1
|
Hu H, Zhang G, Chen T, Liu Y, Meng L, Holmdahl R, Dai L, Zhao Y. Immunosenescence in autoimmune diseases. Autoimmun Rev 2025; 24:103805. [PMID: 40132774 DOI: 10.1016/j.autrev.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system mistakenly attacks the body's own tissues, characterized by the loss of tolerance to self-antigens and destruction of tissues. Aging is a natural process of physiological decline that also alters the immune system, a condition known as immunosenescence. During immunosenescence, the immune system undergoes various changes, including modifications and antigenicity of self-antigens, abnormalities in the quantity, phenotype, and function of lymphocytes and antibodies, as well as a narrowing of the B and T cell receptor repertoire, changes that may increase susceptibility to AIDs. Additionally, senescent immune cells and the senescence-associated secretory phenotype (SASP) contribute to target organ involvement in AIDs, exacerbating chronic inflammation and tissue damage. Mitochondrial dysfunction and metabolic imbalances in AIDs lead to the accumulation of senescent cells, which act as upstream drivers of immunosenescence. In this review, we summarize the bidirectional relationship between AIDs and immunosenescence, as well as its potential mechanisms. Therapeutic approaches targeting immunosenescence in AIDs remain at an early stage. Strategies aimed at resetting or reversing the aging immune system are expected to become a novel direction in the future.
Collapse
Affiliation(s)
- Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Guangyue Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Romero-Castillo L, Pandey RK, Xu B, Beusch CM, Oliveira-Coelho A, Zeqiraj K, Svensson C, Xu Z, Luo H, Sareila O, Sabatier P, Ge C, Cheng L, Urbonaviciute V, Krämer A, Lindgren C, Haag S, Viljanen J, Zubarev RA, Kihlberg J, Linusson A, Burkhardt H, Holmdahl R. Tolerogenic antigen-specific vaccine induces VISTA-enriched regulatory T cells and protects against arthritis in DRB1∗04:01 mice. Mol Ther 2025:S1525-0016(25)00313-2. [PMID: 40285352 DOI: 10.1016/j.ymthe.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, cartilage damage, and bone erosion. Despite improvements with the introduction of biological disease-modifying anti-rheumatic drugs (DMARDs), RA remains an incurable life-long disease. Advancements in peptide-based vaccination may open new avenues for treating autoimmune diseases, including RA, by inducing immune tolerance while maintaining normal immune function. We have already demonstrated the efficacy of a potent vaccine against RA, consisting of the mouse major histocompatibility complex class II (Aq) protein bound to the immunodominant type II collagen peptide COL2259-273, which needed to be galactosylated at position 264. To translate the vaccine to humans and to further enhance vaccine efficacy, we modified the glycine residue at position 265 and conjugated it with the human DRB1∗04:01 molecule. Remarkably, this modified vaccine (named DR4-AL179) provided robust effectiveness in suppressing arthritis in DRB1∗04:01-expressing mice without the need for galactosylation at position 264. DR4-AL179 vaccination induces tolerance involving multiple immunoregulatory pathways, including the activation of V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA)-positive nonconventional regulatory T cells, which contribute to a potent suppressive response preventing arthritis development in mice. This modified RA vaccine offers a novel therapeutic potential for human autoimmune diseases.
Collapse
Affiliation(s)
- Laura Romero-Castillo
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden.
| | - Rajan Kumar Pandey
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Christian M Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Ana Oliveira-Coelho
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Kejsi Zeqiraj
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Carolin Svensson
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Zhongwei Xu
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Huqiao Luo
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Outi Sareila
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden; Medical Inflammation Research, MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Changrong Ge
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Lei Cheng
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Alexander Krämer
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | | | - Sabrina Haag
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden
| | - Johan Viljanen
- Department of Chemistry-BMC, Uppsala University, 75237 Uppsala, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden; Department of Pharmacological & Technological Chemistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, 75237 Uppsala, Sweden
| | - Anna Linusson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, & Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Division of Rheumatology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17176 Stockholm, Sweden; Medical Inflammation Research, MediCity Research Laboratory, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
3
|
de Wit AS, Bianchi F, van den Bogaart G. Antigen presentation of post-translationally modified peptides in major histocompatibility complexes. Immunol Cell Biol 2025; 103:161-177. [PMID: 39609891 PMCID: PMC11792782 DOI: 10.1111/imcb.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
T cells of the adaptive immune system recognize pathogens and malignantly transformed cells through a process called antigen presentation. During this process, peptides are displayed on major histocompatibility complex (MHC) class I and II molecules. Self-reactive T cells are typically removed or suppressed during T-cell development and through peripheral tolerance mechanisms, ensuring that only T cells recognizing peptides that are either absent or present in low abundance under normal conditions remain. This selective process allows T cells to respond to peptides derived from foreign proteins while ignoring those from self-proteins. However, T cells can also respond to peptides derived from proteins that have undergone post-translational modifications (PTMs). Over 200 different PTMs have been described, and while they are essential for protein function, localization and stability, their dysregulation is often associated with disease conditions. PTMs can affect the proteolytic processing of proteins and prevent MHC binding, thereby changing the repertoire of peptides presented on MHC molecules. However, it is also increasingly evident that many peptides presented on MHC molecules carry PTMs, which can alter their immunogenicity. As a result, the presentation of post-translationally modified peptides by MHC molecules plays a significant role in various diseases, as well as autoimmune disorders and allergies. This review will provide an overview of the impact of PTMs on antigen presentation and their implications for immune recognition and disease.
Collapse
Affiliation(s)
- Alexine S de Wit
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Nanjaiah H, Moudgil KD. Targeted Therapy of Antibody-Induced Autoimmune Arthritis Using Peptide-Guided Nanoparticles. Int J Mol Sci 2024; 25:12019. [PMID: 39596089 PMCID: PMC11593680 DOI: 10.3390/ijms252212019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and it affects over 18 million people worldwide. Despite the availability of a variety of potent drugs for RA, over 30-40 percent of patients fail to achieve adequate remission, and many patients suffer from systemic adverse effects. Thus, there is an urgent need for a joint-targeted drug delivery system. Nanotechnology-based drug delivery methods offer a promising resource that is largely untapped for RA. Using the T cell-driven rat adjuvant-induced arthritis (AA) model of human RA, we developed a peptide-targeted liposomal drug delivery system for arthritis therapy. It was based on a novel joint-homing peptide ART-2 to guide liposomes entrapping dexamethasone (Dex) to arthritic joints of rats, and this approach was more effective in suppressing arthritis than the unpackaged (free) drug. To de-risk the translation of our innovative drug delivery technology to RA patients, we undertook the validation of ART-2-liposomal delivery in a genetically and mechanistically distinct arthritis model in mice, the collagen antibody-induced arthritis (CAIA) model. Using live imaging for tissue distribution of liposomes in vivo, immunohistochemistry of paws for cellular binding of ART-2, and liposomal Dex delivery, our results fully validated the key findings of the rat model, namely, preferential homing of peptide-functionalized liposomes to arthritic joints compared to healthy joints, and higher efficacy of liposomal Dex than free Dex. These results offer a proof-of-concept for the benefits of targeted drug delivery to the joints and its potential translation to RA patients.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Goodson H, Kawahara R, Fehring J, Purcell AW, Croft NP, Thaysen-Andersen M. α-Mannosylated HLA-II glycopeptide antigens dominate the immunopeptidome of immortalised cells and tumour tissues. Glycobiology 2024; 34:cwae057. [PMID: 39088576 PMCID: PMC11441994 DOI: 10.1093/glycob/cwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024] Open
Abstract
Immunopeptides are cell surface-located protein fragments that aid our immune system to recognise and respond to pathogenic insult and malignant transformation. In this two-part communication, we firstly summarise and reflect on our recent discovery documenting that MHC-II-bound immunopeptides from immortalised cell lines prevalently carry N-glycans that differ from the cellular glycoproteome (Goodson, Front Immunol, 2023). These findings are important as immunopeptide glycosylation remains poorly understood in immunosurveillance. The study also opened up new technical and biological questions that we address in the second part of this communication. Our study highlighted that the performance of the search engines used to detect glycosylated immunopeptides from LC-MS/MS data remains untested and, importantly, that little biochemical in vivo evidence is available to document the nature of glycopeptide antigens in tumour tissues. To this end, we compared the N-glycosylated MHC-II-bound immunopeptides that were reported from tumour tissues of 14 meningioma patients in the MSFragger-HLA-Glyco database (Bedran, Nat Commun, 2023) to those we identified with the commercial Byonic software. Encouragingly, the search engines produced similar outputs supporting that N-glycosylated MHC-II-bound immunopeptides are prevalent in meningioma tumour tissues. Consistent also with in vitro findings, the tissue-derived MHC-II-bound immunopeptides were found to predominantly carry hyper-processed (paucimannosidic- and chitobiose core-type) and hypo-processed (oligomannosidic-type) N-glycans that varied in prevalence and distribution between patients. Taken together, evidence is emerging suggesting that α-mannosidic glycoepitopes abundantly decorate MHC-II-bound immunopeptides presented in both immortalised cells and tumour tissues warranting further research into their functional roles in immunosurveillance.
Collapse
Affiliation(s)
- Hayley Goodson
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| | - Joshua Fehring
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology & Biomedicine Discovery Institute, Monash University, Innovation Walk, VIC-3800, Clayton, Melbourne, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, 4 Wally's Walk, NSW-2109, Macquarie Park, Sydney, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| |
Collapse
|
6
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
8
|
Romero‐Castillo L, Li T, Do N, Sareila O, Xu B, Hennings V, Xu Z, Svensson C, Oliveira‐Coelho A, Sener Z, Urbonaviciute V, Ekwall O, Burkhardt H, Holmdahl R. Human MHC Class II and Invariant Chain Knock-in Mice Mimic Rheumatoid Arthritis with Allele Restriction in Immune Response and Arthritis Association. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401513. [PMID: 38602454 PMCID: PMC11187888 DOI: 10.1002/advs.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Transgenic mice expressing human major histocompatibility complex class II (MHCII) risk alleles are widely used in autoimmune disease research, but limitations arise due to non-physiologic expression. To address this, physiologically relevant mouse models are established via knock-in technology to explore the role of MHCII in diseases like rheumatoid arthritis. The gene sequences encoding the ectodomains are replaced with the human DRB1*04:01 and 04:02 alleles, DRA, and CD74 (invariant chain) in C57BL/6N mice. The collagen type II (Col2a1) gene is modified to mimic human COL2. Importantly, DRB1*04:01 knock-in mice display physiologic expression of human MHCII also on thymic epithelial cells, in contrast to DRB1*04:01 transgenic mice. Humanization of the invariant chain enhances MHCII expression on thymic epithelial cells, increases mature B cell numbers in spleen, and improves antigen presentation. To validate its functionality, the collagen-induced arthritis (CIA) model is used, where DRB1*04:01 expression led to a higher susceptibility to arthritis, as compared with mice expressing DRB1*04:02. In addition, the humanized T cell epitope on COL2 allows autoreactive T cell-mediated arthritis development. In conclusion, the humanized knock-in mouse faithfully expresses MHCII, confirming the DRB1*04:01 alleles role in rheumatoid arthritis and being also useful for studying MHCII-associated diseases.
Collapse
MESH Headings
- Animals
- Mice
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Humans
- Disease Models, Animal
- Mice, Inbred C57BL
- Mice, Transgenic
- Gene Knock-In Techniques/methods
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Alleles
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- HLA-DRB1 Chains/genetics
- HLA-DRB1 Chains/immunology
- Collagen Type II/genetics
- Collagen Type II/immunology
Collapse
Affiliation(s)
- Laura Romero‐Castillo
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Taotao Li
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Nhu‐Nguyen Do
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFraunhofer Cluster of Excellence for Immune‐Mediated Diseases CIMDTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Outi Sareila
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Medical Inflammation ResearchMediCity Research LaboratoryUniversity of TurkuTurkuFI‐20520Finland
| | - Bingze Xu
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Viktoria Hennings
- Department of PediatricsInstitute of Clinical Sciences and Department of Rheumatology and Inflammation ResearchInstitute of MedicineThe Sahlgrenska AcademyUniversity of GothenburgGothenburg41345Sweden
| | - Zhongwei Xu
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Carolin Svensson
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Ana Oliveira‐Coelho
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Zeynep Sener
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Olov Ekwall
- Department of PediatricsInstitute of Clinical Sciences and Department of Rheumatology and Inflammation ResearchInstitute of MedicineThe Sahlgrenska AcademyUniversity of GothenburgGothenburg41345Sweden
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFraunhofer Cluster of Excellence for Immune‐Mediated Diseases CIMDTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
- Division of RheumatologyUniversity Hospital FrankfurtGoethe University60590Frankfurt am MainGermany
| | - Rikard Holmdahl
- Medical Inflammation ResearchDivision of ImmunologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
- Medical Inflammation ResearchMediCity Research LaboratoryUniversity of TurkuTurkuFI‐20520Finland
| |
Collapse
|
9
|
Goodson H, Kawahara R, Chatterjee S, Goncalves G, Fehring J, Purcell AW, Croft NP, Thaysen-Andersen M. Profound N-glycan remodelling accompanies MHC-II immunopeptide presentation. Front Immunol 2023; 14:1258518. [PMID: 38022636 PMCID: PMC10663315 DOI: 10.3389/fimmu.2023.1258518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Immunopeptidomics, the study of peptide antigens presented on the cell surface by the major histocompatibility complex (MHC), offers insights into how our immune system recognises self/non-self in health and disease. We recently discovered that hyper-processed (remodelled) N-glycans are dominant features decorating viral spike immunopeptides presented via MHC-class II (MHC-II) molecules by dendritic cells pulsed with SARS-CoV-2 spike protein, but it remains unknown if endogenous immunopeptides also undergo N-glycan remodelling. Taking a multi-omics approach, we here interrogate published MHC-II immunopeptidomics datasets of cultured monocyte-like (THP-1) and breast cancer-derived (MDA-MB-231) cell lines for overlooked N-glycosylated peptide antigens, which we compare to their source proteins in the cellular glycoproteome using proteomics and N-glycomics data from matching cell lines. Hyper-processed chitobiose core and paucimannosidic N-glycans alongside under-processed oligomannosidic N-glycans were found to prevalently modify MHC-II-bound immunopeptides isolated from both THP-1 and MDA-MB-231, while complex/hybrid-type N-glycans were (near-)absent in the immunopeptidome as supported further by new N-glycomics data generated from isolated MHC-II-bound peptides derived from MDA-MB-231 cells. Contrastingly, the cellular proteomics and N-glycomics data from both cell lines revealed conventional N-glycosylation rich in complex/hybrid-type N-glycans, which, together with the identification of key lysosomal glycosidases, suggest that MHC-II peptide antigen processing is accompanied by extensive N-glycan trimming. N-glycan remodelling appeared particularly dramatic for cell surface-located glycoproteins while less remodelling was observed for lysosomal-resident glycoproteins. Collectively, our findings indicate that both under- and hyper-processed N-glycans are prevalent features of endogenous MHC-II immunopeptides, an observation that demands further investigation to enable a better molecular-level understanding of immune surveillance.
Collapse
Affiliation(s)
- Hayley Goodson
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Sayantani Chatterjee
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Gabriel Goncalves
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Joshua Fehring
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Aoun M, Coelho A, Krämer A, Saxena A, Sabatier P, Beusch CM, Lönnblom E, Geng M, Do NN, Xu Z, Zhang J, He Y, Romero Castillo L, Abolhassani H, Xu B, Viljanen J, Rorbach J, Fernandez Lahore G, Gjertsson I, Kastbom A, Sjöwall C, Kihlberg J, Zubarev RA, Burkhardt H, Holmdahl R. Antigen-presenting autoreactive B cells activate regulatory T cells and suppress autoimmune arthritis in mice. J Exp Med 2023; 220:e20230101. [PMID: 37695523 PMCID: PMC10494526 DOI: 10.1084/jem.20230101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.
Collapse
Affiliation(s)
- Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Alexander Krämer
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Amit Saxena
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Christian Michel Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Manman Geng
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nhu-Nguyen Do
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
| | - Zhongwei Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Jingdian Zhang
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Yibo He
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Laura Romero Castillo
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Neo Building, Solna, Sweden
| | - Bingze Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Johan Viljanen
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Joanna Rorbach
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alf Kastbom
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Kihlberg
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Batsalova T, Teneva I, Bardarov K, Moten D, Dzhambazov B. Anticitrullinated antibodies recognize rheumatoid arthritis associated T-cell epitopes modified by bacterial L-asparaginase. Cent Eur J Immunol 2023; 48:174-188. [PMID: 37901867 PMCID: PMC10604640 DOI: 10.5114/ceji.2023.131455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 10/31/2023] Open
Abstract
Citrullinated proteins and anti-citrullinated protein antibodies (ACPAs) play an important role in the pathogenesis of rheumatoid arthritis (RA). It has been suggested that during inflammation or dysbiosis, bacteria could initiate production of ACPAs. Most patients with RA are seropositive for ACPAs, but these antibodies have overlapping reactivity to different posttranslational modifications (PTMs). For initiation and development of RA, T lymphocytes and T cell epitopes are still required. In this study, we evaluated the ability of bacterial L-asparaginase to modify RA-related T cell epitopes within type II collagen (CII259-273 and CII311-325), as well as whether these modified epitopes are recognized by ACPAs from RA patients. We included 12 patients with early RA and 11 healthy subjects selected according to predefined specific criteria. LC-MS/MS analyses revealed that the bacterial L-asparaginase can modify investigated T cell epitopes. ELISA tests showed cross-reactivity of ACPA positive sera from early RA patients towards the enzymatically modified immunodominant T cell epitopes within type II collagen (CII), but not to the modified irrelevant peptides. These data suggest that the cross-reactive ACPAs recognize the "carbonyl-Gly-Pro" motif in CII. Moreover, the T cell recognition of the modified major immunodominant T cell epitope Gal264-CII259-273 was not affected. This epitope was still able to activate autoreactive T cells from early RA patients. It is likely that such modifications are the missing link between the T cell priming and the development of anti-modified protein antibodies (AMPAs). Our results provide additional information on the etiology and pathogenesis of RA.
Collapse
Affiliation(s)
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | | | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Dzhambazov B, Batsalova T, Merky P, Lange F, Holmdahl R. NIH/3T3 Fibroblasts Selectively Activate T Cells Specific for Posttranslationally Modified Collagen Type II. Int J Mol Sci 2023; 24:10811. [PMID: 37445989 DOI: 10.3390/ijms241310811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
It has been shown that synovial fibroblasts (SF) play a key role in the initiation of inflammation and joint destruction, leading to arthritis progression. Fibroblasts may express major histocompatibility complex class II region (MHCII) molecules, and thus, they could be able to process and present antigens to immunocompetent cells. Here we examine whether different types of fibroblasts (synovial, dermal, and thymic murine fibroblasts, destructive LS48 fibroblasts, and noninvasive NIH/3T3 fibroblasts) may be involved in the initiation of rheumatoid arthritis (RA) pathogenesis and can process and present type II collagen (COL2)-an autoantigen associated with RA. Using a panel of MHCII/Aq-restricted T-cell hybridoma lines that specifically recognize an immunodominant COL2 epitope (COL2259-273), we found that NIH/3T3 fibroblasts activate several T-cell clones that recognize the posttranslationally glycosylated or hydroxylated COL2259-273 epitope. The HCQ.3 hybridoma, which is specific for the glycosylated immunodominant COL2 epitope 259-273 (Gal264), showed the strongest response. Interestingly, NIH/3T3 cells, but not destructive LS48 fibroblasts, synovial, dermal, or thymic fibroblasts, were able to stimulate the HCQ.3 hybridoma and other COL2-specific T-cell hybridomas. Our experiments revealed that NIH/3T3 fibroblasts are able to activate COL2-specific T-cell hybridomas even in the absence of COL2 or a posttranslationally modified COL2 peptide. The mechanism of this unusual activation is contact-dependent and involves the T-cell receptor (TCR) complex.
Collapse
Affiliation(s)
- Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | | | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
13
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
14
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
15
|
Ahmadi P, Mahmoudi M, Kheder RK, Faraj TA, Mollazadeh S, Abdulabbas HS, Esmaeili SA. Impacts of Porphyromonas gingivalis periodontitis on rheumatoid arthritis autoimmunity. Int Immunopharmacol 2023; 118:109936. [PMID: 37098654 DOI: 10.1016/j.intimp.2023.109936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
In RA patients' synovial sites, citrullinated RA-related antigens such as type II collagens, fibrin (ogen), vimentin, and α-enolase could be targeted by ACCPAs. Since ACCPA production can be initiated a long time before RA sign appearance, primary auto-immunization against these citrullinated proteins can be originated from extra-articular sites. It has been shown that there is a significant association between P. gingivalis periodontitis, anti- P. gingivalis antibodies, and RA. P. gingivalis gingipains (Rgp, Kgp) can degrade proteins such as fibrin and α-enolase into some peptides in the form of Arg in the C-terminal which is converted to citrulline by PPAD. Also, PPAD can citrullinate type II collagen and vimentins (SA antigen). P. gingivalis induces inflammation and chemoattraction of immune cells such as neutrophils and macrophages through the increase of C5a (gingipain C5 convertase-like activity) and SCFA secretion. Besides, this microorganism stimulates anoikis, a special type of apoptosis, and NETosis, an antimicrobial form of neutrophil death, leading to the release of PAD1-4, α-enolase, and vimentin from apoptotic cells into the periodontal site. In addition, gingipains can degrade macrophages CD14 and decrease their ability in apoptotic cell removal. Gingipains also can cleave IgGs in the Fc region and transform them into rheumatoid factor (RF) antigens. In the present study, the effects of P. gingivalis on rheumatoid arthritis autoimmune response have been reviewed, which could attract practical insight both in bench and clinic.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research center north Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Mol Cell Proteomics 2023; 22:100540. [PMID: 37019382 PMCID: PMC10176071 DOI: 10.1016/j.mcpro.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune disease characterized by synovial inflammation, synovial tissue hyperplasia, and destruction of bone and cartilage. Protein glycosylation plays key roles in the pathogenesis of RA but in-depth glycoproteomics analysis of synovial tissues is still lacking. Here, by using a strategy to quantify intact N-glycopeptides, we identified 1260 intact N-glycopeptides from 481 N-glycosites on 334 glycoproteins in RA synovium. Bioinformatics analysis revealed that the hyper-glycosylated proteins in RA were closely linked to immune responses. By using DNASTAR software, we identified 20 N-glycopeptides whose prototype peptides were highly immunogenic. We next calculated the enrichment scores of nine types of immune cells using specific gene sets from public single-cell transcriptomics data of RA and revealed that the N-glycosylation levels at some sites, such as IGSF10_N2147, MOXD2P_N404, and PTCH2_N812, were significantly correlated with the enrichment scores of certain immune cell types. Furthermore, we showed that aberrant N-glycosylation in the RA synovium was related to increased expression of glycosylation enzymes. Collectively, this work presents, for the first time, the N-glycoproteome of RA synovium and describes immune-associated glycosylation, providing novel insights into RA pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
17
|
Moten D, Teneva I, Apostolova D, Batsalova T, Dzhambazov B. Molecular Mimicry of the Rheumatoid Arthritis-Related Immunodominant T-Cell Epitope within Type II Collagen (CII260-270) by the Bacterial L-Asparaginase. Int J Mol Sci 2022; 23:ijms23169149. [PMID: 36012429 PMCID: PMC9408948 DOI: 10.3390/ijms23169149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/01/2022] Open
Abstract
The etiology of most autoimmune diseases, including rheumatoid arthritis (RA), remains unclear. Both genetic and environmental factors are believed to be involved in pathogenesis. Molecular mimicry is considered one of the mechanisms for the occurrence of autoimmune diseases. The aim of the study was to determine whether the bacterial peptide L-ASNase67-81, which mimics the immunodominant T-cell epitope CII259-273, can induce T-cell reactivity in blood samples from RA patients and healthy subjects through molecular mimicry. Using bioinformatic molecular modeling methods, we first determined whether the L-ASNase67-81 peptide binds to the HLA-DRB1*04:01 molecule and whether the formed MHCII–peptide complex interacts with the corresponding T-cell receptor. To validate the obtained results, leukocytes isolated from early RA patients and healthy individuals were stimulated in vitro with L-ASNase67-81 and CII259-273 peptides as well as with bacterial L-asparaginase or human type II collagen (huCII). The activated T cells (CD4+CD154+) were analyzed by flow cytometry (FACS), and the levels of cytokines produced (IL-2, IL-17A/F, and IFN-γ) were measured by ELISA. Our in silico analyses showed that the bacterial peptide L-ASNase67-81 binds better to HLA-DRB1*04:01 compared to the immunodominant T-cell epitope CII259-273, mimicking its structure and localization in the binding groove of MHCII. Six contact points were involved in the molecular interaction of the peptide with the TCR. FACS data showed that after in vitro stimulation with the L-ASNase67-81 peptide, the percentage of activated T cells (CD154+CD4+) was significantly increased in both cell cultures isolated from ERA patients and those isolated from healthy individuals, as higher values were observed for the ERA group (9.92 ± 0.23 vs. 4.82 ± 0.22). Furthermore, the ELISA assays revealed that after stimulation with L-ASNase67-81, a significant increase in the production of the cytokines IL-2, IL-17A/F, and IFN-γ was detected in the group of ERA patients. Our data showed that the bacterial L-ASNase67-81 peptide can mimic the immunodominant T-cell epitope CII259-273 and activate HLA-DRB1*04:01-restricted T cells as well as induce cytokine production in cells isolated from ERA patients. These results are the first to demonstrate that a specific bacterial antigen could play a role in the pathogenesis of RA, mimicking the immunodominant T-cell epitope from type II collagen.
Collapse
|
18
|
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis: Cause of Inflammation and Treatment. Bioengineering (Basel) 2022; 9:bioengineering9070321. [PMID: 35877372 PMCID: PMC9311863 DOI: 10.3390/bioengineering9070321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.
Collapse
|
19
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
20
|
Ge C, Weisse S, Xu B, Dobritzsch D, Viljanen J, Kihlberg J, Do NN, Schneider N, Lanig H, Holmdahl R, Burkhardt H. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann Rheum Dis 2022; 81:480-489. [PMID: 35027402 PMCID: PMC8921575 DOI: 10.1136/annrheumdis-2021-220500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
Objectives Rheumatoid arthritis (RA) is an autoimmune disease strongly associated with the major histocompatibility complex (MHC) class II allele DRB1*04:01, which encodes a protein that binds self-peptides for presentation to T cells. This study characterises the autoantigen-presenting function of DRB1*04:01 (HLA-DRA*01:01/HLA-DRB1*04:01) at a molecular level for prototypic T-cell determinants, focusing on a post-translationally modified collagen type II (Col2)-derived peptide. Methods The crystal structures of DRB1*04:01 molecules in complex with the peptides HSP70289-306, citrullinated CILP982-996 and galactosylated Col2259-273 were determined on cocrystallisation. T cells specific for Col2259-273 were investigated in peripheral blood mononuclear cells from patients with DRB1*04:01-positive RA by cytofluorometric detection of the activation marker CD154 on peptide stimulation and binding of fluorescent DRB1*0401/Col2259-273 tetramer complexes. The cDNAs encoding the T-cell receptor (TCR) α-chains and β-chains were cloned from single-cell sorted tetramer-positive T cells and transferred via a lentiviral vector into TCR-deficient Jurkat 76 cells. Results The crystal structures identified peptide binding to DRB1*04:01 and potential side chain exposure to T cells. The main TCR recognition sites in Col2259-273 were lysine residues that can be galactosylated. RA T-cell responses to DRB1*04:01-presented Col2259-273 were dependent on peptide galactosylation at lysine 264. Dynamic molecular modelling of a functionally characterised Col2259-273-specific TCR complexed with DRB1*04:01/Col2259-273 provided evidence for differential allosteric T-cell recognition of glycosylated lysine 264. Conclusions The MHC-peptide-TCR interactions elucidated in our study provide new molecular insights into recognition of a post-translationally modified RA T-cell determinant with a known dominant role in arthritogenic and tolerogenic responses in murine Col2-induced arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sylvia Weisse
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Doreen Dobritzsch
- Section of Biochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Johan Viljanen
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jan Kihlberg
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Nhu-Nguyen Do
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nadine Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (current affiliation)
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany .,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt am Main, Germany.,Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Wenhart C, Holthoff HP, Reimann A, Li Z, Faßbender J, Ungerer M. A fructosylated peptide derived from a collagen II T cell epitope for long-term treatment of arthritis (FIA-CIA) in mice. Sci Rep 2021; 11:17345. [PMID: 34462464 PMCID: PMC8405725 DOI: 10.1038/s41598-021-95193-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease which affects primarily the joints. Peptides of several proteins have shown an effect in some experimental animal models of RA. We investigated arthritis development in male DBA/1 mice which were injected with bovine collagen II (bCII) and human fibrinogen (hFib) on days 0 and 21, leading to stable and reproducible disease induction in 100% of immunized mice (FIA-CIA). In a second study, two bCII-derived peptides were given three times in the course of 6 weeks after FIA-CIA induction to test for impact on arthritis. Mice were scored weekly for arthritis and anti-citrullinated peptide antibodies (ACPAs) were determined in the sera taken on days 0, 14, 35, 56 and 84. Histology of the hind paws was performed at the end of the experiment. Intravenous administration of peptide 90578, a novel fructosylated peptide derived from the immunodominant T cell epitope of bCII, at a dosage of 1 mg/kg resulted in significant beneficial effects on clinical outcome parameters and on the arthritis histology scores which was sustained over 12 weeks. Survival tended to be improved in peptide 90578-treated mice. Intravenous administration of pure soluble peptide 90578 without adjuvants is a promising approach to treat RA, with treatment starting at a time when ACPAs are already present. The results complement existing data on peptide "vaccination" of healthy animals, or on treatment using recombinant peptide expressing virus or complex biological compounds.
Collapse
Affiliation(s)
| | | | | | - Zhongmin Li
- Advancecor, 82152, Planegg-Martinsried, Germany
| | | | - Martin Ungerer
- ISAR Bioscience, Semmelweisstr. 5, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
23
|
Bäckdahl L, Aoun M, Norin U, Holmdahl R. Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease. PLoS Genet 2020; 16:e1008788. [PMID: 32497089 PMCID: PMC7297379 DOI: 10.1371/journal.pgen.1008788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 06/16/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
The control of chronic inflammation is dependent on the possibility of limiting bystander activation of autoreactive and potentially pathogenic T cells. We have identified a non-sense loss of function single nucleotide polymorphism in the C-type lectin receptor, Clec4b, and have shown that it controls chronic autoimmune arthritis in rat models of rheumatoid arthritis. Clec4b is specifically expressed in CD4+ myeloid cells, mainly classical dendritic cells (DCs), and is defined by the markers CD4+/MHCIIhi/CD11b/c+. We found that Clec4b limited the activation of arthritogenic CD4+αβT cells and the absence of Clec4b allowed development of arthritis already 5 days after adjuvant injection. Clec4b sufficient CD4+ myeloid dendritic cells successfully limited the arthritogenic T cell expansion immediately after activation both in vitro and in vivo. We conclude that Clec4b expressed on CD4+ myeloid dendritic cells regulate the expansion of auto-reactive and potentially pathogenic T cells during an immune response, demonstrating an early checkpoint control mechanism to avoid autoimmunity leading to chronic inflammation. To identify early disease regulatory mechanisms in autoimmune diseases such as rheumatoid arthritis (RA) is challenging not only because of the genetic and environmental complexity but also because of the critical autoimmune time-period that precedes the clinical diagnosis. Therefore, we set out to study the complex disease pathways in a more restricted setting. Through genetic segregation of rat crosses, followed by the selection of recombinants to produce minimal congenic strains, we have identified a single nucleotide polymorphism regulating the expression of Clec4b2 that in turn controls the development of arthritis. The Clec4b gene is normally expressed in a population of antigen-presenting cells that can limit enhanced activation of bystander autoreactive T cells during an immune-priming response. This previously unknown type of immune regulation reveals the existence of a mechanism protecting against autoimmune dieases by the avoidance of bystander activation of autoreactive T cells during a normal immune response to foreign antigen.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mike Aoun
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulrika Norin
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China
- * E-mail:
| |
Collapse
|
24
|
Opdenakker G, Abu El-Asrar A, Van Damme J. Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm. Trends Immunol 2020; 41:367-378. [PMID: 32299652 DOI: 10.1016/j.it.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases are defined as pathologies of adaptive immunity by the presence of autoantibodies or MHC-restricted autoantigen-reactive T cells. Because autoreactivity is a normal process based on mechanisms producing repertoires of antibodies and T cell receptors, crucial questions about disease mechanisms and key steps for interference have been outstanding. We defined 25 years ago the 'remnant epitopes generate autoimmunity' (REGA)-model in which extracellular proteases from innate immune cells generate autoantigens. Here, we refine the REGA-model, tested in diseases ranging from organ-specific autoimmune diseases to systemic lupus erythematosus. It now constitutes a paradigm in which remnant epitopes generate, maintain, and regulate autoimmunity; are dependent on genetic and epigenetic influences; are produced in a disease phase-specific manner; and have therapeutic implications when targeted.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Cudic M, Fields GB. Modulation of receptor binding to collagen by glycosylated 5-hydroxylysine: Chemical biology approaches made feasible by Carpino's Fmoc group. Pept Sci (Hoboken) 2020; 112. [PMID: 33073165 DOI: 10.1002/pep2.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3β1 integrin to collagen, while the impact on α2β1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3β1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.
Collapse
Affiliation(s)
- Maré Cudic
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| |
Collapse
|
26
|
Zhong J, Yau ACY, Holmdahl R. Regulation of T Cell Function by Reactive Nitrogen and Oxygen Species in Collagen-Induced Arthritis. Antioxid Redox Signal 2020; 32:161-172. [PMID: 31873060 DOI: 10.1089/ars.2019.7788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: In this study, we investigate the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in autoimmune diseases. We focus on oxidative regulation at the interaction between antigen-presenting cells (APCs) and T cells, and consequent effect of ROS and RNS on type II collagen (CII)-induced arthritis (CIA) model in mice. Results: Mice deficient in ROS and peroxide, due to a mutation in Ncf1 gene, develop an exaggerated CIA and a stronger T cell response to CII. In contrast, nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) was found to protect against CIA. The most pronounced protective effect was observed when L-NAME treatment started immediately after CII immunization. Ten days after immunization, the CII-reactive T cell-proliferative response was greater in Ncf1-mutant mice that were treated with L-NAME. T cells from L-NAME-treated mice, primed with CII, showed lower interleukin-2 secretion in response to CII in vitro. Moreover, inhibition of RNS production resulted in dysregulation of NOS1 (neuronal) expression in CII-reactive T cells. Innovation and Conclusion: The results support that deficiency of a paracrine factor as ROS and peroxide released by APC leads to pronounced activation of T cells and enhanced arthritis. An intrinsic factor might be RNS produced by NOS1, which likely enhanced T cell activation in an autocrine manner.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anthony C Y Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Chhabra M, Sharma S. Potential role of Peroxisome Proliferator Activated Receptor gamma analogues in regulation of endothelial progenitor cells in diabetes mellitus: An overview. Diabetes Metab Syndr 2019; 13:1123-1129. [PMID: 31336454 DOI: 10.1016/j.dsx.2019.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Endothelial progenitor cells are recognized as the potential targets for the revascularization and angiogenesis because of their ability to get themselves transformed into mature endothelial cells. Underlying pathophysiology in diabetes mellitus leads to decrease in circulatory endothelial progenitor cells, resulting in diabetic macro-vascular and micro-vascular complications. Peroxisome Proliferator Activated Receptor (PPAR) gamma analogues serves as an effective therapy for controlling blood sugar levels and preventing its complications. Reports of clinical trials and meta-analysis of clinical trial suggests the beneficial aspects of PPAR gamma therapy in increasing the number and function of circulating endothelial progenitor cells. This review highlights the pleotropic effect of PPAR gamma analogs, apart from their antidiabetic action via reduction of oxidative stress, increasing expression of eNOS, reducing level of miR 22, miR 222 levels and positive modulation of rapamycin/Protein kinase B/phosphoinoside3-kinase pathways, preventing the early apoptosis, enhanced mobility proliferation and transformation into mature endothelial cells. PPAR gamma therapy in diabetes regulates endothelial progenitor cells, reduces complications of diabetes like retinopathy, nephropathy, neuropathy, cardiomyopathy, deep vein thrombosis, and maintains the healthy vasculature.
Collapse
Affiliation(s)
- Manik Chhabra
- PharmD Intern, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India.
| | - Saurabh Sharma
- Department of Pharmacology, School of Pharmaceutical and Allied Medical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
28
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
29
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Lindgren C, Tyagi M, Viljanen J, Toms J, Ge C, Zhang N, Holmdahl R, Kihlberg J, Linusson A. Dynamics Determine Signaling in a Multicomponent System Associated with Rheumatoid Arthritis. J Med Chem 2018; 61:4774-4790. [PMID: 29727183 DOI: 10.1021/acs.jmedchem.7b01880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strategies that target multiple components are usually required for treatment of diseases originating from complex biological systems. The multicomponent system consisting of the DR4 major histocompatibility complex type II molecule, the glycopeptide CII259-273 from type II collagen, and a T-cell receptor is associated with development of rheumatoid arthritis (RA). We introduced non-native amino acids and amide bond isosteres into CII259-273 and investigated the effect on binding to DR4 and the subsequent T-cell response. Molecular dynamics simulations revealed that complexes between DR4 and derivatives of CII259-273 were highly dynamic. Signaling in the overall multicomponent system was found to depend on formation of an appropriate number of dynamic intramolecular hydrogen bonds between DR4 and CII259-273, together with the positioning of the galactose moiety of CII259-273 in the DR4 binding groove. Interestingly, the system tolerated modifications at several positions in CII259-273, indicating opportunities to use analogues to increase our understanding of how rheumatoid arthritis develops and for evaluation as vaccines to treat RA.
Collapse
Affiliation(s)
- Cecilia Lindgren
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Mohit Tyagi
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Johan Viljanen
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Johannes Toms
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics , Karolinska Institute , SE-171 77 Stockholm , Sweden
| | - Naru Zhang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics , Karolinska Institute , SE-171 77 Stockholm , Sweden.,School of Pharmaceutical Science , Southern Medical University , Guangzhou , China
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics , Karolinska Institute , SE-171 77 Stockholm , Sweden.,School of Pharmaceutical Science , Southern Medical University , Guangzhou , China
| | - Jan Kihlberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
31
|
T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018; 9:353. [PMID: 29367624 PMCID: PMC5783942 DOI: 10.1038/s41467-017-02763-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Establishing effective central tolerance requires the promiscuous expression of tissue-restricted antigens by medullary thymic epithelial cells. However, whether central tolerance also extends to post-translationally modified proteins is not clear. Here we show a mouse model of autoimmunity in which disease development is dependent on post-translational modification (PTM) of the tissue-restricted self-antigen collagen type II. T cells specific for the non-modified antigen undergo efficient central tolerance. By contrast, PTM-reactive T cells escape thymic selection, though the PTM variant constitutes the dominant form in the periphery. This finding implies that the PTM protein is absent in the thymus, or present at concentrations insufficient to induce negative selection of developing thymocytes and explains the lower level of tolerance induction against the PTM antigen. As the majority of self-antigens are post-translationally modified, these data raise the possibility that T cells specific for other self-antigens naturally subjected to PTM may escape central tolerance induction by a similar mechanism. Post-translational modifications are associated with autoimmune diseases but definitive evidence of their contribution to escape from central tolerance mechanisms is needed. Here, the authors show that T cells specific for post-translational modifications of type II collagen escape intrathymic tolerance induction in a mouse model of rheumatoid arthritis.
Collapse
|
32
|
Santos AL, Lindner AB. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5716409. [PMID: 28894508 PMCID: PMC5574318 DOI: 10.1155/2017/5716409] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023]
Abstract
Aging is characterized by the progressive decline of biochemical and physiological function in an individual. Consequently, aging is a major risk factor for diseases like cancer, obesity, and type 2 diabetes. The cellular and molecular mechanisms of aging are not well understood, nor is the relationship between aging and the onset of diseases. One of the hallmarks of aging is a decrease in cellular proteome homeostasis, allowing abnormal proteins to accumulate. This phenomenon is observed in both eukaryotes and prokaryotes, suggesting that the underlying molecular processes are evolutionarily conserved. Similar protein aggregation occurs in the pathogenesis of diseases like Alzheimer's and Parkinson's. Further, protein posttranslational modifications (PTMs), either spontaneous or physiological/pathological, are emerging as important markers of aging and aging-related diseases, though clear causality has not yet been firmly established. This review presents an overview of the interplay of PTMs in aging-associated molecular processes in eukaryotic aging models. Understanding PTM roles in aging could facilitate targeted therapies or interventions for age-related diseases. In addition, the study of PTMs in prokaryotes is highlighted, revealing the potential of simple prokaryotic models to uncover complex aging-associated molecular processes in the emerging field of microbiogerontology.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
34
|
Microbiomic and Posttranslational Modifications as Preludes to Autoimmune Diseases. Trends Mol Med 2016; 22:746-757. [DOI: 10.1016/j.molmed.2016.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
|
35
|
Jin L, Nonaka Y, Miyakawa S, Fujiwara M, Nakamura Y. Dual Therapeutic Action of a Neutralizing Anti-FGF2 Aptamer in Bone Disease and Bone Cancer Pain. Mol Ther 2016; 24:1974-1986. [PMID: 27506449 PMCID: PMC5154475 DOI: 10.1038/mt.2016.158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) plays a crucial role in bone remodeling and disease progression. However, the potential of FGF2 antagonists for treatment of patients with bone diseases has not yet been explored. Therefore, we generated a novel RNA aptamer, APT-F2, specific for human FGF2 and characterized its properties in vitro and in vivo. APT-F2 blocked binding of FGF2 to each of its four cellular receptors, inhibited FGF2-induced downstream signaling and cells proliferation, and restored osteoblast differentiation blocked by FGF2. APT-F2P, a PEGylated form of APT-F2, effectively blocked the bone disruption in mouse and rat models of arthritis and osteoporosis. Treatment with APT-F2P also exerted a strong analgesic effect, equivalent to morphine, in a mouse model of bone cancer pain. These findings demonstrated dual therapeutic action of APT-F2P in bone diseases and pain, providing a promising approach to the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yoshikazu Nakamura
- Ribomic Inc., Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
De Santis M, Semi C. T cell Response to Carbamylated and Citrullinated Collagen Epitopes in HLA-DRβ1*04-Positive Patients With Rheumatoid Arthritis: Comment on the Article by Anderson et al. Arthritis Rheumatol 2016; 68:2050-1. [DOI: 10.1002/art.39713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Carlo Semi
- Humanitas Research Hospital and University of Milan; Milan Italy
| |
Collapse
|
37
|
Chemin K, Albrecht I, Pollastro S, de Vries N, Holmdahl R, Malmström V. Reply. Arthritis Rheumatol 2016; 68:2053-4. [DOI: 10.1002/art.39660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Karine Chemin
- Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
| | - Inka Albrecht
- Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
| | | | | | | | - Vivianne Malmström
- Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
| |
Collapse
|
38
|
De Santis M, Ceribelli A, Cavaciocchi F, Generali E, Massarotti M, Isailovic N, Crotti C, Scherer HU, Montecucco C, Selmi C. Effects of type II collagen epitope carbamylation and citrullination in human leucocyte antigen (HLA)-DR4(+) monozygotic twins discordant for rheumatoid arthritis. Clin Exp Immunol 2016; 185:309-19. [PMID: 27314557 DOI: 10.1111/cei.12825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study is to investigate the effect of the native, citrullinated or carbamylated type II human collagen T cell- and B cell-epitopes on the adaptive immune response in rheumatoid arthritis (RA). Peripheral blood T and B cells obtained from a human leucocyte D4-related (antigen DR4(-) HLA-DR4)(+) woman with early RA, her healthy monozygotic twin and an unrelated HLA-DR3(+) woman with early RA were analysed for activation (CD154/CD69), apoptosis (annexin/7-aminoactinomycin), cytokine production [interferon (IFN)γ/interleukin (IL)-17/IL-4/IL-10/IL-6] and functional phenotype (CD45Ra/CCR7) after stimulation with the collagen native T cell epitope (T261-273), the K264 carbamylated T cell epitope (carT261-273), the native B cell epitope (B359-369) or the R360 citrullinated B cell epitope (citB359-369), and the combinations of these. The T cell memory compartment was activated by T cell epitopes in both discordant DR4(+) twins, but not in the DR3(+) RA. The collagen-specific activation of CD4(+) T cells was induced with both the native and carbamylated T cell epitopes only in the RA twin. Both T cell epitopes also induced IL-17 production in the RA twin, but a greater IL-4 and IL-10 response in the healthy twin. The citrullinated B cell epitope, particularly when combined with the carbamylated T cell epitope, induced B cell activation and an increased IL-6/IL-10 ratio in the RA twin compared to a greater IL-10 production in the healthy twin. Our data suggest that circulating collagen-specific T and B cells are found in HLA-DR4(+) subjects, but only RA activated cells express co-stimulatory molecules and produce proinflammatory cytokines. Carbamylation and citrullination further modulate the activation and cytokine polarization of T and B cells.
Collapse
Affiliation(s)
- M De Santis
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - A Ceribelli
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - F Cavaciocchi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - E Generali
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - M Massarotti
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - N Isailovic
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - C Crotti
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - H U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - C Montecucco
- Rheumatology, Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - C Selmi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol 2016; 34:265-97. [PMID: 26907214 DOI: 10.1146/annurev-immunol-041015-055420] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; .,Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
41
|
Di Sante G, Tolusso B, Fedele AL, Gremese E, Alivernini S, Nicolò C, Ria F, Ferraccioli G. Collagen Specific T-Cell Repertoire and HLA-DR Alleles: Biomarkers of Active Refractory Rheumatoid Arthritis. EBioMedicine 2015; 2:2037-45. [PMID: 26844284 PMCID: PMC4703746 DOI: 10.1016/j.ebiom.2015.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04–04, 04–01 and 04–11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients. In DR4 + RA patients disease activity is associated with detection of Collagen261-273-specific T cells carrying TRBV25. HLA-DR 04/04, 04/01 and 04/11 alleles were associated with TRBV25, DAS at the onset, and poor response to DMARDs. These findings could lead to tailor the treatment in the subgroup of patients with an active refractory disease.
In the era of costly medical care with monoclonal antibodies and new molecules, and of an increasing request of a personalized medicine, a relevant socio-economic problem in the management of Rheumatoid Arthritis patients is the possible identification of the subgroups of poor responders to treatment. Our study aimed to detect the refractory active patients using an HLA-DR test (available in most hospital centers) combined with a relatively new biomarker of active disease expressed on the cell surface of autoreactive T cells. These tests appear complementary tools to identify the best and the poor responders to a “treat to target strategy”.
Collapse
Key Words
- ACPA
- ACPA, anti-cyclic citrullinated peptide antibodies
- APCs, antigen presenting cells
- CDR3, complementarity-determining region 3
- CRP, C-reactive protein
- Clonotypes
- Coll261-273, human collagen derived peptide
- DAS, disease activity score
- Disease activity
- ERA, early rheumatoid arthritis
- ESR, erythrocyte sedimentation rate
- GWAS, genome wide association studies
- HAQ, Health Assessment Questionnaire
- HLA, histocompatibility leucocyte antigen
- HLA-DRB1
- MHC, major histocompatibility complex
- PBMC, peripheral blood mononuclear cells
- RF, rheumatoid factor
- RT-PCR, reverse transcription polymerase chain reaction
- SJC, swollen joint count
- SNP, single nucleotide polymorphism
- TCR, T cell receptor
- TJC, tender joint count
- TRBJ, junctional beta chain gene of TCR
- TRBV 25
- TRBV, variable beta chain gene of TCR
Collapse
Affiliation(s)
- Gabriele Di Sante
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Barbara Tolusso
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Laura Fedele
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Alivernini
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Nicolò
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Ria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Institute of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
- Corresponding author.
| |
Collapse
|
42
|
He J, Li H, Liu C, Wang G, Ge L, Ma S, Huang L, Yan S, Xu X. Formulation and evaluation of poly(lactic-co-glycolic acid) microspheres loaded with an altered collagen type II peptide for the treatment of rheumatoid arthritis. J Microencapsul 2015; 32:608-17. [DOI: 10.3109/02652048.2015.1065924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Targeting mechanisms at sites of complement activation for imaging and therapy. Immunobiology 2015; 221:726-32. [PMID: 25979851 DOI: 10.1016/j.imbio.2015.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
The complement system plays a key role in many acute injury states as well as chronic autoimmune and inflammatory diseases. Localized complement activation and alternative pathway-mediated amplification on diverse target surfaces promote local recruitment of pro-inflammatory cells and elaboration of other mediators. Despite a general understanding of the architecture of the system, though, many of the mechanisms that underlie site-specific complement activation and amplification in vivo are incompletely understood. In addition, there is no capability yet to measure the level of local tissue site-specific complement activation in patients without performing biopsies to detect products using immunohistochemical techniques. Herein is reviewed emerging evidence obtained through clinical research studies of human rheumatoid arthritis along with translational studies of its disease models which demonstrate that several parallel mechanisms are involved in site-specific amplification of activation of the complement system in vivo. Among these processes are de-regulation of the alternative pathway, effector pathway-catalyzed amplification of proximal complement activation, recognition of injury-associated ligands by components of the lectin pathway, and engagement of pathogenic natural antibodies that recognize a limited set of injury-associated neoepitopes. Studies suggest that each of these inter-related processes can play key roles in amplification of complement-dependent injury on self-tissues in vivo. These findings, in addition to development of an imaging strategy described herein designed to quantitatively measure local complement C3 fixation, have relevance to therapeutic and diagnostic strategies targeting the complement system.
Collapse
|
44
|
Ankner T, Norberg T, Kihlberg J. Mild Oxidative Cleavage of 9-BBN-Protected Amino Acid Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Lindgren C, Andersson IE, Berg L, Dobritzsch D, Ge C, Haag S, Uciechowska U, Holmdahl R, Kihlberg J, Linusson A. Hydroxyethylene isosteres introduced in type II collagen fragments substantially alter the structure and dynamics of class II MHC Aq/glycopeptide complexes. Org Biomol Chem 2015; 13:6203-16. [DOI: 10.1039/c5ob00395d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of hydroxyethylene isosteres into glycopeptides led to loss of Aq affinity and subsequent T cell response due to disruption of hydrogen bond networks.
Collapse
Affiliation(s)
| | - Ida E. Andersson
- Department of Chemistry
- Umeå University
- SE-901 87 Umeå
- Sweden
- Medical Inflammation Research
| | - Lotta Berg
- Department of Chemistry
- Umeå University
- SE-901 87 Umeå
- Sweden
| | - Doreen Dobritzsch
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| | - Changrong Ge
- Medical Inflammation Research
- Department of Medical Biochemistry and Biophysics
- Karolinska Institute
- SE-171 77 Stockholm
- Sweden
| | - Sabrina Haag
- Medical Inflammation Research
- Department of Medical Biochemistry and Biophysics
- Karolinska Institute
- SE-171 77 Stockholm
- Sweden
| | | | - Rikard Holmdahl
- Medical Inflammation Research
- Department of Medical Biochemistry and Biophysics
- Karolinska Institute
- SE-171 77 Stockholm
- Sweden
| | - Jan Kihlberg
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| | - Anna Linusson
- Department of Chemistry
- Umeå University
- SE-901 87 Umeå
- Sweden
| |
Collapse
|
46
|
Eming R, Hennerici T, Bäcklund J, Feliciani C, Visconti KC, Willenborg S, Wohde J, Holmdahl R, Sønderstrup G, Hertl M. Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:4391-9. [PMID: 25252957 DOI: 10.4049/jimmunol.1401081] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pemphigus vulgaris (PV) is considered as a model for an autoantibody-mediated organ-specific autoimmune disorder. IgG autoantibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3), the major autoantigen in PV, cause loss of epidermal keratinocyte adhesion, resulting in blisters and erosions of the skin and mucous membranes. The association of human autoimmune diseases with distinct HLA alleles is a well-known phenomenon, such as the association with HLA-DRB1*04:02 in PV. However, direct evidence that HLA-DRB1*04:02-restricted autoreactive CD4(+) T cells recognizing immunodominant epitopes of Dsg3 initiate the production of Dsg3-reactive IgG autoantibodies is still missing. In this study, we show in a humanized HLA-DRB1*04:02-transgenic mouse model that HLA-DRB1*04:02-restricted T cell recognition of human Dsg3 epitopes leads to the induction of pathogenic IgG Abs that induce loss of epidermal adhesion, a hallmark in the immune pathogenesis of PV. Activation of Dsg3-reactive CD4(+) T cells by distinct human Dsg3 peptides that bind to HLA-DRβ1*04:02 is tightly regulated by the HLA-DRB1*04:02 allele and leads, via CD40-CD40L-dependent T cell-B cell interaction, to the production of IgG Abs that recognize both N- and COOH-terminal epitopes of the human Dsg3 ectodomain. These findings demonstrate key cellular and humoral immune events in the autoimmune cascade of PV in a humanized HLA-transgenic mouse model. We show that CD4(+) T cells recognizing immunodominant Dsg3 epitopes in the context of the PV-associated HLA-DRB1*04:02 induce the secretion of Dsg3-specific IgG in vivo. Finally, these results identify Dsg3-reactive CD4(+) T cells as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, D-35043 Marburg, Germany;
| | - Tina Hennerici
- Department of Dermatology and Allergology, Philipps University, D-35043 Marburg, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Claudio Feliciani
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Parma, 43100 Parma, Italy; and
| | - Kevin C Visconti
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Sebastian Willenborg
- Department of Dermatology and Allergology, Philipps University, D-35043 Marburg, Germany
| | - Jessica Wohde
- Department of Dermatology and Allergology, Philipps University, D-35043 Marburg, Germany
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Grete Sønderstrup
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, D-35043 Marburg, Germany
| |
Collapse
|
47
|
Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation - the three stages of rheumatoid arthritis. Eur J Immunol 2014; 44:1593-9. [PMID: 24737176 DOI: 10.1002/eji.201444486] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 12/28/2022]
Abstract
Extensive genome-wide association studies have recently shed some light on the causes of chronic autoimmune diseases and have confirmed a central role of the adaptive immune system. Moreover, better diagnostics using disease-associated autoantibodies have been developed, and treatment has improved through the development of biologicals with precise molecular targets. Here, we use rheumatoid arthritis (RA) as a prototype for chronic autoimmune disease to propose that the pathogenesis of autoimmune diseases could be divided into three discrete stages. First, yet unknown environmental challenges seem to activate innate immunity thereby providing an adjuvant signal for the induction of adaptive immune responses that lead to the production of autoantibodies and determine the subsequent disease development. Second, a joint-specific inflammatory reaction occurs. This inflammatory reaction might be clinically diagnosed as the earliest signs of the disease. Third, inflammation is converted to a chronic process leading to tissue destruction and remodeling. In this review, we discuss the stages involved in RA pathogenesis and the experimental approaches, mainly involving animal models that can be used to investigate each disease stage. Although we focus on RA, it is possible that a similar stepwise development of disease also occurs in other chronic autoimmune settings such as multiple sclerosis (MS), type 1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Kessel C, Nandakumar KS, Peters FB, Gauba V, Schultz PG, Holmdahl R. A single functional group substitution in c5a breaks B cell and T cell tolerance and protects against experimental arthritis. Arthritis Rheumatol 2014; 66:610-21. [PMID: 24574221 DOI: 10.1002/art.38237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A deficiency in C5 protects against arthritis development. However, there is currently no approach successfully translating these findings into arthritis therapy, as by targeting the key component, C5a. The aim of this study was to develop a vaccination strategy targeting C5a as therapy for patients with rheumatoid arthritis. METHODS An anti-C5a vaccine was generated by incorporating the unnatural amino acid p-nitrophenylalanine (4NPA) into selected sites in the murine C5a molecule. C5a-4NPA variants were screened for their immunogenicity in mice on different arthritis-susceptible class II major histocompatibility complex (MHC) backgrounds. A candidate vaccine was tested for its impact on disease in a murine model of collagen-induced arthritis (CIA). Immunity toward endogenous C5a as well as type II collagen was monitored and characterized. RESULTS Replacing a single tyrosine residue in position 35 (Y(35) ) with 4NPA allowed the generation of an anti-C5a vaccine, which partly protected mice against the development of CIA while strongly ameliorating the severity of clinical disease. Although differing in just 3 atoms from wild-type C5a (wtC5a), C5aY(35) 4NPA induced loss of T cell and B cell tolerance toward the endogenous protein in mice expressing class II MHC H-2(q) molecules. Despite differential B cell epitope recognition, antibodies induced by both wtC5a and C5aY(35) 4NPA neutralized C5a. Thus, anti-wtC5a IgG titers during arthritis priming were potentially of critical importance for disease protection, because high titers of C5a-neutralizing antibodies after disease onset were unable to reverse the course of arthritis. CONCLUSION The results of this study suggest that the most effective anti-C5a treatment in arthritis can be accomplished using a preventive vaccination strategy, and that treatment using conventional biologic or small molecule strategies targeting the C5a/C5aR axis may miss the optimal window for therapeutic intervention during the subclinical priming phase of the disease.
Collapse
|
49
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
50
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|