1
|
Gustafsson JK, Hansson GC. Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease. Annu Rev Immunol 2025; 43:169-189. [PMID: 39752567 DOI: 10.1146/annurev-immunol-101721-065224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cell secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells, and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.
Collapse
Affiliation(s)
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
2
|
Abou Alaiwa MA, Hilkin BM, Price MP, Gansemer ND, Rector MR, Stroik MR, Powers LS, Whitworth KM, Samuel MS, Jain A, Ostedgaard LS, Ernst SE, Philibert W, Boyken LD, Moninger TO, Karp PH, Hornick DB, Sinn PL, Fischer AJ, Pezzulo AA, McCray PB, Meyerholz DK, Zabner J, Prather RS, Welsh MJ, Stoltz DA. Development and Initial Characterization of Pigs with DNAI1 Mutations and Primary Ciliary Dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594822. [PMID: 39229081 PMCID: PMC11370470 DOI: 10.1101/2024.05.22.594822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease.
Collapse
Affiliation(s)
- Mahmoud A. Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Brie M. Hilkin
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Margaret P. Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Michael R. Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Mal R. Stroik
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | | | - Melissa S. Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Akansha Jain
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Winter Philibert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Linda D. Boyken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Phillip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Douglas B. Hornick
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Paul B. McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
| | - Randy S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - David A. Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
STOLTZ DAVIDA. INSIGHTS INTO THE ORIGINS OF CYSTIC FIBROSIS LUNG DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:29-36. [PMID: 39135587 PMCID: PMC11316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.
Collapse
|
4
|
Bos MF, Ermund A, Hansson GC, de Graaf J. Goblet cell interactions reorient bundled mucus strands for efficient airway clearance. PNAS NEXUS 2023; 2:pgad388. [PMID: 38024407 PMCID: PMC10661087 DOI: 10.1093/pnasnexus/pgad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity. However, after release, the bundled strands are found to have turned orthogonal to the flow, which maximizes their clearance potential. How this unexpected reorientation is accomplished is presently not well understood. Recent experiments suggest that the reorientation process involves bundled strands sticking to MUC5AC mucus threads, which are tethered to the goblet cells. Such goblet cells are present in small numbers throughout the airway epithelium. Here, we develop a minimal model for reorientation of bundled mucus strands through adhesive interactions with surface goblet cells. Our simulations reveal that goblet cell interactions can reorient the bundled strands within 10 mm of release-making reorientation on the length scale of the tracheal tube feasible-and can stabilize the orthogonal orientation. Our model also reproduces other experimental observations such as strong velocity fluctuations and significant slow-down of the bundled strand with respect to the cilia-mediated flow. We further provide insight into the strand turning mechanism by examining the effect of strand shape on the impulse exerted by a single goblet cell. We conclude that goblet cell-mediated reorientation is a viable route for bundled strand reorientation, which should be further validated in future experiment.
Collapse
Affiliation(s)
- Meike F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30, Gothenburg, Sweden
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
5
|
Rossy T, Distler T, Meirelles LA, Pezoldt J, Kim J, Talà L, Bouklas N, Deplancke B, Persat A. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol 2023; 21:e3002209. [PMID: 37527210 PMCID: PMC10393179 DOI: 10.1371/journal.pbio.3002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.
Collapse
Affiliation(s)
- Tamara Rossy
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Distler
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucas A Meirelles
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lorenzo Talà
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Rodriguez-Piñeiro AM, Jaudas F, Klymiuk N, Bähr A, Hansson GC, Ermund A. Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets. Respir Res 2023; 24:83. [PMID: 36927357 PMCID: PMC10022022 DOI: 10.1186/s12931-023-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.
Collapse
Affiliation(s)
- Ana M Rodriguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Jaudas
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Disturbing the Spatial Organization of Biofilm Communities Affects Expression of agr-Regulated Virulence Factors in Staphylococcus aureus. Appl Environ Microbiol 2023; 89:e0193222. [PMID: 36700647 PMCID: PMC9973005 DOI: 10.1128/aem.01932-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus uses quorum sensing and nutrient availability to control the expression of agr-regulated virulence factors. Quorum sensing is mediated by autoinducing peptide (AIP), which at a high concentration reduces expression of surface attachment proteins (coa, fnbpA) and increases expression of exotoxins (lukS) and proteases (splA). Nutrient availability can be sensed through the saeS/saeR system. Low nutrients increase expression of saeR, which augments expression of coa and fnbpA, distinct from the activity of AIP. The formation of spatial structure, such as biofilms, can alter quorum sensing and nutrient acquisition. In natural environments, biofilms encounter forces that may alter their spatial structure. These forces may impact quorum sensing and/or nutrient acquisition and thus affect the expression of agr-regulated virulence factors. However, this has not been studied. We show that periodically disturbing biofilms composed of S. aureus using a physical force affected the expression of agr-regulated virulence factors. In nutrient-poor environments, disturbance increased the expression of coa, fnbpA, lukS, and splA. Disturbance in a nutrient-rich environment at low or high disturbance amplitudes moderately reduced expression of coa and fnbpA but increased expression of lukS and splA. Interestingly, at an intermediate amplitude, the overall expression of agr-regulated virulence factors was the lowest; expression of lukS and splA remained unchanged relative to an undisturbed biofilm, while expression of coa and fnbpA significantly decreased. We hypothesize that these changes are a result of disturbance-driven changes in access to AIP and nutrients. Our results may allow the identification of environments where virulence is enhanced, or reduced, owing to a disturbance. IMPORTANCE Bacteria, such as Staphylococcus aureus, integrate signals from the environment to regulate genes encoding virulence factors. These signals include those produced by quorum-sensing systems and nutrient availability. We show that disturbing the spatial organization of S. aureus populations can lead to changes in the expression of virulence factors, likely by altering the ways in which S. aureus detects these signals. Our work may allow us to identify environments that increase or reduce the expression of virulence factors in S. aureus.
Collapse
|
8
|
Analysis of motility and mucociliary function of tracheal epithelial cilia. Methods Cell Biol 2023; 176:159-180. [PMID: 37164536 DOI: 10.1016/bs.mcb.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The airway epithelium contains numerous multiciliated cells. The apical surface of multiciliated cells is covered with cilia that move at 15-25Hz. Ciliary movement is not a simple reciprocal movement and distinctly has forward and reverse movements called effective and recovery strokes, respectively. These "asymmetric" ciliary strokes push away the mucus covering the mucosa of the airway epithelium. Mucus flow created by ciliary stroke is important for capturing and expelling dust, pollen, PM2.5, pathogens, and other particles that enter the airways from outside the body. This mechanism for protecting the airways produced by ciliary movement is called mucociliary function. Defects in ciliary motility lead to impairment of mucociliary function, resulting in recurrent airway infections such as bronchitis and pneumonia, and consequently, bronchiectasis. While the analysis of ciliary beat frequency is relatively easy, the analyses of the amplitude, velocities of strokes, and the asymmetric level require specific techniques and tips. In this chapter, we present methods for the analysis of ciliary movements of a group of cilia on the luminal surface of the trachea ex vivo and individually isolated and ATP-reactivated cilia in vitro. In addition, a method for the analysis of mucociliary function is also presented.
Collapse
|
9
|
Ash JJ, Hilkin BM, Gansemer ND, Hoffman EA, Zabner J, Stoltz DA, Abou Alaiwa MH. Tromethamine improves mucociliary clearance in cystic fibrosis pigs. Physiol Rep 2022; 10:e15340. [PMID: 36073059 PMCID: PMC9453173 DOI: 10.14814/phy2.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023] Open
Abstract
In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl- and HCO3 - secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.
Collapse
Affiliation(s)
- Jamison J. Ash
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Brieanna M. Hilkin
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Nicholas D. Gansemer
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of RadiologyRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Joseph Zabner
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - David A. Stoltz
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Molecular Physiology and BiophysicsRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Mahmoud H. Abou Alaiwa
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
10
|
Jung HW, Lee I, Lee SH, Morgan K, Parsons D, Donnelley M. Mucociliary Transit Assessment Using Automatic Tracking in Phase Contrast X-Ray Images of Live Mouse Nasal Airways. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose
The rate of mucociliary transit (MCT) is an indicator of the hydration and health of the airways for cystic fibrosis (CF). To determine the effectiveness of cystic fibrosis respiratory therapies, we have developed a novel method to non-invasively quantify the local rate and patterns of MCT behaviour in vivo by using synchrotron phase contrast X-ray imaging (PCXI) to visualise the MCT motion of micron-sized spherical particles deposited onto the airway surfaces of live mice.
Methods
In this study the baseline MCT behaviour was assessed in the nasal airways of CFTR-null and normal mice which were then treated with hypertonic saline (HS) or mannitol. To assess MCT, the particle motion was tracked throughout the synchrotron PCXI sequences using fully-automated custom image analysis software.
Results
There was no significant difference in the MCT rate between normal and CFTR-null mice, but the analysis of MCT particle tracking showed that HS may have a longer duration of action in CFTR-null mice than in the normal mice.
Conclusion
This study demonstrated that changes in MCT rate in CF and normal mouse nasal airways can be measured using PCXI and customised tracking software and used for assessing the effects of airway rehydrating pharmaceutical treatments.
Collapse
|
11
|
Nakane D, Kabata Y, Nishizaka T. Cell shape controls rheotaxis in small parasitic bacteria. PLoS Pathog 2022; 18:e1010648. [PMID: 35834494 PMCID: PMC9282661 DOI: 10.1371/journal.ppat.1010648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Mycoplasmas, a group of small parasitic bacteria, adhere to and move across host cell surfaces. The role of motility across host cell surfaces in pathogenesis remains unclear. Here, we used optical microscopy to visualize rheotactic behavior in three phylogenetically distant species of Mycoplasma using a microfluidic chamber that enabled the application of precisely controlled fluid flow. We show that directional movements against fluid flow occur synchronously with the polarized cell orienting itself to be parallel against the direction of flow. Analysis of depolarized cells revealed that morphology itself functions as a sensor to recognize rheological properties that mimic those found on host-cell surfaces. These results demonstrate the vital role of cell morphology and motility in responding to mechanical forces encountered in the native environment. The small, parasitic bacterium Mycoplasma pneumoniae attaches to, and moves over, host cell surfaces. Adherence to host surfaces and motility are critical for the pathogenicity of M. pneumoniae. The role of motility by M. pneumoniae in vivo, however, is poorly understood. Host airways generate constant fluid flow toward the mouth as part of their defense against pathogens and irritants. Consequently, pulmonary invaders must counter the rheological forces found in host airways in order to successfully colonize the host. Here, we demonstrate that M. pneumoniae exhibits directional movement against fluid flow. These findings suggest there is a vital role for rheotactic motility that has evolved in order to overcome host defense mechanisms such as mucociliary clearance.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- * E-mail: (DN); (TN)
| | - Yoshiki Kabata
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Tokyo, Japan
- * E-mail: (DN); (TN)
| |
Collapse
|
12
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
13
|
Pino-Argumedo MI, Fischer AJ, Hilkin BM, Gansemer ND, Allen PD, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:e2121731119. [PMID: 35324331 PMCID: PMC9060506 DOI: 10.1073/pnas.2121731119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.
Collapse
Affiliation(s)
- Maria I. Pino-Argumedo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Patrick D. Allen
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eric A. Hoffman
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - David A. Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- HHMI, University of Iowa, Iowa City, IA 52242
| | - Mahmoud H. Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa. mSystems 2021; 6:e0096121. [PMID: 34581603 PMCID: PMC8547473 DOI: 10.1128/msystems.00961-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the environmental factors that affect the production of virulence factors has major implications in evolution and medicine. While spatial structure is important in virulence factor production, observations of this relationship have occurred in undisturbed or continuously disturbed environments. However, natural environments are subject to periodic fluctuations, including changes in physical forces, which could alter the spatial structure of bacterial populations and impact virulence factor production. Using Pseudomonas aeruginosa PA14, we periodically applied a physical force to biofilms and examined production of pyoverdine. Intermediate frequencies of disturbance reduced the amount of pyoverdine produced compared to undisturbed or frequently disturbed conditions. To explore the generality of this finding, we examined how an intermediate disturbance frequency affected pyoverdine production in 21 different strains of P. aeruginosa. Periodic disturbance increased, decreased, or did not change the amount of pyoverdine produced relative to undisturbed populations. Mathematical modeling predicts that interactions between pyoverdine synthesis rate and biofilm density determine the amount of pyoverdine synthesized. When the pyoverdine synthesis rates are high, depletion of the biofilm due to disturbance reduces the accumulation of pyoverdine. At intermediate synthesis rates, production of pyoverdine increases during disturbance as bacteria dispersed into the planktonic state enjoy increased growth and pyoverdine production rates. At low synthesis rates, disturbance does not alter the amount of pyoverdine produced since disturbance-driven access to nutrients does not augment pyoverdine synthesis. Our results suggest that environmental conditions shape robustness in the production of virulence factors and may lead to novel approaches to treat infections. IMPORTANCE Virulence factors are required to cause infections. Previous work has shown that the spatial organization of a population, such as a biofilm, can increase the production of some virulence factors, including pyoverdine, which is produced by Pseudomonas aeruginosa. Pyoverdine is essential for the infection process, and reducing its production can limit infections. We have discovered that periodically changing the spatial structure of a biofilm of P. aeruginosa strain PA14 using a physical force can reduce the production of pyoverdine. A mathematical model suggests that this is due to the disruption of spatial organization. Using additional strains of P. aeruginosa isolated from patients and the environment, we use experiments and modeling to show that this reduction in pyoverdine is due to interactions between biofilm density and the synthesis rate of pyoverdine. Our results identify conditions where pyoverdine production is reduced and may lead to novel ways to treat infections.
Collapse
|
15
|
Combined agonists act synergistically to increase mucociliary clearance in a cystic fibrosis airway model. Sci Rep 2021; 11:18828. [PMID: 34552115 PMCID: PMC8458446 DOI: 10.1038/s41598-021-98122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Mucus clearance, a primary innate defense mechanism of airways, is defective in patients with cystic fibrosis (CF) and CF animals. In previous work, the combination of a low dose of the cholinergic agonist, carbachol with forskolin or a β adrenergic agonist, isoproterenol synergistically increased mucociliary clearance velocity (MCCV) in ferret tracheas. Importantly, the present study shows that synergistic MCCV can also be produced in CF ferrets, with increases ~ 55% of WT. Synergistic MCCV was also produced in pigs. The combined agonists increased MCCV by increasing surface fluid via multiple mechanisms: increased fluid secretion from submucosal glands, increased anion secretion across surface epithelia and decreased Na+ absorption. To avoid bronchoconstriction, the cAMP agonist was applied 30 min before carbachol. This approach to increasing mucus clearance warrants testing for safety and efficacy in humans as a potential therapeutic for muco-obstructive diseases.
Collapse
|
16
|
Tadokoro T, Tanaka K, Osakabe S, Kato M, Kobayashi H, Hogan BLM, Taniguchi H. Dorso-ventral heterogeneity in tracheal basal stem cells. Biol Open 2021; 10:271837. [PMID: 34396394 PMCID: PMC8467549 DOI: 10.1242/bio.058676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
The tracheal basal cells (BCs) function as stem cells to maintain the epithelium in steady state and repair it after injury. The airway is surrounded by cartilage ventrolaterally and smooth muscle dorsally. Lineage tracing using Krt5-CreER shows dorsal BCs produce more, larger, clones than ventral BCs. Large clones were found between cartilage and smooth muscle where subpopulation of dorsal BCs exists. Three-dimensional organoid culture of BCs demonstrated that dorsal BCs show higher colony forming efficacy to ventral BCs. Gene ontology analysis revealed that genes expressed in dorsal BCs are enriched in wound healing while ventral BCs are enriched in response to external stimulus and immune response. Significantly, ventral BCs express Myostatin, which inhibits the growth of smooth muscle cells, and HGF, which facilitates cartilage repair. The results support the hypothesis that BCs from the dorso-ventral airways have intrinsic molecular and behavioural differences relevant to their in vivo function. Summary: Spatial difference of tracheal epithelium, especially focused on the heterogeneity of basal stem cells, is elucidated by lineage tracing in vivo, histological analysis, tracheosphere culture, and gene ontology analysis.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27707, USA.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Shun Osakabe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Mimoko Kato
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan.,Department of Embryology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Brigid L M Hogan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27707, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| |
Collapse
|
17
|
Li Z, Wang Z, Dinh PUC, Zhu D, Popowski KD, Lutz H, Hu S, Lewis MG, Cook A, Andersen H, Greenhouse J, Pessaint L, Lobo LJ, Cheng K. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. NATURE NANOTECHNOLOGY 2021; 16:942-951. [PMID: 34140674 PMCID: PMC8364483 DOI: 10.1038/s41565-021-00923-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/30/2021] [Indexed: 05/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has grown into a global pandemic, and only a few antiviral treatments have been approved to date. Angiotensin-converting enzyme 2 (ACE2) plays a fundamental role in SARS-CoV-2 pathogenesis because it allows viral entry into host cells. Here we show that ACE2 nanodecoys derived from human lung spheroid cells (LSCs) can bind and neutralize SARS-CoV-2 and protect the host lung cells from infection. In mice, these LSC-nanodecoys were delivered via inhalation therapy and resided in the lungs for over 72 h post-delivery. Furthermore, inhalation of the LSC-nanodecoys accelerated clearance of SARS-CoV-2 mimics from the lungs, with no observed toxicity. In cynomolgus macaques challenged with live SARS-CoV-2, four doses of these nanodecoys delivered by inhalation promoted viral clearance and reduced lung injury. Our results suggest that LSC-nanodecoys can serve as a potential therapeutic agent for treating COVID-19.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- BreStem Therapeutics Inc., Raleigh, NC, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | | | | | | | | | | - Leonard J Lobo
- Division of Pulmonary Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Kelly SJ, Brodecky V, Skuza EM, Berger PJ, Tatkov S. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Am J Physiol Lung Cell Mol Physiol 2021; 320:L473-L485. [PMID: 33438520 DOI: 10.1152/ajplung.00485.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucociliary transport in the respiratory epithelium depends on beating of cilia to move a mucus layer containing trapped inhaled particles toward the mouth. Little is known about the relationship between cilia beat frequency (CBF) and mucus transport velocity (MTV) in vivo under normal physiological conditions and when inspired air is dry or not fully humidified. This study was designed to use video-microscopy to simultaneously measure CBF and MTV in the tracheal epithelium through an implanted optical window in mechanically ventilated lambs. The inspired air in 6 animals was heated to body temperature and fully saturated with water for 4 hours as a baseline. In another series of experiments, 5 lambs were ventilated with air at different temperatures and humidities and the mucosal surface temperature was monitored with infrared macro-imaging. In the baseline experiments, during ventilation with fully humidified air at body temperature, CBF remained constant, mean 13.9 ± 1.6 Hz but MTV varied considerably between 0.1 and 26.1 mm/min with mean 11.0 ± 3.9 mm/min, resulting in a maximum mucus displacement of 34.2 µm/cilia beat. Fully humidified air at body temperature prevented fluctuations in the surface temperature during breathing indicating a thermodynamic balance in the airways. When lambs were ventilated with dryer air, the mucosal surface temperature and MTV dropped without a significant change in CBF. When inspired air was dry, mainly latent heat (92%) was transferred to air in the trachea, reducing the surface temperature by 5 °C. Reduced humidity of the inspired air lowered the surface temperature and reduced MTV in the epithelium during ventilation.
Collapse
Affiliation(s)
- S J Kelly
- Fisher & Paykel Healthcare, Auckland, New Zealand
| | - V Brodecky
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - E M Skuza
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - P J Berger
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - S Tatkov
- Fisher & Paykel Healthcare, Auckland, New Zealand
| |
Collapse
|
19
|
Birket SE, Davis JM, Fernandez-Petty CM, Henderson AG, Oden AM, Tang L, Wen H, Hong J, Fu L, Chambers A, Fields A, Zhao G, Tearney GJ, Sorscher EJ, Rowe SM. Ivacaftor Reverses Airway Mucus Abnormalities in a Rat Model Harboring a Humanized G551D-CFTR. Am J Respir Crit Care Med 2020; 202:1271-1282. [PMID: 32584141 PMCID: PMC7605185 DOI: 10.1164/rccm.202002-0369oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Animal models have been highly informative for understanding the characteristics, onset, and progression of cystic fibrosis (CF) lung disease. In particular, the CFTR-/- rat has revealed insights into the airway mucus defect characteristic of CF but does not replicate a human-relevant CFTR (cystic fibrosis transmembrane conductance regulator) variant.Objectives: We hypothesized that a rat expressing a humanized version of CFTR and harboring the ivacaftor-sensitive variant G551D could be used to test the impact of CFTR modulators on pathophysiologic development and correction.Methods: In this study, we describe a humanized-CFTR rat expressing the G551D variant obtained by zinc finger nuclease editing of a human complementary DNA superexon, spanning exon 2-27, with a 5' insertion site into the rat gene just beyond intron 1. This targeted insertion takes advantage of the endogenous rat promoter, resulting in appropriate expression compared with wild-type animals.Measurements and Main Results: The bioelectric phenotype of the epithelia recapitulates the expected absence of CFTR activity, which was restored with ivacaftor. Large airway defects, including depleted airway surface liquid and periciliary layers, delayed mucus transport rates, and increased mucus viscosity, were normalized after the administration of ivacaftor.Conclusions: This model is useful to understand the mechanisms of disease and the extent of pathology reversal with CFTR modulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Wen
- Cystic Fibrosis Research Center, and
| | - Jeong Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Lianwu Fu
- Cystic Fibrosis Research Center, and
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Alvin Fields
- Horizon Discovery Group PLC, St. Louis, Missouri; and
| | - Gojun Zhao
- Horizon Discovery Group PLC, St. Louis, Missouri; and
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric J. Sorscher
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Department of Medicine
- Cystic Fibrosis Research Center, and
- Cell, Developmental, and Integrated Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Airway Mucus Restricts Neisseria meningitidis Away from Nasopharyngeal Epithelial Cells and Protects the Mucosa from Inflammation. mSphere 2019; 4:4/6/e00494-19. [PMID: 31801841 PMCID: PMC6893211 DOI: 10.1128/msphere.00494-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N. meningitidis is transmitted from person to person by aerosol droplets produced by breathing, talking, or coughing or by direct contact with a contaminated fluid. The natural reservoir of N. meningitidis is the human nasopharynx mucosa, located at the back of the nose and above the oropharynx. The means by which meningococci cross the nasopharyngeal wall is still under debate, due to the lack of a convenient and relevant model mimicking the nasopharyngeal niche. Here, we took advantage of Calu-3 cells grown in air interface culture to study how meningococci colonize the nasopharyngeal niche. We report that the airway mucus is both a niche for meningococcal growth and a protective barrier against N. meningitidis infection. As such, N. meningitidis behaves like commensal bacteria and is unlikely to induce infection without an external trigger. Neisseria meningitidis is an inhabitant of the nasopharynx, from which it is transmitted from person to person or disseminates in blood and becomes a harmful pathogen. In this work, we addressed colonization of the nasopharyngeal niche by focusing on the interplay between meningococci and the airway mucus that lines the mucosa of the host. Using Calu-3 cells grown in air interface culture (cells grown with the apical domain facing air), we studied meningococcal colonization of the mucus and the host response. Our results suggested that N. meningitidis behaved like commensal bacteria in mucus, without interacting with human cells or actively transmigrating through the cell layer. As a result, type IV pili do not play a role in this model, and meningococci did not trigger a strong innate immune response from the Calu-3 cells. Finally, we have shown that this model is suitable for studying interaction of N. meningitidis with other bacteria living in the nasopharynx and that Streptococcus mitis, but not Moraxella catarrhalis, can promote meningococcal growth in this model. IMPORTANCEN. meningitidis is transmitted from person to person by aerosol droplets produced by breathing, talking, or coughing or by direct contact with a contaminated fluid. The natural reservoir of N. meningitidis is the human nasopharynx mucosa, located at the back of the nose and above the oropharynx. The means by which meningococci cross the nasopharyngeal wall is still under debate, due to the lack of a convenient and relevant model mimicking the nasopharyngeal niche. Here, we took advantage of Calu-3 cells grown in air interface culture to study how meningococci colonize the nasopharyngeal niche. We report that the airway mucus is both a niche for meningococcal growth and a protective barrier against N. meningitidis infection. As such, N. meningitidis behaves like commensal bacteria and is unlikely to induce infection without an external trigger.
Collapse
|
21
|
Abstract
The respiratory system is protected from inhaled particles and microbes by the mucociliary system. This system differs between animal species, where pigs and humans have numerous submucosal glands. The polymer-forming mucin, MUC5B, is packed in a highly organized way in granules of the mucus-secreting cells in the glands. Upon secretion, the packed MUC5B is flushed out by a chloride- and bicarbonate-rich fluid from the cystic fibrosis transmembrane conductance regulator-expressing serosal cells located at the most distal part of the gland. The bicarbonate raises the pH and removes calcium from the N terminus of MUC5B, allowing the mucin to be pulled out into a linear polymer. Thousands of such polymers gather in bundles in the submucosal gland duct, and these bundles appear at the opening of the glands. They are moved by the beating cilia, and sweep over the airway surface and are patchily coated with the MUC5AC mucin from the surface goblet cells. The movement of these bundles is controlled by the MUC5AC mucin attachment/detachment to the goblet cells. Thus, higher animals with submucosal glands and large diameters of the proximal airways are efficiently cleaned by the thick mucus bundles sweeping the airway surface and moving particles and bacteria toward the larynx.
Collapse
|
22
|
Abstract
Cystic fibrosis (CF) lung disease is the major cause of morbidity and mortality in people with CF. Abnormal mucociliary transport has been the leading hypothesis for the underlying pathogenesis of CF airway disease. However, this has been difficult to investigate at very early time points. A porcine CF model, which recapitulates many features of CF disease in humans, enables studies to be performed in non-CF and CF pigs on the day that they are born. In newborn CF pigs, we found that under basal conditions, mucociliary transport rates in non-CF and CF pigs are similar. However, after cholinergic stimulation, which stimulates submucosal gland secretion, particles become stuck in the CF airways owing to a failure of mucus strands to release from submucosal glands. In this review, we summarize these recent discoveries and also discuss the morphology, composition, and function of mucins in the porcine lung.
Collapse
|
23
|
Particle coating alters mucociliary transit in excised rat trachea: A synchrotron X-ray imaging study. Sci Rep 2019; 9:10983. [PMID: 31358851 PMCID: PMC6662859 DOI: 10.1038/s41598-019-47465-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
We have previously developed non-invasive in vivo mucociliary transport (MCT) monitoring methods using synchrotron phase contrast X-ray imaging (PCXI) to evaluate potential therapies for cystic fibrosis (CF). However, previous in vivo measurements of MCT velocity using this method were lower than those from alternate methods. We hypothesise this was due to the surface chemistry of the uncoated particles. We investigated the effect of particle surface coating on MCT marker performance by measuring the velocity of uncoated, positively-charged (aminated; NH2), and negatively-charged (carboxylated; COOH) particles. The effect of aerosolised hypertonic saline (HS) was also investigated, as previous in vivo measurements showed HS significantly increased MCT rate. PCXI experiments were performed using an ex vivo rat tracheal imaging setup. Prior to aerosol delivery there was little movement of the uncoated particles, whilst the NH2 and COOH particles moved with MCT rates similar to those previously reported. After application of HS the uncoated and COOH particle velocity increased and NH2 decreased. This experiment validated the use of COOH particles as MCT marker particles over the uncoated and NH2 coated particles. Our results suggest that future experiments measuring MCT using synchrotron PCXI should use COOH coated marker particles for more accurate MCT quantification.
Collapse
|
24
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
25
|
Fischer AJ, Pino-Argumedo MI, Hilkin BM, Shanrock CR, Gansemer ND, Chaly AL, Zarei K, Allen PD, Ostedgaard LS, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Mucus strands from submucosal glands initiate mucociliary transport of large particles. JCI Insight 2019; 4:124863. [PMID: 30626743 DOI: 10.1172/jci.insight.124863] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
Mucus produced by submucosal glands is a key component of respiratory mucociliary transport (MCT). When it emerges from submucosal gland ducts, mucus forms long strands on the airway surface. However, the function of those strands is uncertain. To test the hypothesis that mucus strands facilitate transport of large particles, we studied newborn pigs. In ex vivo experiments, interconnected mucus strands moved over the airway surface, attached to immobile spheres, and initiated their movement by pulling them. Stimulating submucosal gland secretion with methacholine increased the percentage of spheres that moved and shortened the delay until mucus strands began moving spheres. To disrupt mucus strands, we applied reducing agents tris-(2-carboxyethyl)phosphine and dithiothreitol. They decreased the fraction of moving spheres and delayed initiation of movement for spheres that did move. We obtained similar in vivo results with CT-based tracking of microdisks in spontaneously breathing pigs. Methacholine increased the percentage of microdisks moving and reduced the delay until they were propelled up airways. Aerosolized tris-(2-carboxyethyl)phosphine prevented those effects. Once particles started moving, reducing agents did not alter their speed either ex vivo or in vivo. These findings indicate that submucosal glands produce mucus in the form of strands and that the strands initiate movement of large particles, facilitating their removal from airways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute.,Department of Biomedical Engineering
| | | | | | - Eric A Hoffman
- Department of Biomedical Engineering.,Department of Radiology, and
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute.,Department of Biomedical Engineering.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa USA
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute.,Department of Biomedical Engineering
| |
Collapse
|
26
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
27
|
Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, Sinn PL, McCray PB. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 2018; 1:88730. [PMID: 27656681 DOI: 10.1172/jci.insight.88730] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.
Collapse
Affiliation(s)
- Ashley L Cooney
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology
| | - Mahmoud H Abou Alaiwa
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Viral S Shah
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Molecular Physiology and Biophysics
| | - Drake C Bouzek
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Mallory R Stroik
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Linda S Powers
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Nick D Gansemer
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - David K Meyerholz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pathology
| | - Michael J Welsh
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Howard Hughes Medical Institute.,Molecular Physiology and Biophysics
| | - David A Stoltz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Patrick L Sinn
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B McCray
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Ermund A, Meiss LN, Dolan B, Bähr A, Klymiuk N, Hansson GC. The mucus bundles responsible for airway cleaning are retained in cystic fibrosis and by cholinergic stimulation. Eur Respir J 2018; 52:13993003.00457-2018. [PMID: 29853489 DOI: 10.1183/13993003.00457-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/17/2018] [Indexed: 02/04/2023]
Abstract
The beneficial effect of anticholinergic therapy for chronic lung diseases such as chronic obstructive pulmonary disease (COPD) is well documented, although cholinergic stimulation paradoxically inhibits liquid absorption, increases ciliary beat frequency and increases airway surface liquid transport.Using pig tracheobronchial explants, we quantified basal mucus transport before as well as after incubation with the clinically used antimuscarinic compound ipratropium bromide (Atrovent) and stimulation with acetylcholine.As expected, surface liquid transport was increased by acetylcholine and carbachol. In contrast, the mucus bundles secreted from the submucosal glands normally transported on the cilia were stopped from moving by acetylcholine, an effect inhibited by ipratropium bromide. Interestingly, in pigs lacking a functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) channel, the mucus bundles were almost immobile. As in wild-type pigs, CF surface liquid transport increased after carbachol stimulation. The stagnant CF mucus bundles were trapped on the tracheal surface attached to the surface goblet cells. Pseudomonas aeruginosa bacteria were moved by the mucus bundles in wild-type but not CF pigs.Acetylcholine thus uncouples airway surface liquid transport from transport of the surface mucus bundles as the bundles are dynamically inhibited by acetylcholine and the CFTR channel, explaining initiation of CF and COPD, and opening novel therapeutic windows.
Collapse
Affiliation(s)
- Anna Ermund
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Lauren N Meiss
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Brendan Dolan
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gunnar C Hansson
- Dept of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Birket S. A clean sweep: mucin bundles clear the airway. Eur Respir J 2018; 52:52/2/1801144. [DOI: 10.1183/13993003.01144-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
|
30
|
In vivo Dynamic Phase-Contrast X-ray Imaging using a Compact Light Source. Sci Rep 2018; 8:6788. [PMID: 29717143 PMCID: PMC5931574 DOI: 10.1038/s41598-018-24763-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
We describe the first dynamic and the first in vivo X-ray imaging studies successfully performed at a laser-undulator-based compact synchrotron light source. The X-ray properties of this source enable time-sequence propagation-based X-ray phase-contrast imaging. We focus here on non-invasive imaging for respiratory treatment development and physiological understanding. In small animals, we capture the regional delivery of respiratory treatment, and two measures of respiratory health that can reveal the effectiveness of a treatment; lung motion and mucociliary clearance. The results demonstrate the ability of this set-up to perform laboratory-based dynamic imaging, specifically in small animal models, and with the possibility of longitudinal studies.
Collapse
|
31
|
Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. Sci Rep 2018; 8:2447. [PMID: 29402960 PMCID: PMC5799192 DOI: 10.1038/s41598-018-20882-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/04/2022] Open
Abstract
Mucociliary clearance is a biomechanical mechanism of airway protection. It consists of the active transport along the bronchial tree of the mucus, a fluid propelled by the coordinated beating of a myriad of cilia on the epithelial surface of the respiratory tract. The physics of mucus transport is poorly understood because it involves complex phenomena such as long-range hydrodynamic interactions, active collective ciliary motion, and the complex rheology of mucus. We propose a quantitative physical analysis of the ciliary activity and mucus transport on a large panel of human bronchial cultures from control subjects, patients with asthma and chronic obstructive pulmonary disease obtained from endobronchial biopsies. Here we report on the existence of multiple ciliary domains with sizes ranging from the tens of a micron to the centimeter, where ciliary beats present a circular orientational order. These domains are associated with circular mucus flow patterns, whose size scales with the average cilia density. In these domains, we find that the radial increase of the ciliated cell density coupled with the increase in the orientational order of ciliary beats result in a net local force proportional to the mucus velocity. We propose a phenomenological physical model that supports our results.
Collapse
|
32
|
Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, Cossio U, Kassinos S, Verbanck S, Ruiz-Cabello J, Santos A, Koch E, Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur J Pharm Sci 2018; 113:95-131. [DOI: 10.1016/j.ejps.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
|
33
|
Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 2018; 124:82-97. [PMID: 29106910 DOI: 10.1016/j.addr.2017.10.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
A layer of mucus covers the surface of all wet epithelia throughout the human body. Mucus is a hydrogel mainly composed of water, mucins (glycoproteins), DNA, proteins, lipids, and cell debris. This complex composition yields a tenacious viscoelastic hydrogel that lubricates and protects the exposed epithelia from external threats and enzymatic degradation. The natural protective role of mucus is nowadays acknowledged as a major barrier to be overcome in non-invasive drug delivery. The heterogeneity of mucus components offers a wide range of potential chemical interaction sites for macromolecules, while the mesh-like architecture given to mucus by the intermolecular cross-linking of mucin molecules results in a dense network that physically, and in a size-dependent manner, hinders the diffusion of nanoparticles through mucus. Consequently, drug diffusion, epithelial absorption, drug bioavailability, and ultimately therapeutic outcomes of mucosal drug delivery can be attenuated.
Collapse
Affiliation(s)
- Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Marius Hittinger
- PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
34
|
Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight 2018; 3:97199. [PMID: 29321377 DOI: 10.1172/jci.insight.97199] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr-/- (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency.
Collapse
Affiliation(s)
- Susan E Birket
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Katherine L Tuggle
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Michelle V Fanucchi
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Steven M Rowe
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cellular, Developmental, and Integrative Biology and.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
35
|
Ramsey BW, Welsh MJ. AJRCCM: 100-Year Anniversary. Progress along the Pathway of Discovery Leading to Treatment and Cure of Cystic Fibrosis. Am J Respir Crit Care Med 2017; 195:1092-1099. [PMID: 28459323 DOI: 10.1164/rccm.201702-0266ed] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Bonnie W Ramsey
- 1 Department of Pediatrics University of Washington School of Medicine Seattle, Washington.,2 Center for Clinical and Translational Research Seattle Children's Research Institute Seattle, Washington
| | - Michael J Welsh
- 3 Pappajohn Biomedical Institute.,4 Howard Hughes Medical Institute and.,5 Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa
| |
Collapse
|
36
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
37
|
Hvorecny KL, Dolben E, Moreau-Marquis S, Hampton TH, Shabaneh TB, Flitter BA, Bahl CD, Bomberger JM, Levy BD, Stanton BA, Hogan DA, Madden DR. An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. Am J Physiol Lung Cell Mol Physiol 2017; 314:L150-L156. [PMID: 28982736 DOI: 10.1152/ajplung.00383.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa colonizes the lungs of susceptible individuals by deploying virulence factors targeting host defenses. The secreted factor Cif (cystic fibrosis transmembrane conductance regulator inhibitory factor) dysregulates the endocytic recycling of CFTR and thus reduces CFTR abundance in host epithelial membranes. We have postulated that the decrease in ion secretion mediated by Cif would slow mucociliary transport and decrease bacterial clearance from the lungs. To test this hypothesis, we explored the effects of Cif in cultured epithelia and in the lungs of mice. We developed a strategy to interpret the "hurricane-like" motions observed in reconstituted cultures and identified a Cif-mediated decrease in the velocity of mucus transport in vitro. Presence of Cif also increased the number of bacteria recovered at two time points in an acute mouse model of pneumonia caused by P. aeruginosa. Furthermore, recent work has demonstrated an inverse correlation between the airway concentrations of Cif and 15-epi-lipoxin A4, a proresolving lipid mediator important in host defense and the resolution of pathogen-initiated inflammation. Here, we observe elevated levels of 15-epi-lipoxin A4 in the lungs of mice infected with a strain of P. aeruginosa that expresses only an inactive form of cif compared with those mice infected with wild-type P. aeruginosa. Together these data support the inclusion of Cif on the list of virulence factors that assist P. aeruginosa in colonizing and damaging the airways of compromised patients. Furthermore, this study establishes techniques that enable our groups to explore the underlying mechanisms of Cif effects during respiratory infection.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Emily Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Tamer B Shabaneh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Becca A Flitter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Christopher D Bahl
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Bruce D Levy
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| |
Collapse
|
38
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|
39
|
The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochem Biophys Res Commun 2017; 492:331-337. [PMID: 28859985 PMCID: PMC5596833 DOI: 10.1016/j.bbrc.2017.08.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 11/23/2022]
Abstract
To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles. Submucosal glands in the piglet trachea form bundles of MUC5B mucin. The mucus bundles are coated with MUC5AC mucin produced by surface goblet cells. The mucus bundles are transported 10-times slower than the airway surface liquid. The surface goblet cells are suggested to control the mucus bundle movement.
Collapse
|
40
|
Lucas JS, Alanin MC, Collins S, Harris A, Johansen HK, Nielsen KG, Papon JF, Robinson P, Walker WT. Clinical care of children with primary ciliary dyskinesia. Expert Rev Respir Med 2017; 11:779-790. [DOI: 10.1080/17476348.2017.1360770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jane S. Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Mikkel Christian Alanin
- Department of Otorhinolaryngology – Head and Neck Surgery, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Samuel Collins
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Amanda Harris
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Afsnit 9301, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen Paediatric Pulmonary Service, ERN Accredited for PCD and CF Health Care, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean Francois Papon
- APHP, Bicetre University Hospital, ENT Department, Universite Paris-Sud, Faculté de Médecine, Le Kremlin-Bicetre, France
| | - Phil Robinson
- PCD Service, Department of Respiratory and Sleep Medicine, Royal Children’s Hospital, Melbourne, Australia
| | - Woolf T. Walker
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
41
|
Gel-forming mucins form distinct morphologic structures in airways. Proc Natl Acad Sci U S A 2017; 114:6842-6847. [PMID: 28607090 PMCID: PMC5495256 DOI: 10.1073/pnas.1703228114] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.
Collapse
|
42
|
Donnelley M, Morgan KS, Awadalla M, Farrow NR, Hall C, Parsons DW. High-resolution mucociliary transport measurement in live excised large animal trachea using synchrotron X-ray imaging. Respir Res 2017; 18:95. [PMID: 28511651 PMCID: PMC5434541 DOI: 10.1186/s12931-017-0573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed as the world's widest synchrotron X-ray beam, enabling both clinical imaging and therapeutic applications for humans as well as the imaging of large animal models. Our group is developing methods for imaging the airways of newly developed CF animal models that display human-like lung disease, such as the CF pig, and we expect that the IMBL can be utilised to image airways in animals of this size. METHODS This study utilised samples of excised tracheal tissue to assess the feasibility, logistics and protocols required for airway imaging in large animal models such as pigs and sheep at the IMBL. We designed an image processing algorithm to automatically track and quantify the tracheal mucociliary transport (MCT) behaviour of 103 μm diameter high refractive index (HRI) glass bead marker particles deposited onto the surface of freshly-excised normal sheep and pig tracheae, and assessed the effects of airway rehydrating aerosols. RESULTS We successfully accessed and used scavenged tracheal tissue, identified the minimum bead size that is visible using our chosen imaging setup, verified that MCT could be visualised, and that our automated tracking algorithm could quantify particle motion. The imaging sequences show particles propelled by cilia, against gravity, up the airway surface, within a well-defined range of clearance speeds and with examples of 'clumping' behaviour that is consistent with the in vivo capture and mucus-driven transport of particles. CONCLUSION This study demonstrated that the wide beam at the IMBL is suitable for imaging MCT in ex vivo tissue samples. We are now transitioning to in vivo imaging of MCT in live pigs, utilising higher X-ray energies and shorter exposures to minimise motion blur.
Collapse
Affiliation(s)
- Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia. .,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia.
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Clayton, Vic, 3800, Australia.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Maged Awadalla
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| | - Nigel R Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| | - Chris Hall
- Imaging and Medical Beamline, Australian Synchrotron, Clayton, Vic, 3800, Australia
| | - David W Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5001, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5001, Australia
| |
Collapse
|
43
|
Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028241. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance (MCC) is the primary innate defense mechanism of the lung. The functional components are the protective mucous layer, the airway surface liquid layer, and the cilia on the surface of ciliated cells. The cilia are specialized organelles that beat in metachronal waves to propel pathogens and inhaled particles trapped in the mucous layer out of the airways. In health this clearance mechanism is effective, but in patients with primary cilia dyskinesia (PCD) the cilia are abnormal, resulting in deficient MCC and chronic lung disease. This demonstrates the critical importance of the cilia for human health. In this review, we summarize the current knowledge of the components of the MCC apparatus, focusing on the role of cilia in MCC.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lawrence E Ostrowski
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
44
|
Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel. Sci Rep 2016; 6:36806. [PMID: 27830759 PMCID: PMC5103292 DOI: 10.1038/srep36806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 μM) and by the Ca2+-elevating agonist, carbachol (0.3 μM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed.
Collapse
|
45
|
Reix P, Matecki S, Fayon M. Atteinte respiratoire précoce chez les nourrissons atteints de mucoviscidose. Outils de diagnostic et pistes pour la prise en charge. Rev Mal Respir 2016; 33:102-16. [DOI: 10.1016/j.rmr.2015.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 11/28/2022]
|
46
|
Affiliation(s)
- Thida Ong
- 1 Department of Pediatrics, University of Washington, Seattle, Washington.,2 Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington; and
| | - Bonnie W Ramsey
- 1 Department of Pediatrics, University of Washington, Seattle, Washington.,3 Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
47
|
Sá RC, Zeman KL, Bennett WD, Prisk GK, Darquenne C. Effect of Posture on Regional Deposition of Coarse Particles in the Healthy Human Lung. J Aerosol Med Pulm Drug Deliv 2015; 28:423-31. [DOI: 10.1089/jamp.2014.1189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Kirby L. Zeman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William D. Bennett
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - G. Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
48
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
49
|
Hochhegger B, Alves GRT, Irion KL, Watte G, Scheeren B, Rottenfuser R, Marchiori E. Computed tomographic pulmonary changes in patients with chronic rhinosinusitis. Br J Radiol 2015; 88:20150273. [PMID: 26246280 DOI: 10.1259/bjr.20150273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate whether patients with a diagnosis of chronic rhinosinusitis (CRS) show characteristic pulmonary changes on chest CT compared with a control group without sinusopathy. METHODS This retrospective, observational study included patients with and without a diagnosis of CRS who underwent CT examination of the lungs between 2012 and 2014. Two radiologists, who were blinded for the presence of CRS, reviewed the scans for the presence of any abnormalities consensually. The χ(2) test was used for correlative analysis, with a significance level of 0.05. RESULTS A total of 123 CT series (51.2% from male patients, mean age 41 ± 16 years) were reviewed, including those from 59 (48%) patients with a diagnosis of CRS. Patients with CRS were more likely than the control group to exhibit atelectasis, bronchiolectasis, centrilobular nodules and ground-glass opacities (all p < 0.05), with a significant predilection for middle lobe and lingular involvement observed (p < 0.001). Other abnormalities, such as bronchial wall thickening and air trapping, did not differ between groups. CONCLUSION Atelectatic changes, ground-glass opacities, bronchiolectasis and centrilobular nodules are the most frequent abnormalities associated with CRS, with peculiar middle lobe and lingular involvement observed on chest CT examinations. ADVANCES IN KNOWLEDGE CRS is a frequent disorder that displays typical pulmonary changes at CT. The recognition of such findings can prevent patients with this condition from undergoing unnecessary investigations that might be based on the presence of the aforementioned radiological features.
Collapse
Affiliation(s)
- Bruno Hochhegger
- 1 Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giordano R T Alves
- 1 Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus L Irion
- 2 Radiology Department, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Guilherme Watte
- 3 Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Betina Scheeren
- 3 Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Robson Rottenfuser
- 4 Division of Radiology, Hospital da Cidade de Passo Fundo, Passo Fundo, Brazil
| | - Edson Marchiori
- 1 Post-graduation Program in Medicine (Radiology), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Li Bassi G, Luque N, Martí JD, Aguilera Xiol E, Di Pasquale M, Giunta V, Comaru T, Rigol M, Terraneo S, De Rosa F, Rinaudo M, Crisafulli E, Peralta Lepe RC, Agusti C, Lucena C, Ferrer M, Fernández L, Torres A. Endotracheal tubes for critically ill patients: an in vivo analysis of associated tracheal injury, mucociliary clearance, and sealing efficacy. Chest 2015; 147:1327-1335. [PMID: 25500677 DOI: 10.1378/chest.14-1438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Improvements in the design of the endotracheal tube (ETT) have been achieved in recent years. We evaluated tracheal injury associated with ETTs with novel high-volume low-pressure (HVLP) cuffs and subglottic secretions aspiration (SSA) and the effects on mucociliary clearance (MCC). METHODS Twenty-nine pigs were intubated with ETTs comprising cylindrical or tapered cuffs and made of polyvinylchloride (PVC) or polyurethane. In specific ETTs, SSA was performed every 2 h. Following 76 h of mechanical ventilation, pigs were weaned and extubated. Images of the tracheal wall were recorded before intubation, at extubation, and 24 and 96 h thereafter through a fluorescence bronchoscope. We calculated the red-to-green intensity ratio (R/G), an index of tracheal injury, and the green-plus-blue (G+B) intensity, an index of normalcy, of the most injured tracheal regions. MCC was assessed through fluoroscopic tracking of radiopaque markers. After 96 h from extubation, pigs were killed, and a pathologist scored injury. RESULTS Cylindrical cuffs presented a smaller increase in R/G vs tapered cuffs (P = .011). Additionally, cuffs made of polyurethane produced a minor increase in R/G (P = .012) and less G+B intensity decline (P = .022) vs PVC cuffs. Particularly, a cuff made of polyurethane and with a smaller outer diameter outperformed all cuffs. SSA-related histologic injury ranged from cilia loss to subepithelial inflammation. MCC was 0.9 ± 1.8 and 0.4 ± 0.9 mm/min for polyurethane and PVC cuffs, respectively (P < .001). CONCLUSIONS HVLP cuffs and SSA produce tracheal injury, and the recovery is incomplete up to 96 h following extubation. Small, cylindrical-shaped cuffs made of polyurethane cause less injury. MCC decline is reduced with polyurethane cuffs.
Collapse
Affiliation(s)
- Gianluigi Li Bassi
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Nestor Luque
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Joan Daniel Martí
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Eli Aguilera Xiol
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marta Di Pasquale
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; University of Milan, Milan, Italy
| | - Valeria Giunta
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; University of Milan, Milan, Italy
| | - Talitha Comaru
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Montserrat Rigol
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Silvia Terraneo
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; University of Milan, Milan, Italy
| | - Francesca De Rosa
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; University of Milan, Milan, Italy
| | - Mariano Rinaudo
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Ernesto Crisafulli
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Rogelio Cesar Peralta Lepe
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Carles Agusti
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Division of Bronchoscopy, Department of Pulmonary Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Carmen Lucena
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Division of Bronchoscopy, Department of Pulmonary Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain
| | - Miguel Ferrer
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Laia Fernández
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Antoni Torres
- Division of Animal Experimentation, Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CIBERES), Barcelona, Spain; University of Barcelona, Barcelona, Spain.
| |
Collapse
|