennis Chan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Joshua P. Callahan
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kathryn Harris
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon H. Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel Knight
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Evan T. Monk
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
24
|
Mohallem R, Schaser AJ, Aryal UK. Molecular Signatures of Neurodegenerative Diseases Identified by Proteomic and Phosphoproteomic Analyses in Aging Mouse Brain. Mol Cell Proteomics 2024; 23:100819. [PMID: 39069073 PMCID: PMC11381985 DOI: 10.1016/j.mcpro.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
A central hallmark of neurodegenerative diseases is the irreversible accumulation of misfolded proteins in the brain by aberrant phosphorylation. Understanding the mechanisms underlying protein phosphorylation and its role in pathological protein aggregation within the context of aging is crucial for developing therapeutic strategies aimed at preventing or reversing such diseases. Here, we applied multi-protease digestion and quantitative mass spectrometry to compare and characterize dysregulated proteins and phosphosites in the mouse brain proteome using three different age groups: young-adult (3-4 months), middle-age (10 months), and old mice (19-21 months). Proteins associated with senescence, neurodegeneration, inflammation, cell cycle regulation, the p53 hallmark pathway, and cytokine signaling showed significant age-dependent changes in abundances and level of phosphorylation. Several proteins implicated in Alzheimer's disease (AD) and Parkinson's disease (PD) including tau (Mapt), Nefh, and Dpysl2 (also known as Crmp2) were hyperphosphorylated in old mice brain suggesting their susceptibility to the diseases. Cdk5 and Gsk3b, which are known to phosphorylate Dpysl2 at multiple specific sites, had also increased phosphorylation levels in old mice suggesting a potential crosstalk between them to contribute to AD. Hapln2, which promotes α-synuclein aggregation in patients with PD, was one of the proteins with highest abundance in old mice. CD9, which regulates senescence through the PI3K-AKT-mTOR-p53 signaling was upregulated in old mice and its regulation was correlated with the activation of phosphorylated AKT1. Overall, the findings identify a significant association between aging and the dysregulation of proteins involved in various pathways linked to neurodegenerative diseases with potential therapeutic implications.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
25
|
He S, Chen Y, Wang H, Li S, Wei Y, Zhang H, Gao Q, Wang F, Zhang R. Neuroprotective effects of chlorogenic acid: Modulation of Akt/Erk1/2 signaling to prevent neuronal apoptosis in Parkinson's disease. Free Radic Biol Med 2024; 222:275-287. [PMID: 38925315 DOI: 10.1016/j.freeradbiomed.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
As a prevalent neurodegenerative disorder, Parkinson's disease is associated with oxidative stress. Our recent investigations revealed that reactive oxygen species (ROS) and PD-toxins like 6-hydroxydopamine (6-OHDA) can induce neuronal apoptosis through over-activation of Akt signaling. Chlorogenic acid (CGA), a natural acid phenol abundant in the human diet, is well-documented for its ability to mitigate intracellular ROS. In this study, we utilized CGA to treat experimental models of PD both in vitro and in vivo. Our study results demonstrated that SH-SY5Y and primary neurons exhibited cell apoptosis in response to 6-OHDA. Pretreatment with CGA significantly attenuated PD toxins-induced large amount of ROS, inhibiting Erk1/2 activation, preventing Akt inhibition, and hindering neuronal cell death. Combining the Erk1/2 inhibitor U0126 with CGA could reverse 6-OHDA-induced Akt inhibition, ROS, and apoptosis in the cells. Crucially, the Akt activator SC79 and ROS scavenger NAC both could eliminate excessive ROS via Akt and Erk1/2 signaling pathways, and CGA further potentiated these effects in PD models. Behavioral experiments revealed that CGA could alleviate gait abnormalities in PD model mice. The neuroprotective effects have been demonstrated in several endocrine regions and in the substantia nigra tissue, which shows the positive tyrosine hydroxylase (TH). Overall, our results suggest that CGA prevents the activation of Erk1/2 and inactivation of Akt by removing excess ROS in PD models. These findings propose a potential strategy for mitigating neuronal degeneration in Parkinson's disease by modulating the Akt/Erk1/2 signaling pathway through the administration of CGA and/or the use of antioxidants to alleviate oxidative stress.
Collapse
Affiliation(s)
- Shuai He
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Yuxiang Chen
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Hui Wang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Shupei Li
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Yu Wei
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Hui Zhang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Qian Gao
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Fengsong Wang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China.
| | - Ruijie Zhang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China.
| |
Collapse
|
26
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
27
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
28
|
Sun X, Badachhape A, Bhandari P, Chin J, Annapragada A, Tanifum E. A dual target molecular magnetic resonance imaging probe for noninvasive profiling of pathologic alpha-synuclein and microgliosis in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1428736. [PMID: 39114484 PMCID: PMC11303179 DOI: 10.3389/fnins.2024.1428736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is characterized by progressive deposition of alpha-synuclein (α-syn) aggregates in dopaminergic neurons and neuroinflammation. Noninvasive in vivo imaging of α-syn aggregate accumulation and neuroinflammation can elicit the underlying mechanisms involved in disease progression and facilitate the development of effective treatment as well as disease diagnosis and prognosis. Here we present a novel approach to simultaneously profile α-syn aggregation and reactive microgliosis in vivo, by targeting oligomeric α-syn in cerebrospinal fluid with nanoparticle bearing a magnetic resonance imaging (MRI), contrast payload. In this proof-of-concept report we demonstrate, in vitro, that microglia and neuroblastoma cell lines internalize agglomerates formed by cross-linking the nanoparticles with oligomeric α-syn. Delayed in vivo MRI scans following intravenous administration of the nanoparticles in the M83 α-syn transgenic mouse line show statistically significant MR signal enhancement in test mice versus controls. The in vivo data were validated by ex-vivo immunohistochemical analysis which show strong correlation between in vivo MRI signal enhancement, Lewy pathology distribution, and microglia activity in the treated brain tissue. Furthermore, neuronal and microglial cells in brain tissue from treated mice display strong cytosolic signal originating from the nanoparticles, attributed to in vivo cell uptake of nanoparticle/oligomeric α-syn agglomerates.
Collapse
Affiliation(s)
- Xianwei Sun
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Andrew Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Prajwal Bhandari
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Ananth Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States
| | - Eric Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States
- Department of Radiology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
29
|
Kochen NN, Seaney D, Vasandani V, Murray M, Braun AR, Sachs JN. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study. Proteins 2024; 92:854-864. [PMID: 38458997 PMCID: PMC11147710 DOI: 10.1002/prot.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Hydration plays a crucial role in the refolding of intrinsically disordered proteins into amyloid fibrils; however, the specific interactions between water and protein that may contribute to this process are still unknown. In our previous studies of alpha-synuclein (aSyn), we have shown that waters confined in fibril cavities are stabilizing features of this pathological fold; and that amino acids that hydrogen bond with these confined waters modulate primary and seeded aggregation. Here, we extend our aSyn molecular dynamics (MD) simulations with three new polymorphs and correlate MD trajectory information with known post-translational modifications (PTMs) and experimental data. We show that cavity residues are more evolutionarily conserved than non-cavity residues and are enriched with PTM sites. As expected, the confinement within hydrophilic cavities results in more stably hydrated amino acids. Interestingly, cavity PTM sites display the longest protein-water hydrogen bond lifetimes, three-fold greater than non-PTM cavity sites. Utilizing the deep mutational screen dataset by Newberry et al. and the Thioflavin T aggregation review by Pancoe et al. parsed using a fibril cavity/non-cavity definition, we show that hydrophobic changes to amino acids in cavities have a larger effect on fitness and aggregation rate than residues outside cavities, supporting our hypothesis that these sites are involved in the inhibition of aSyn toxic fibrillization. Finally, we expand our study to include analysis of fibril structures of tau, FUS, TDP-43, prion, and hnRNPA1; all of which contained hydrated cavities, with tau, FUS, and TDP-43 recapitulating our PTM results in aSyn fibril cavities.
Collapse
Affiliation(s)
- Noah Nathan Kochen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darren Seaney
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vivek Vasandani
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marguerite Murray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Li J, Ng KW, Sung CC, Chung KKK. The role of age-associated alpha-synuclein aggregation in a conditional transgenic mouse model of Parkinson's disease: Implications for Lewy body formation. J Neurochem 2024; 168:1215-1236. [PMID: 38693066 DOI: 10.1111/jnc.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is affecting an increasing number of older adults. Although PD is mostly sporadic, genetic mutations have been found in cohorts of families with a history of familial PD (FPD). The first such mutation linked to FPD causes a point mutation (A53T) in α-synuclein (α-syn), a major component of Lewy bodies, which are a classical pathological hallmark of PD. These findings suggest that α-syn is an important contributor to the development of PD. In our previous study, we developed an adenoviral mouse model of PD and showed that the expression of wild-type (WT) α-syn or a mutant form with an increased propensity to aggregate, designated as WT-CL1 α-syn, could be used to study how α-syn aggregation contributes to PD. In this study, we established a transgenic mouse model that conditionally expresses WT or WT-CL1 α-syn in dopaminergic (DA) neurons and found that the expression of either WT or WT-CL1 α-syn was associated with an age-dependent degeneration of DA neurons and movement dysfunction. Using this model, we were able to monitor the process of α-syn aggregate formation and found a correlation between age and the number and sizes of α-syn aggregates formed. These results provide a potential mechanism by which age-dependent α-syn aggregation may lead to the formation of Lewy bodies in PD pathogenesis.
Collapse
Affiliation(s)
- Jiahua Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Wai Ng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chun Chau Sung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kenny K K Chung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
31
|
Scholz K, Pattanayak R, Roschonporn E, Pair FS, Nobles A, Yacoubian TA. Rab27b promotes lysosomal function and alpha-synuclein clearance in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599785. [PMID: 38979346 PMCID: PMC11230153 DOI: 10.1101/2024.06.20.599785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture neuronal model. Here, we expanded our previous work and further characterized a role for Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from Rab27b knockout (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify defects in acidic vesicle trafficking in Rab27b KO primary neurons which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy Body Disease (iLBD) subjects relative to healthy controls. These data suggest a role for Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.
Collapse
|
32
|
Bay S, Digwal CS, Rodilla Martín AM, Sharma S, Stanisavljevic A, Rodina A, Attaran A, Roychowdhury T, Parikh K, Toth E, Panchal P, Rosiek E, Pasala C, Arancio O, Fraser PE, Alldred MJ, Prado MAM, Ginsberg SD, Chiosis G. Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders. Biomedicines 2024; 12:1252. [PMID: 38927459 PMCID: PMC11201208 DOI: 10.3390/biomedicines12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Chander S. Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Ananda M. Rodilla Martín
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | | | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Anoosha Attaran
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; (A.A.); (M.A.M.P.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Kamya Parikh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Eugene Toth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA;
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada;
| | - Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; (A.S.); (M.J.A.)
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; (A.A.); (M.A.M.P.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Robarts Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; (A.S.); (M.J.A.)
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (S.B.); (C.S.D.); (A.M.R.M.); (S.S.); (A.R.); (T.R.); (K.P.); (E.T.); (P.P.); (C.P.)
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
33
|
Umeda T, Sakai A, Shigemori K, Nakata K, Nakajima R, Yamana K, Tomiyama T. New Value of Acorus tatarinowii/ gramineus Leaves as a Dietary Source for Dementia Prevention. Nutrients 2024; 16:1589. [PMID: 38892521 PMCID: PMC11175135 DOI: 10.3390/nu16111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizomes of Acorus tatarinowii Schott and Acorus gramineus Solander are widely used for treating amnesia in traditional Chinese medicine. In contrast, their leaves are usually discarded without their medicinal properties being known. Here, we found that the hot water extract of leaves improved cognition and tau pathology in model mice of frontotemporal dementia, similar to or even better than that of rhizomes. To explore the optimal method of processing, we made three preparations from dried leaves: hot water extract, extraction residue, and non-extracted simple crush powder. Among them, the simple crush powder had the strongest effect on tauopathy in mice. The crush powder also ameliorated Aβ and α-synuclein pathologies and restored cognition in mouse models of Alzheimer's disease and dementia with Lewy bodies. These findings suggest the potential of Acorus tatarinowii/gramineus leaves as a dietary source for dementia prevention and reveal that simple crushing is a better way to maximize their efficacy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
| | - Kunio Nakata
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Ryota Nakajima
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Kei Yamana
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| |
Collapse
|
34
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
35
|
Eteleeb AM, Novotny BC, Tarraga CS, Sohn C, Dhungel E, Brase L, Nallapu A, Buss J, Farias F, Bergmann K, Bradley J, Norton J, Gentsch J, Wang F, Davis AA, Morris JC, Karch CM, Perrin RJ, Benitez BA, Harari O. Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer's disease. PLoS Biol 2024; 22:e3002607. [PMID: 38687811 PMCID: PMC11086901 DOI: 10.1371/journal.pbio.3002607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/10/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Brenna C. Novotny
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Carolina Soriano Tarraga
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Christopher Sohn
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Eliza Dhungel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Logan Brase
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Aasritha Nallapu
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Jared Buss
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Fabiana Farias
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Kristy Bergmann
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joseph Bradley
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Jen Gentsch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Albert A. Davis
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Celeste M. Karch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Bruno A. Benitez
- Department of Neurology and Neuroscience, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
36
|
Umeda T, Shigemori K, Uekado R, Matsuda K, Tomiyama T. Hawaiian native herb Mamaki prevents dementia by ameliorating neuropathology and repairing neurons in four different mouse models of neurodegenerative diseases. GeroScience 2024; 46:1971-1987. [PMID: 37783918 PMCID: PMC10828292 DOI: 10.1007/s11357-023-00950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies are age-related disorders and the main cause of dementia. They are characterized by the cerebral accumulation of Aβ, tau, α-synuclein, and TDP-43. Because the accumulation begins decades before disease onset, treatment should be started in the preclinical stage. Such intervention would be long-lasting, and therefore, prophylactic agents should be safe, non-invasively taken by the patients, and inexpensive. In addition, the agents should be broadly effective against etiologic proteins and capable of repairing neurons damaged by toxic oligomers. These requirements are difficult to meet with single-ingredient pharmaceuticals but may be feasible by taking proper diets composed of multiple ingredients. As a source of such diets, we focused on the Hawaiian native herb Mamaki. From its dried leaves and fruits, we made three preparations: hot water extract of the leaves, non-extracted simple crush powder of the leaves, and simple crush powder of the fruits, and examined their effects on the cognitive function and neuropathologies in four different mouse models of neurodegenerative dementia. Hot water extract of the leaves attenuated neuropathologies, restored synaptophysin levels, suppressed microglial activation, and improved memory when orally administered for 1 month. Simply crushed leaf powder showed a higher efficacy, but simply crushed fruit powder displayed the strongest effects. Moreover, the fruit powder significantly enhanced the levels of brain-derived neurotrophic factor expression and neurogenesis, indicating its ability to repair neurons. These results suggest that crushed Mamaki leaves and fruits are promising sources of dementia-preventive diets.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
| | - Rumi Uekado
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
| | - Kazunori Matsuda
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan.
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan.
| |
Collapse
|
37
|
Hu Q, Xu L, Liu X, Wang Y, Yuan J. Adenosine A 2A receptor antagonist KW6002 protects against A53T mutant alpha-synuclein-induced brain damage and neuronal apoptosis in Parkinson's disease mice by restoring autophagic flux. Neurosci Lett 2024; 826:137610. [PMID: 38157926 DOI: 10.1016/j.neulet.2023.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Protein misfolding and inclusion body aggregation caused by α-Syn mutations in the brain often cause neurodegeneration and cognitive impairment, among which the A53T point mutation is more common. Inhibition of adenosine A2A receptor (A2AR) can alleviate the pathological symptoms of brain dysfunction caused by A53T-α-Syn protofibrils, but the mechanism of action is still unclear. AIM This studies aimed to investigate the potential therapeutic role of the A2AR inhibitor KW6002 in a mouse model of brain synucleinopathy. METHODS A53T-α-Syn fibre precursor cell nuclear protein was injected into the bilateral prefrontal cortex of mice to establish a synucleinopathy animal model, and the A2AR inhibitor KW6002 (5 mg/kg) was injected intraperitoneally to intervene. RESULT The intracerebral injection of A53T-α-Syn protofibrils triggers the formation of inclusion bodies in the brain, leading to astrocyte activation, an increased number of apoptotic cells, and suppression of autophagic flux. The administration of KW6002 significantly reversed these phenomena. In vitro experiments revealed that A53T-α-Syn protofibrils inhibited HT-22 autophagy in mouse hippocampal neuronal cells, whereas KW6002 increased cellular autophagic flux, upregulated the expression of LAMP2A and Hsc70 proteins and inhibited the expression of SQSTM1 protein. The present study suggests that KW6002 reduces the level of α-Syn phosphorylation by inhibiting A2AR protein, at the same time, enhances the autophagic flux of neuronal cells, resulting in the degradation of A53T-α-Syn protofibrils and thus reducing the neuronal toxicity and apoptosis induced by A53T-α-Syn protofibrils. CONCLUSION KW6002 has a significant protective effect on neuronal injury induced by A53T-α-Syn.
Collapse
Affiliation(s)
- Qidi Hu
- Department of Ophthalmology, Wenzhou Medical University Ningbo Eye Hospital, Ningbo 315040, China; Ningbo Clinical Medical Research Center for Ophthalmology, Ningbo 315040, China.
| | - Lingli Xu
- Department of Ophthalmology, Wenzhou Medical University Ningbo Eye Hospital, Ningbo 315040, China
| | - Xiaotian Liu
- Department of Ophthalmology, Wenzhou Medical University Ningbo Eye Hospital, Ningbo 315040, China
| | - Yuwen Wang
- Department of Ophthalmology, Wenzhou Medical University Ningbo Eye Hospital, Ningbo 315040, China
| | - Jianshu Yuan
- Department of Ophthalmology, Wenzhou Medical University Ningbo Eye Hospital, Ningbo 315040, China
| |
Collapse
|
38
|
Schwab K, Magbagbeolu M, Theuring F, Harrington CR, Wischik CM, Riedel G. Solubility of α-synuclein species in the L62 mouse model of synucleinopathy. Sci Rep 2024; 14:6239. [PMID: 38486089 PMCID: PMC10940722 DOI: 10.1038/s41598-024-56735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
The accumulation of α-synuclein (α-Syn) into Lewy bodies is a hallmark of synucleinopathies, a group of neurological disorders that include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Small oligomers as well as larger fibrils of α-Syn have been suggested to induce cell toxicity leading to a degenerative loss of neurones. A richer understanding of α-Syn aggregation in disease, however, requires the identification of the different α-Syn species and the characterisation of their biochemical properties. We here aimed at a more in-depth characterisation of the α-Syn transgenic mice, Line 62 (L62), and examined the deposition pattern and solubility of human and murine α-Syn in these mice using immunohistochemical and biochemical methods. Application of multiple antibodies confirmed mAb syn204 as the most discriminatory antibody for human α-Syn in L62. Syn204 revealed an intense and widespread immunohistochemical α-Syn labelling in parietal cortex and hippocampus, and to a lower level in basal forebrain and hindbrain regions. The labelled α-Syn represented somatic inclusions as well as processes and synaptic endings. Biochemical analysis revealed a Triton-resistant human α-Syn pool of large oligomers, a second pool of small oligomers that was not resistant to solubilization with urea/Triton. A third SDS-soluble pool of intermediate sized aggregates containing a mixture of both, human and mouse α-Syn was also present. These data suggest that several pools of α-Syn can exist in neurones, most likely in different cellular compartments. Information about these different pools is important for the development of novel disease modifying therapies aimed at α-Syn.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Forester Hill, Aberdeen, AB25 2ZD, UK.
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany.
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Franz Theuring
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Forester Hill, Aberdeen, AB25 2ZD, UK
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Forester Hill, Aberdeen, AB25 2ZD, UK
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Forester Hill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
39
|
Lee M, Barnes J, Vermilyea S, Meints J, Martinez H. Soluble and insoluble lysates from the human A53T mutant α-synuclein transgenic mouse model induces α-synucleinopathy independent of injection site. RESEARCH SQUARE 2024:rs.3.rs-3982325. [PMID: 38496623 PMCID: PMC10942550 DOI: 10.21203/rs.3.rs-3982325/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pathological aggregation of a-synuclein (aS) is implicated in the pathogenesis of Parkinson's disease (PD) and other a-synucleinopathies. The current view is that neuron-to-neuron spreading of aS pathology contributes to the progression of a-synucleinopathy. We used an A53T mutant human aS transgenic mouse model (TgA53T) to examine whether the site of pathogenic aS inoculation affects the pattern of neuropathology and whether soluble and insoluble fractions derived from crude pathogenic tissue lysates exhibit differential capacities to initiate aS pathology. To test whether the inoculation site impacts the ultimate spatial/temporal patterns of aS pathology, aS preformed fibrils (PFF), or brain homogenates from TgA53T mice with a-synucleinopathy, were injected into the cortex/striatum, brain stem, or skeletal muscle. In all cases, inoculation of pathogenic aS induced end-stage motor dysfunction within ~100 days post-inoculation (dpi). Significantly, irrespective of the inoculation sites, ultimate distribution of the aS pathology was like that seen in normally aged TgA53T mice at end-stage, indicating that the intrinsic neuronal vulnerability is a significant determinant in the induction of aS pathology, even when initiated by inoculation of pathogenic aS. Temporal analysis of brain stem injected TgA53T mice show that initial aS pathology was seen by 30 days post-inoculation and inflammatory changes occur at later stages. To determine if the aS species with differential solubility are differentially pathogenic, brain lysates from end-stage TgA53Tmice were fractionated into highly soluble (S150) and insoluble (P150) fractions, as well as the endoplasmic reticulum (ER)-enriched fraction (P100). Significantly, all fractions were able to seed de novo aS pathology in vivo, when injected unilaterally into TgA53Tmice with the ER fractions being most pathogenic. Our results suggest that multiple aS species from brain can initiate the development of progressive aS pathology.
Collapse
|
40
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
42
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
43
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
44
|
Tran KKN, Wong VHY, Vessey KA, Finkelstein DI, Bui BV, Nguyen CTO. Levodopa Rescues Retinal Function in the Transgenic A53T Alpha-Synuclein Model of Parkinson's Disease. Biomedicines 2024; 12:130. [PMID: 38255235 PMCID: PMC10813165 DOI: 10.3390/biomedicines12010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Loss of substantia nigra dopaminergic cells and alpha-synuclein (α-syn)-rich intraneuronal deposits within the central nervous system are key hallmarks of Parkinson's disease (PD). Levodopa (L-DOPA) is the current gold-standard treatment for PD. This study aimed to evaluate in vivo retinal changes in a transgenic PD model of α-syn overexpression and the effect of acute levodopa (L-DOPA) treatment. METHODS Anaesthetised 6-month-old mice expressing human A53T alpha-synuclein (HOM) and wildtype (WT) control littermates were intraperitoneally given 20 mg/kg L-DOPA (50 mg levodopa, 2.5 mg benserazide) or vehicle saline (n = 11-18 per group). In vivo retinal function (dark-adapted full-field ERG) and structure (optical coherence tomography, OCT) were recorded before and after drug treatment for 30 min. Ex vivo immunohistochemistry (IHC) on flat-mounted retina was conducted to assess tyrosine hydroxylase (TH) positive cell counts (n = 7-8 per group). RESULTS We found that photoreceptor (a-wave) and bipolar cell (b-wave) ERG responses (p < 0.01) in A53T HOM mice treated with L-DOPA grew in amplitude more (47 ± 9%) than WT mice (16 ± 9%) treated with L-DOPA, which was similar to the vehicle group (A53T HOM 25 ± 9%; WT 19 ± 7%). While outer retinal thinning (outer nuclear layer, ONL, and outer plexiform layer, OPL) was confirmed in A53T HOM mice (p < 0.01), L-DOPA did not have an ameliorative effect on retinal layer thickness. These findings were observed in the absence of changes to the number of TH-positive amacrine cells across experiment groups. Acute L-DOPA treatment transiently improves visual dysfunction caused by abnormal alpha-synuclein accumulation. CONCLUSIONS These findings deepen our understanding of dopamine and alpha-synuclein interactions in the retina and provide a high-throughput preclinical framework, primed for translation, through which novel therapeutic compounds can be objectively screened and assessed for fast-tracking PD drug discovery.
Collapse
Affiliation(s)
- Katie K. N. Tran
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Kirstan A. Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.K.N.T.); (V.H.Y.W.); (B.V.B.)
| |
Collapse
|
45
|
Bétemps D, Arsac JN, Nicot S, Canal D, Tlili H, Belondrade M, Morignat E, Verchère J, Gaillard D, Bruyère-Ostells L, Mayran C, Lakhdar L, Bougard D, Baron T. Protease-Sensitive and -Resistant Forms of Human and Murine Alpha-Synucleins in Distinct Brain Regions of Transgenic Mice (M83) Expressing the Human Mutated A53T Protein. Biomolecules 2023; 13:1788. [PMID: 38136658 PMCID: PMC10741842 DOI: 10.3390/biom13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Human neurodegenerative diseases associated with the misfolding of the alpha-synuclein (aS) protein (synucleinopathies) are similar to prion diseases to the extent that lesions are spread by similar molecular mechanisms. In a transgenic mouse model (M83) overexpressing a mutated (A53T) form of human aS, we had previously found that Protein Misfolding Cyclic Amplification (PMCA) triggered the aggregation of aS, which is associated with a high resistance to the proteinase K (PK) digestion of both human and murine aS, a major hallmark of the disease-associated prion protein. In addition, PMCA was also able to trigger the aggregation of murine aS in C57Bl/6 mouse brains after seeding with sick M83 mouse brains. Here, we show that intracerebral inoculations of M83 mice with C57Bl/6-PMCA samples strikingly shortens the incubation period before the typical paralysis that develops in this transgenic model, demonstrating the pathogenicity of PMCA-aggregated murine aS. In the hind brain regions of these sick M83 mice containing lesions with an accumulation of aS phosphorylated at serine 129, aS also showed a high PK resistance in the N-terminal part of the protein. In contrast to M83 mice, old APPxM83 mice co-expressing human mutated amyloid precursor and presenilin 1 proteins were seen to have an aggregation of aS, especially in the cerebral cortex, hippocampus and striatum, which also contained the highest load of aS phosphorylated at serine 129. This was proven by three techniques: a Western blot analysis of PK-resistant aS; an ELISA detection of aS aggregates; or the identification of aggregates of aS using immunohistochemical analyses of cytoplasmic/neuritic aS deposits. The results obtained with the D37A6 antibody suggest a higher involvement of murine aS in APPxM83 mice than in M83 mice. Our study used novel tools for the molecular study of synucleinopathies, which highlight similarities with the molecular mechanisms involved in prion diseases.
Collapse
Affiliation(s)
- Dominique Bétemps
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jean-Noël Arsac
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Simon Nicot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Dominique Canal
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Habiba Tlili
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Maxime Belondrade
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Eric Morignat
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jérémy Verchère
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Damien Gaillard
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Charly Mayran
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Latifa Lakhdar
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Daisy Bougard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Thierry Baron
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| |
Collapse
|
46
|
Chen K, Tang F, Du B, Yue Z, Jiao L, Ding X, Tuo Q, Meng J, He S, Dai L, Lei P, Wei X. Leucine-rich repeat kinase 2 (LRRK2) inhibition upregulates microtubule-associated protein 1B to ameliorate lysosomal dysfunction and parkinsonism. MedComm (Beijing) 2023; 4:e429. [PMID: 38020716 PMCID: PMC10661827 DOI: 10.1002/mco2.429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Zhe‐Zhou Yue
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| | - Ling‐Ling Jiao
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xu‐Long Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Qing‐Zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Si‐Yu He
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xia‐Wei Wei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| |
Collapse
|
47
|
Khan MR, Yin X, Kang SU, Mitra J, Wang H, Ryu T, Brahmachari S, Karuppagounder SS, Kimura Y, Jhaldiyal A, Kim HH, Gu H, Chen R, Redding-Ochoa J, Troncoso J, Na CH, Ha T, Dawson VL, Dawson TM. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson's disease. Sci Transl Med 2023; 15:eadd0499. [PMID: 38019930 DOI: 10.1126/scitranslmed.add0499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.
Collapse
Affiliation(s)
- Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aanishaa Jhaldiyal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Hee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
49
|
Grigoletto J, Miraglia F, Benvenuti L, Pellegrini C, Soldi S, Galletti S, Cattaneo A, Pich EM, Grimaldi M, Colla E, Vesci L. Velusetrag rescues GI dysfunction, gut inflammation and dysbiosis in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:140. [PMID: 37783672 PMCID: PMC10545757 DOI: 10.1038/s41531-023-00582-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
In patients with Parkinson's disease (PD), constipation is common, and it appears in a prodromal stage before the hallmark motor symptoms. The present study aimed to investigate whether Velusetrag, a selective 5‑HT4 receptor agonist, may be a suitable candidate to improve intestinal motility in a mouse model of PD. Five months old PrP human A53T alpha-synuclein transgenic (Tg) mice, which display severe constipation along with decreased colonic cholinergic transmission already at 3 months, were treated daily with the drug for 4 weeks. Velusetrag treatment reduced constipation by significantly stimulating both the longitudinal and circular-driven contractions and improved inflammation by reducing the level of serum and colonic IL1β and TNF-α and by decreasing the number of GFAP-positive glia cells in the colon of treated mice. No significant downregulation of the 5-HT4 receptor was observed but instead Velusetrag seemed to improve axonal degeneration in Tgs as shown by an increase in NF-H and VAChT staining. Ultimately, Velusetrag restored a well-balanced intestinal microbial composition comparable to non-Tg mice. Based on these promising data, we are confident that Velusetrag is potentially eligible for clinical studies to treat constipation in PD patients.
Collapse
Affiliation(s)
- Jessica Grigoletto
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Fabiana Miraglia
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Sara Soldi
- AAT Advanced Analytical Technologies Srl, via P. Majavacca 12 - 29017, Fiorenzuola d'Arda (PC), Italy
| | - Serena Galletti
- AAT Advanced Analytical Technologies Srl, via P. Majavacca 12 - 29017, Fiorenzuola d'Arda (PC), Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
- Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Viale Regina Elena 295, Rome, 00161, Italy
| | - Emilio Merlo Pich
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy
| | - Maria Grimaldi
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, Via Val Cannuta 247, 00166, Rome, Italy.
| | - Loredana Vesci
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy.
| |
Collapse
|
50
|
Tian Y, Yi S, Guo W, Feng C, Zhang X, Dong H, Wang K, Li R, Tian Y, Gan M, Wu T, Xie H, Gao X. SYNJ1 rescues motor functions in hereditary and sporadic Parkinson's disease mice by upregulating TSP-1 expression. Behav Brain Res 2023; 452:114569. [PMID: 37419331 DOI: 10.1016/j.bbr.2023.114569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Wanyun Guo
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Xiufen Zhang
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Huateng Dong
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Gan
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|