1
|
Yu J, Lan Y, Zhu C, Chen Z, Pan J, Shi Y, Yang L, Hu T, Gao Y, Zhao Y, Chen X, Yang X, Lu S, Guddat LW, Yang H, Rao Z, Li J. Structure and mechanism of a mycobacterial isoniazid efflux pump MsRv1273c/72c with a degenerate nucleotide-binding site. Nat Commun 2025; 16:3969. [PMID: 40295516 PMCID: PMC12038006 DOI: 10.1038/s41467-025-59300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Heterodimeric ATP-binding cassette (ABC) transporters containing one catalytically impaired degenerate nucleotide-binding site (NBS) have a mechanism different from those with two active NBSs. However, the structural basis of their transport mechanism remains to be explained. Here, we determine mycobacterial MsRv1273c/72c to be an isoniazid efflux pump and determine several structures by cryo-electron microscopy showing specific asymmetrical features including an N-terminal extending loop and a periplasmic helical hairpin only found in MsRv1272c. In addition, we capture three distinct asymmetric states where the nucleotide-binding domains are partially dimerized at the degenerate site. Using these intermediate states, the D-WalkerB loop and X-signature loop of MsRv1272c modulate and couple the function of both NBSs through conformational changes. Thus, these data provide insights into the mechanism of this heterodimeric ABC transporter containing a degenerate NBS. The structures also provide a framework for the rational design of anti-tuberculosis drugs targeting this drug-efflux pump.
Collapse
Affiliation(s)
- Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhui Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhendong Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Junyi Pan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanfeng Shi
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Lan Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaobo Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
- Laboratory of Structural Biology, Tsinghua University, 100084, Beijing, China.
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Li FKK, Peters SC, Worrall LJ, Sun T, Hu J, Vuckovic M, Farha M, Palacios A, Caveney NA, Brown ED, Strynadka NCJ. Cryo-EM analyses unveil details of mechanism and targocil-II mediated inhibition of S. aureus WTA transporter TarGH. Nat Commun 2025; 16:3224. [PMID: 40185711 PMCID: PMC11971408 DOI: 10.1038/s41467-025-58202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
Wall teichoic acid (WTA) is a polyol phosphate polymer that covalently decorates peptidoglycan of gram-positive bacteria, including Staphylococcus aureus. Central to WTA biosynthesis is flipping of lipid-linked precursors across the cell membrane by TarGH, a type V ABC transporter. Here, we present cryo-EM structures of S. aureus TarGH in the presence of targocil-II, a promising small-molecule lead with β-lactam antibiotic synergistic action. Targocil-II binds to the extracellular dimerisation interface of TarG, we suggest mimicking flipped but not yet released substrate. In absence of targocil-II and in complex with ATP analogue ATPγS, determined at 2.3 Å resolution, the ATPase active site is allosterically inhibited. This is due to a so far undescribed D-loop conformation, potentially minimizing spurious ATP hydrolysis in the absence of substrate. Targocil-II binding comparatively causes local and remote conformational changes through to the TarH active site, with the D-loop now optimal for ATP hydrolysis. These structures suggest an ability to modulate ATP hydrolysis in a WTA substrate dependent manner and a jammed ATPase cycle as the basis of the observed inhibition by targocil-II. The molecular insights provide an unprecedented basis for development of TarGH targeted therapeutics for treatment of multidrug-resistant S. aureus and other gram-positive bacterial infections.
Collapse
Affiliation(s)
- Franco K K Li
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Shaun C Peters
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Maya Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Armando Palacios
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Nathanael A Caveney
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Khunweeraphong N, Kuchler K. The human ABCG2 transporter engages three gates to control multidrug extrusion. iScience 2025; 28:112125. [PMID: 40165990 PMCID: PMC11957596 DOI: 10.1016/j.isci.2025.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
The human ABCG2 transporter plays roles in physiological detoxification across barriers and in anticancer multidrug resistance. The translocation pathway for drug extrusion and its gating mechanism remains elusive. Here, we demonstrate that the ABCG2 multidrug transporter holds two cavities that are delineated by three regulatory gates, indicating a substrate translocation channel. Drugs are trapped in the central cavity after entering through the pivotal intracellular entry gate. This flexible cavity is surrounded by a cluster of three highly conserved phenylalanines. Their aromatic side chains enact a "clamp-push-seal" motion to ensure unidirectional substrate movement. The unique residues T435 and N436 act as critical selectors for ligands, determining the broad substrate specificity. The upper cavity is covered by the lid architecture, constituting the final gate before multidrug extrusion. This work unravels deep mechanistic details on how the translocation channel utilizes pivotal gating steps, including the sequence of events that drive ABCG2-mediated multidrug efflux.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Medical University of Vienna, Max Perutz Labs Vienna, Center for Medical Biochemistry Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Center for Medical Biochemistry Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
4
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
5
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Sohail I, Hassan MU, Schmid D, Chiba P. The noncanonical nucleotide binding site 1 of the bile salt export pump is optimized for proper function of the transporter. Cell Biol Int 2024; 48:638-646. [PMID: 38328902 DOI: 10.1002/cbin.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
The bile salt export pump (ABCB11/BSEP) is a hepatocyte plasma membrane-resident protein translocating bile salts into bile canaliculi. The sequence alignment of the four full-length transporters of the ABCB subfamily (ABCB1, ABCB4, ABCB5 and ABCB11) indicates that the NBD-NBD contact interface of ABCB11 differs from that of other members in only four residues. Notably, these are all located in the noncanonical nucleotide binding site 1 (NBS1). Substitution of all four deviant residues with canonical ones (quadruple mutant) significantly decreased the transport activity of the protein. In this study, we mutated two deviant residues in the signature sequence to generate a double mutant (R1221G/E1223Q). Furthermore, a triple mutant (E502S/R1221G/E1223Q) was generated, in which the deviant residues of the signature sequence and Q-loop were mutated concurrently to canonical residues. The double and triple mutants showed 80% and 60%, respectively, of the activity of wild-type BSEP. As expected, an increasing number of mutations gradually impair transport as an intricate network of interactions within the ABC proteins ensures proper functioning.
Collapse
Affiliation(s)
- Imran Sohail
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Mahmood Ul Hassan
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore, Pakistan
| | - Diethart Schmid
- Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, Mchaourab HS. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. Nat Commun 2023; 14:7184. [PMID: 37938578 PMCID: PMC10632425 DOI: 10.1038/s41467-023-42937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Here we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrate that multiple lipid molecules differentially bind the IF versus the OC conformation thus establishing that lipid interactions modulate BmrCD energy landscape. Our findings are framed in a model that highlights the role of asymmetric conformations in the ATP-coupled transport with general implications to the mechanism of ABC transporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Simon MA, Iordanov I, Szollosi A, Csanády L. Estimating the true stability of the prehydrolytic outward-facing state in an ABC protein. eLife 2023; 12:e90736. [PMID: 37782012 PMCID: PMC10569789 DOI: 10.7554/elife.90736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023] Open
Abstract
CFTR, the anion channel mutated in cystic fibrosis patients, is a model ABC protein whose ATP-driven conformational cycle is observable at single-molecule level in patch-clamp recordings. Bursts of CFTR pore openings are coupled to tight dimerization of its two nucleotide-binding domains (NBDs) and in wild-type (WT) channels are mostly terminated by ATP hydrolysis. The slow rate of non-hydrolytic closure - which determines how tightly bursts and ATP hydrolysis are coupled - is unknown, as burst durations of catalytic site mutants span a range of ~200-fold. Here, we show that Walker A mutation K1250A, Walker B mutation D1370N, and catalytic glutamate mutations E1371S and E1371Q all completely disrupt ATP hydrolysis. True non-hydrolytic closing rate of WT CFTR approximates that of K1250A and E1371S. That rate is slowed ~15-fold in E1371Q by a non-native inter-NBD H-bond, and accelerated ~15-fold in D1370N. These findings uncover unique features of the NBD interface in human CFTR.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - László Csanády
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| |
Collapse
|
9
|
Rudolph M, Tampé R, Joseph B. Time-Resolved Mn 2+ -NO and NO-NO Distance Measurements Reveal That Catalytic Asymmetry Regulates Alternating Access in an ABC Transporter. Angew Chem Int Ed Engl 2023; 62:e202307091. [PMID: 37459565 DOI: 10.1002/anie.202307091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO-NO, Mn2+ -NO, and Mn2+ -Mn2+ pulsed electron-electron double-resonance spectroscopy of TmrAB in a time-resolved manner. This type-IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+ -ATP, and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates the reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process.
Collapse
Affiliation(s)
- Michael Rudolph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
10
|
Tang Q, Sinclair M, Hasdemir HS, Stein R, Karakas E, Tajkhorshid E, Mchaourab H. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541986. [PMID: 37398337 PMCID: PMC10312460 DOI: 10.1101/2023.05.29.541986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To illuminate the structural origin of catalytic asymmetry of heterodimeric ABC transporters and how it shapes the energetics of their conformational cycles, we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize conformational states of the heterodimeric ABC multidrug exporter BmrCD in lipid nanodiscs. In addition to multiple ATP- and substrate-bound inward-facing (IF) conformations, we obtained the structure of an occluded (OC) conformation wherein the unique extracellular domain (ECD) twists to partially open the extracellular gate. In conjunction with DEER analysis of the populations of these conformations, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain (TMD) to the nucleotide binding domain (NBD). The structures uncover asymmetric substrate and Mg 2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrated that multiple lipid molecules, identified from the cryo-EM density maps, differentially bind the IF versus the OC conformation thus modulating their relative stability. In addition to establishing how lipid interactions with BmrCD modulate the energy landscape, our findings are framed in a distinct transport model that highlights the role of asymmetric conformations in the ATP-coupled cycle with implications to the mechanism of ABC transporters in general.
Collapse
|
11
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
12
|
Meier G, Thavarasah S, Ehrenbolger K, Hutter CAJ, Hürlimann LM, Barandun J, Seeger MA. Deep mutational scan of a drug efflux pump reveals its structure-function landscape. Nat Chem Biol 2023; 19:440-450. [PMID: 36443574 PMCID: PMC7615509 DOI: 10.1038/s41589-022-01205-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Drug efflux is a common resistance mechanism found in bacteria and cancer cells, but studies providing comprehensive functional insights are scarce. In this study, we performed deep mutational scanning (DMS) on the bacterial ABC transporter EfrCD to determine the drug efflux activity profile of more than 1,430 single variants. These systematic measurements revealed that the introduction of negative charges at different locations within the large substrate binding pocket results in strongly increased efflux activity toward positively charged ethidium, whereas additional aromatic residues did not display the same effect. Data analysis in the context of an inward-facing cryogenic electron microscopy structure of EfrCD uncovered a high-affinity binding site, which releases bound drugs through a peristaltic transport mechanism as the transporter transits to its outward-facing conformation. Finally, we identified substitutions resulting in rapid Hoechst influx without affecting the efflux activity for ethidium and daunorubicin. Hence, single mutations can convert EfrCD into a drug-specific ABC importer.
Collapse
Affiliation(s)
- Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kai Ehrenbolger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Jonas Barandun
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Galazzo L, Meier G, Januliene D, Parey K, De Vecchis D, Striednig B, Hilbi H, Schäfer LV, Kuprov I, Moeller A, Bordignon E, Seeger MA. The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells. SCIENCE ADVANCES 2022; 8:eabn6845. [PMID: 36223470 PMCID: PMC9555771 DOI: 10.1126/sciadv.abn6845] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/24/2022] [Indexed: 05/28/2023]
Abstract
Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Dovile Januliene
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Kristian Parey
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Arne Moeller
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
14
|
Guffick C, Hsieh PY, Ali A, Shi W, Howard J, Chinthapalli DK, Kong AC, Salaa I, Crouch LI, Ansbro MR, Isaacson SC, Singh H, Barrera NP, Nair AV, Robinson CV, Deery MJ, van Veen HW. Drug-dependent inhibition of nucleotide hydrolysis in the heterodimeric ABC multidrug transporter PatAB from Streptococcus pneumoniae. FEBS J 2022; 289:3770-3788. [PMID: 35066976 PMCID: PMC9541285 DOI: 10.1111/febs.16366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 02/02/2023]
Abstract
The bacterial heterodimeric ATP‐binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug‐resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide‐binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug‐mimetic azido‐ethidium. Surprisingly, our analyses of azido‐ethidium‐labelled PatAB peptides point to ethidium binding in the PatA nucleotide‐binding domain, with the azido moiety crosslinked to residue Q521 in the H‐like loop of the degenerate nucleotide‐binding site. Investigation into this compound and residue’s role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium‐dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium‐like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non‐competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide‐binding domains.
Collapse
Affiliation(s)
| | - Pei-Yu Hsieh
- Department of Pharmacology, University of Cambridge, UK
| | - Anam Ali
- Department of Pharmacology, University of Cambridge, UK
| | - Wilma Shi
- Department of Pharmacology, University of Cambridge, UK
| | - Julie Howard
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | | - Alex C Kong
- Department of Pharmacology, University of Cambridge, UK
| | - Ihsene Salaa
- Department of Pharmacology, University of Cambridge, UK
| | - Lucy I Crouch
- Department of Pharmacology, University of Cambridge, UK
| | | | | | | | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asha V Nair
- Department of Pharmacology, University of Cambridge, UK
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
15
|
Ding D, Wu JX, Duan X, Ma S, Lai L, Chen L. Structural identification of vasodilator binding sites on the SUR2 subunit. Nat Commun 2022; 13:2675. [PMID: 35562524 PMCID: PMC9106677 DOI: 10.1038/s41467-022-30428-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive potassium channels (KATP), composed of Kir6 and SUR subunits, convert the metabolic status of the cell into electrical signals. Pharmacological activation of SUR2- containing KATP channels by class of small molecule drugs known as KATP openers leads to hyperpolarization of excitable cells and to vasodilation. Thus, KATP openers could be used to treat cardiovascular diseases. However, where these vasodilators bind to KATP and how they activate the channel remains elusive. Here, we present cryo-EM structures of SUR2A and SUR2B subunits in complex with Mg-nucleotides and P1075 or levcromakalim, two chemically distinct KATP openers that are specific to SUR2. Both P1075 and levcromakalim bind to a common site in the transmembrane domain (TMD) of the SUR2 subunit, which is between TMD1 and TMD2 and is embraced by TM10, TM11, TM12, TM14, and TM17. These KATP openers synergize with Mg-nucleotides to stabilize SUR2 in the NBD-dimerized occluded state to activate the channel.
Collapse
Affiliation(s)
- Dian Ding
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.,National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Xinli Duan
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Songling Ma
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Lipeng Lai
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,National Biomedical Imaging Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
16
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
17
|
Thaker TM, Mishra S, Zhou W, Mohan M, Tang Q, Faraldo-Goméz JD, Mchaourab HS, Tomasiak TM. Asymmetric drug binding in an ATP-loaded inward-facing state of an ABC transporter. Nat Chem Biol 2022; 18:226-235. [PMID: 34931066 PMCID: PMC9242650 DOI: 10.1038/s41589-021-00936-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Substrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis. In our cryo-EM structure, ATP-bound BmrCD adopts an inward-facing architecture featuring two molecules of the substrate Hoechst-33342 in a striking asymmetric head-to-tail arrangement. Deletion of the extracellular domain capping the substrate-binding chamber or mutation of Hoechst-coordinating residues abrogates cooperative stimulation of ATP hydrolysis. Together, our findings support a mechanistic role for symmetry mismatch between the nucleotide binding and the transmembrane domains in the conformational cycle of ABC transporters and is of notable importance for rational design of molecules for targeted ABC transporter inhibition.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Mohan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - José D Faraldo-Goméz
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
19
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
20
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
21
|
Banerjee A, Moreno A, Pata J, Falson P, Prasad R. ABCG: a new fold of ABC exporters and a whole new bag of riddles! ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:163-191. [PMID: 33485482 DOI: 10.1016/bs.apcsb.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) superfamily comprises membrane transporters that power the active transport of substrates across biological membranes. These proteins harness the energy of nucleotide binding and hydrolysis to fuel substrate translocation via an alternating-access mechanism. The primary structural blueprint is relatively conserved in all ABC transporters. A transport-competent ABC transporter is essentially made up of two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). While the NBDs are conserved in their primary sequence and form at their interface two nucleotide-binding sites (NBSs) for ATP binding and hydrolysis, the TMDs are variable among different families and form the translocation channel. Transporters catalyzing the efflux of substrates from the cells are called exporters. In humans, they range from A to G subfamilies, with the B, C and G subfamilies being involved in chemoresistance. The recently elucidated structures of ABCG5/G8 followed by those of ABCG2 highlighted a novel structural fold that triggered extensive research. Notably, suppressor genetics in the orthologous yeast Pleiotropic Drug Resistance (PDR) subfamily proteins have pointed to a crosstalk between TMDs and NBDs modulating substrate export. Considering the structural information provided by their neighbors from the G subfamily, these studies provide mechanistic keys and posit a functional role for the non-hydrolytic NBS found in several ABC exporters. The present chapter provides an overview of structural and functional aspects of ABCG proteins with a special emphasis on the yeast PDR systems.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University UMR5086, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India; Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|
22
|
Thomas C, Aller SG, Beis K, Carpenter EP, Chang G, Chen L, Dassa E, Dean M, Duong Van Hoa F, Ekiert D, Ford R, Gaudet R, Gong X, Holland IB, Huang Y, Kahne DK, Kato H, Koronakis V, Koth CM, Lee Y, Lewinson O, Lill R, Martinoia E, Murakami S, Pinkett HW, Poolman B, Rosenbaum D, Sarkadi B, Schmitt L, Schneider E, Shi Y, Shyng SL, Slotboom DJ, Tajkhorshid E, Tieleman DP, Ueda K, Váradi A, Wen PC, Yan N, Zhang P, Zheng H, Zimmer J, Tampé R. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767-3775. [PMID: 32978974 PMCID: PMC8386196 DOI: 10.1002/1873-3468.13935] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London South Kensington, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| | | | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Elie Dassa
- Institut Pasteur, Paris Cedex 15, France
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Franck Duong Van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Damian Ekiert
- Department of Cell Biology and Department of Microbiology, New York University School of Medicine, NY, USA
| | - Robert Ford
- Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - I Barry Holland
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Daniel K Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hiroaki Kato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan
| | | | | | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Korea
| | - Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Switzerland
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Daniel Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Balazs Sarkadi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erwin Schneider
- Department of Biology/Microbial Physiology, Humboldt-University of Berlin, Germany
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, China
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Dirk J Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, AB, Canada
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| |
Collapse
|
23
|
Bordignon E, Seeger MA, Galazzo L, Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett 2020; 594:3839-3856. [PMID: 33219535 DOI: 10.1002/1873-3468.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
24
|
Stockner T, Gradisch R, Schmitt L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 2020; 594:3815-3838. [PMID: 33179257 PMCID: PMC7756269 DOI: 10.1002/1873-3468.13997] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
ATP‐binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.
Collapse
Affiliation(s)
- Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
25
|
Khunweeraphong N, Kuchler K. The first intracellular loop is essential for the catalytic cycle of the human ABCG2 multidrug resistance transporter. FEBS Lett 2020; 594:4059-4075. [PMID: 33169382 PMCID: PMC7756363 DOI: 10.1002/1873-3468.13994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The human multidrug transporter ABCG2 is required for physiological detoxification and mediates anticancer drug resistance. Here, we identify pivotal residues in the first intracellular loop (ICL1), constituting an intrinsic part of the transmission interface. The architecture includes a triple helical bundle formed by the hot spot helix of the nucleotide‐binding domain, the elbow helix, and ICL1. We show here that the highly conserved ICL1 residues G462, Y463, and Y464 are essential for the proper cross talk of the closed nucleotide‐binding domain dimer with the transmembrane domains. Hence, ICL1 acts as a molecular spring, triggering the conformational switch of ABCG2 before substrate extrusion. These data suggest that the ABCG2 transmission interface may offer therapeutic options for the treatment of drug‐resistant malignancies.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria.,St. Anna Children's Cancer Research Institute-CCRI, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria
| |
Collapse
|
26
|
Lewinson O, Orelle C, Seeger MA. Structures of ABC transporters: handle with care. FEBS Lett 2020; 594:3799-3814. [PMID: 33098660 PMCID: PMC7756565 DOI: 10.1002/1873-3468.13966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
In the past two decades, the ATP‐binding cassette (ABC) transporters' field has undergone a structural revolution. The importance of structural biology to the development of the field of ABC transporters cannot be overstated, as the ensemble of structures not only revealed the architecture of ABC transporters but also shaped our mechanistic view of these remarkable molecular machines. Nevertheless, we advocate that the mechanistic interpretation of the structures is not trivial and should be carried out with prudence. Herein, we bring several examples of structures of ABC transporters that merit re‐interpretation via careful comparison to experimental data. We propose that it is of the upmost importance to place new structures within the context of the available experimental data.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Cédric Orelle
- CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), University of Lyon, Lyon, France
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
28
|
Abstract
Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Alan T Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
29
|
Jones PM, George AM. Is the emperor wearing shorts? The published structures of ABC transporters. FEBS Lett 2020; 594:3790-3798. [PMID: 32981041 DOI: 10.1002/1873-3468.13941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
ABC transporters use the energy of ATP binding and hydrolysis to transport substrates across cellular membranes. They comprise two highly conserved nucleotide binding domains and two transmembrane domains that form the transmembrane channel and contain the substrate binding sites. Structural analyses have found a variety of seemingly unrelated folds for the ABC transporter transmembrane domains, and from these, a set of diverse mechanistic models has been inferred. Nevertheless, in spite of the explosion in structure determination of ABC transporters in the last decade, advancement in certainty and clarity as to fundamental aspects of their molecular mechanisms remains elusive. With this in mind, here we put and examine the question: Could current ABC structures differ from the physiologic membrane-embedded forms?
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
30
|
Goda K, Dönmez-Cakil Y, Tarapcsák S, Szalóki G, Szöllősi D, Parveen Z, Türk D, Szakács G, Chiba P, Stockner T. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. PLoS Genet 2020; 16:e1009016. [PMID: 33031417 PMCID: PMC7544095 DOI: 10.1371/journal.pgen.1009016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/29/2020] [Indexed: 11/28/2022] Open
Abstract
Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site. ABC transporters are one of the largest membrane protein superfamilies, present in all organisms from archaea to humans. They transport a wide range of molecules including amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance transporter ABCB1 has two active NBSs, and it is generally believed that integrity and cooperation of both sites are needed for transport. Several human ABC transporters, such as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs completely abolish the function of symmetrical ABC transporters. Here we engineered an ABCB1 variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport substrates. Our results indicate that ABCB1 can mediate active transport with a single active site, questioning the validity of models assuming strictly alternating catalysis.
Collapse
Affiliation(s)
- Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Yaprak Dönmez-Cakil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, Istanbul, Turkey
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
| | - Zahida Parveen
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dóra Türk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| |
Collapse
|
31
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
32
|
Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Bräuer P, Newstead S, Dawson RJP, Geertsma ER, Seeger MA. Generation of synthetic nanobodies against delicate proteins. Nat Protoc 2020; 15:1707-1741. [PMID: 32269381 DOI: 10.1038/s41596-020-0304-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Here, we provide a protocol to generate synthetic nanobodies, known as sybodies, against any purified protein or protein complex within a 3-week period. Unlike methods that require animals for antibody generation, sybody selections are carried out entirely in vitro under controlled experimental conditions. This is particularly relevant for the generation of conformation-specific binders against labile membrane proteins or protein complexes and allows selections in the presence of non-covalent ligands. Sybodies are especially suited for cases where binder generation via immune libraries fails due to high sequence conservation, toxicity or insufficient stability of the target protein. The procedure entails a single round of ribosome display using the sybody libraries encoded by mRNA, followed by two rounds of phage display and binder identification by ELISA. The protocol is optimized to avoid undesired reduction in binder diversity and enrichment of non-specific binders to ensure the best possible selection outcome. Using the efficient fragment exchange (FX) cloning method, the sybody sequences are transferred from the phagemid to different expression vectors without the need to amplify them by PCR, which avoids unintentional shuffling of complementary determining regions. Using quantitative PCR (qPCR), the efficiency of each selection round is monitored to provide immediate feedback and guide troubleshooting. Our protocol can be carried out by any trained biochemist or molecular biologist using commercially available reagents and typically gives rise to 10-30 unique sybodies exhibiting binding affinities in the range of 500 pM-500 nM.
Collapse
Affiliation(s)
- Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics AG, Zurich, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics AG, Zurich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Benedikt T Kuhn
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Bräuer
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Roger J P Dawson
- Linkster Therapeutics AG, Zurich, Switzerland.,Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Arnold FM, Weber MS, Gonda I, Gallenito MJ, Adenau S, Egloff P, Zimmermann I, Hutter CAJ, Hürlimann LM, Peters EE, Piel J, Meloni G, Medalia O, Seeger MA. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature 2020; 580:413-417. [PMID: 32296173 PMCID: PMC7170716 DOI: 10.1038/s41586-020-2136-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores to scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophores, lipid-bound mycobactin and soluble carboxymycobactin2, 3. Functional studies revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ABC transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain (SID)5. However, IrtAB’s predicted ABC exporter fold seemingly contradicts its import function. Here, we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the SID to facilitate iron release. Structure determination by X-ray crystallography and cryo-EM confirms IrtAB’s ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB resulting in a partially collapsed inward-facing substrate binding cavity. The SID is positioned in close proximity to the inner membrane leaflet, which allows the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB prefers mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore import machinery in mycobacteria.
Collapse
Affiliation(s)
- Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Marc J Gallenito
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics, Zurich, Switzerland
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics, Zurich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Eike E Peters
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Szöllősi D, Chiba P, Szakacs G, Stockner T. Conversion of chemical to mechanical energy by the nucleotide binding domains of ABCB1. Sci Rep 2020; 10:2589. [PMID: 32054924 PMCID: PMC7018802 DOI: 10.1038/s41598-020-59403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
P-glycoprotein (ABCB1) is an important component of barrier tissues that extrudes a wide range of chemically unrelated compounds. ABCB1 consists of two transmembrane domains forming the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that provide the energy by binding and hydrolyzing ATP. We analyzed the mechanistic and energetic properties of the NBD dimer via molecular dynamics simulations. We find that MgATP stabilizes the NBD dimer through strong attractive forces by serving as an interaction hub. The irreversible ATP hydrolysis step converts the chemical energy stored in the phosphate bonds of ATP into potential energy. Following ATP hydrolysis, interactions between the NBDs and the ATP hydrolysis products MgADP + Pi remain strong, mainly because Mg2+ forms stabilizing interactions with ADP and Pi. Despite these stabilizing interactions MgADP + Pi are unable to hold the dimer together, which becomes separated by avid interactions of MgADP + Pi with water. ATP binding to the open NBDs and ATP hydrolysis in the closed NBD dimer represent two steps of energy input, each leading to the formation of a high energy state. Relaxation from these high energy states occurs through conformational changes that push ABCB1 through the transport cycle.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria
| | - Peter Chiba
- Medical University of Vienna, Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Waehringerstr. 10, 1090, Vienna, Austria
| | - Gergely Szakacs
- Medical University of Vienna, Institute of Cancer Research, Borschkegasse 8A, 1090, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria.
| |
Collapse
|
35
|
Galazzo L, Meier G, Timachi MH, Hutter CAJ, Seeger MA, Bordignon E. Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes. Proc Natl Acad Sci U S A 2020; 117:2441-2448. [PMID: 31964841 PMCID: PMC7007536 DOI: 10.1073/pnas.1913737117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
36
|
Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl Microbiol Biotechnol 2019; 104:817-831. [DOI: 10.1007/s00253-019-10131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/04/2023]
|
37
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
38
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
39
|
Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé R, Moeller A. Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 2019; 571:580-583. [PMID: 31316210 PMCID: PMC7612745 DOI: 10.1038/s41586-019-1391-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has the capacity to capture molecular machines in action1–3. ATP-binding cassette (ABC) exporters are highly dynamic membrane proteins that extrude a wide range of substances from the cytosol4–6 and thereby contribute to essential cellular processes, adaptive immunity, and multidrug resistance7,8. Despite their vital importance, the coupling of nucleotide binding, hydrolysis, and release to the conformational dynamics remains poorly resolved, especially for heterodimeric/asymmetric ABC exporters that abound in humans. Here, we present eight high-resolution cryo-EM structures that delineate the full functional cycle of an asymmetric ABC exporter in lipid environment. Cryo-EM analysis under active turnover conditions reveals distinct inward-facing (IF) conformations, one of them with bound peptide substrate, and previously undescribed asymmetric post-hydrolysis states with dimerized nucleotide-binding domains (NBDs) and a closed extracellular gate. Capturing an outward-facing (OF) open conformation requires a slow-down in ATP hydrolysis, indicating the transient nature of this state vulnerable to substrate re-entry. ATP-bound pre-hydrolysis and vanadate-trapped states are conformationally equivalent and both comprise co-existing OF conformations with open and closed extracelluar gates. In contrast, the post-hydrolysis states from the turnover experiment exhibit asymmetric ADP/ATP occlusion after phosphate release from the canonical site and display a progressive separation of the nucleotide-binding domains and unlocking of the intracellular gate. Our findings reveal that phosphate release, not ATP hydrolysis, triggers the return of the exporter to the IF conformation. By mapping the conformational landscape during active turnover, aided by mutational and chemical modulation of kinetic rates to trap the key intermediates, we resolved fundamental and so-far hidden steps of the substrate translocation cycle of asymmetric ABC transporters.
Collapse
Affiliation(s)
- Susanne Hofmann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dovile Januliene
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Erich Stefan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Brüchert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benedikt T Kuhn
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Arne Moeller
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
The extracellular gate shapes the energy profile of an ABC exporter. Nat Commun 2019; 10:2260. [PMID: 31113958 PMCID: PMC6529423 DOI: 10.1038/s41467-019-09892-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
ABC exporters harness the energy of ATP to pump substrates across membranes. Extracellular gate opening and closure are key steps of the transport cycle, but the underlying mechanism is poorly understood. Here, we generated a synthetic single domain antibody (sybody) that recognizes the heterodimeric ABC exporter TM287/288 exclusively in the presence of ATP, which was essential to solve a 3.2 Å crystal structure of the outward-facing transporter. The sybody binds to an extracellular wing and strongly inhibits ATPase activity by shifting the transporter's conformational equilibrium towards the outward-facing state, as shown by double electron-electron resonance (DEER). Mutations that facilitate extracellular gate opening result in a comparable equilibrium shift and strongly reduce ATPase activity and drug transport. Using the sybody as conformational probe, we demonstrate that efficient extracellular gate closure is required to dissociate the NBD dimer after ATP hydrolysis to reset the transporter back to its inward-facing state.
Collapse
|
41
|
Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat Methods 2019; 16:421-428. [PMID: 31011184 DOI: 10.1038/s41592-019-0389-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
Binding protein generation typically relies on laborious screening cascades that process candidate molecules individually. We have developed NestLink, a binder selection and identification technology able to biophysically characterize thousands of library members at once without the need to handle individual clones at any stage of the process. NestLink uses genetically encoded barcoding peptides termed flycodes, which were designed for maximal detectability by mass spectrometry and support accurate deep sequencing. We demonstrate NestLink's capacity to overcome the current limitations of binder-generation methods in three applications. First, we show that hundreds of binder candidates can be simultaneously ranked according to kinetic parameters. Next, we demonstrate deep mining of a nanobody immune repertoire for membrane protein binders, carried out entirely in solution without target immobilization. Finally, we identify rare binders against an integral membrane protein directly in the cellular environment of a human pathogen. NestLink opens avenues for the selection of tailored binder characteristics directly in tissues or in living organisms.
Collapse
|
42
|
Substrate polyspecificity and conformational relevance in ABC transporters: new insights from structural studies. Biochem Soc Trans 2018; 46:1475-1484. [PMID: 30514765 DOI: 10.1042/bst20180146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Transport of molecules and ions across biological membranes is an essential process in all organisms. It is carried out by a range of evolutionarily conserved primary and secondary transporters. A significant portion of the primary transporters belong to the ATP-binding cassette (ABC) superfamily, which utilise the free-energy from ATP hydrolysis to shuttle many different substrates across various biological membranes, and consequently, are involved in both normal and abnormal physiology. In humans, ABC transporter-associated pathologies are perhaps best exemplified by multidrug-resistance transporters that efflux many xenobiotic compounds due to their remarkable substrate polyspecificity. Accordingly, understanding the transport mechanism(s) is of great significance, and indeed, much progress has been made in recent years, particularly from structural studies on ABC exporters. Consequently, the general mechanism of 'alternate access' has been modified to describe individual transporter nuances, though some aspects of the transport process remain unclear. Moreover, as new information has emerged, the physiological relevance of the 'open-apo' conformation of MsbA (a bacterial exporter) has been questioned and, by extension, its contribution to mechanistic models. We present here a comprehensive overview of the most recently solved structures of ABC exporters, focusing on new insights regarding the nature of substrate polyspecificity and the physiological relevance of the 'open-apo' conformation. This review evaluates the claim that the latter may be an artefact of detergent solubilisation, and we hypothesise that the biophysical properties of the membrane play a key role in the function of ABC exporters allowing them to behave like a 'spring-hinge' during their transport cycle.
Collapse
|
43
|
Zhou Y, Ojeda-May P, Nagaraju M, Kim B, Pu J. Mapping Free Energy Pathways for ATP Hydrolysis in the E. coli ABC Transporter HlyB by the String Method. Molecules 2018; 23:molecules23102652. [PMID: 30332773 PMCID: PMC6222333 DOI: 10.3390/molecules23102652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
HlyB functions as an adenosine triphosphate (ATP)-binding cassette (ABC) transporter that enables bacteria to secrete toxins at the expense of ATP hydrolysis. Our previous work, based on potential energy profiles from combined quantum mechanical and molecular mechanical (QM/MM) calculations, has suggested that the highly conserved H-loop His residue H662 in the nucleotide binding domain (NBD) of E. coli HlyB may catalyze the hydrolysis of ATP through proton relay. To further test this hypothesis when entropic contributions are taken into account, we obtained QM/MM minimum free energy paths (MFEPs) for the HlyB reaction, making use of the string method in collective variables. The free energy profiles along the MFEPs confirm the direct participation of H662 in catalysis. The MFEP simulations of HlyB also reveal an intimate coupling between the chemical steps and a local protein conformational change involving the signature-loop residue S607, which may serve a catalytic role similar to an Arg-finger motif in many ATPases and GTPases in stabilizing the phosphoryl-transfer transition state.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., LD326, Indianapolis, IN 46202, USA.
| | - Pedro Ojeda-May
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., LD326, Indianapolis, IN 46202, USA.
| | - Mulpuri Nagaraju
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., LD326, Indianapolis, IN 46202, USA.
| | - Bryant Kim
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., LD326, Indianapolis, IN 46202, USA.
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., LD326, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Hoffmann B, Elbahnsi A, Lehn P, Décout JL, Pietrucci F, Mornon JP, Callebaut I. Combining theoretical and experimental data to decipher CFTR 3D structures and functions. Cell Mol Life Sci 2018; 75:3829-3855. [PMID: 29779042 PMCID: PMC11105360 DOI: 10.1007/s00018-018-2835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has recently provided invaluable experimental data about the full-length cystic fibrosis transmembrane conductance regulator (CFTR) 3D structure. However, this experimental information deals with inactive states of the channel, either in an apo, quiescent conformation, in which nucleotide-binding domains (NBDs) are widely separated or in an ATP-bound, yet closed conformation. Here, we show that 3D structure models of the open and closed forms of the channel, now further supported by metadynamics simulations and by comparison with the cryo-EM data, could be used to gain some insights into critical features of the conformational transition toward active CFTR forms. These critical elements lie within membrane-spanning domains but also within NBD1 and the N-terminal extension, in which conformational plasticity is predicted to occur to help the interaction with filamin, one of the CFTR cellular partners.
Collapse
Affiliation(s)
- Brice Hoffmann
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
- Iktos, Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | | | - Fabio Pietrucci
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| |
Collapse
|
45
|
Weigl KE, Conseil G, Rothnie AJ, Arama M, Tsfadia Y, Cole SPC. An Outward-Facing Aromatic Amino Acid Is Crucial for Signaling between the Membrane-Spanning and Nucleotide-Binding Domains of Multidrug Resistance Protein 1 (MRP1; ABCC1). Mol Pharmacol 2018; 94:1069-1078. [PMID: 29976562 DOI: 10.1124/mol.118.112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The 190-kDa human MRP1 is an ATP-binding cassette multidrug and multiorganic anion efflux transporter. The 17 transmembrane helices of its three membrane-spanning domains, together with its two nucleotide binding domains (NBDs), form a stabilizing network of domain-domain interactions that ensure substrate binding in the cytoplasm is efficiently coupled to ATP binding and hydrolysis to effect solute efflux into the extracellular milieu. Here we show that Ala substitution of Phe583 in an outward-facing loop between the two halves of the transporter essentially eliminates the binding of multiple organic anions by MRP1. Conservative substitutions with Trp and Tyr had little or no effect. The F583A mutation also caused a substantial increase in orthovanadate-induced trapping of azidoADP by the cytoplasmic NBDs of MRP1, although the binding of ATP was unaffected. These observations indicate that the loss of the aromatic side chain at position 583 impairs the release of ADP and thus effectively locks the transporter in a low-affinity solute binding state. Phe583 is the first outward-facing amino acid in MRP1 found to be critical for its transport function. Our data provide evidence for long-range coupling, presumably via allosteric interaction, between this outward-facing region of MRP1 and both the solute binding and nucleotide binding regions of the transporter. Cryoelectron microscopy structural and homology models of MRP1 indicate that the orientation of the Phe583 side chain is altered by ATP binding but are currently unable to provide insights into the molecular mechanism by which this long-range signaling is propagated.
Collapse
Affiliation(s)
- Kevin E Weigl
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Gwenaëlle Conseil
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Alice J Rothnie
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - May Arama
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Yossi Tsfadia
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| | - Susan P C Cole
- Department of Pathology and Molecular Medicine (K.E.W., S.P.C.C.) and Division of Cancer Biology and Genetics (G.C., A.J.R., S.P.C.C.), Queen's University Cancer Research Institute, Kingston, Ontario, Canada; and Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel (M.A., Y.T.)
| |
Collapse
|
46
|
Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability. PLoS Biol 2018; 16:e2003980. [PMID: 29949571 PMCID: PMC6039025 DOI: 10.1371/journal.pbio.2003980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 07/10/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Effective transfer of genetic information during cell division requires a major reorganization of chromosome structure. This process is triggered by condensin, a conserved pentameric ATPase essential for chromosome condensation. How condensin harnesses the energy of ATP hydrolysis to promote chromatin reorganization is unknown. To address this issue, we performed a genetic screen specifically focused on the ATPase domain of Smc4, a core subunit of condensin. Our screen identified mutational hotspots that impair condensin’s ability to condense chromosomes to various degrees. These mutations have distinct effects on viability, genome stability, and chromosome morphology, revealing unique thresholds for condensin enzymatic activity in the execution of its cellular functions. Biochemical analyses indicate that inactivation of Smc4 ATPase activity can result in cell lethality because it favors a specific configuration of condensin that locks ATP in the enzyme. Together, our results provide critical insights into the mechanism used by condensin to harness the energy of ATP hydrolysis for the compaction of chromatin. In eukaryotes, the deletion of a single copy of most genes shows little or no detectable phenotype under standard proliferative conditions. This implies that a large reduction in the level of a gene product can be tolerated by eukaryotic organisms and that a “reserve capacity” is built in the protein machinery that drives most cellular processes. Here, we test if the main effector of chromosome condensation—the condensin complex—operates with a reserve enzymatic capacity in the execution of its multiple functions in vivo. To achieve this, we created an allelic series of mutations that selectively inactivate condensin ATPase activity in a graded manner. We show that many core functions of condensin can be maintained even at low levels of ATPase activity. Our data also reveal the existence of various thresholds of ATPase activity that are necessary and sufficient for the execution of different cellular functions by condensin. Notably, loss of genome stability at repetitive DNA is only observed when condensin ATPase activity is severely impaired. Taken together, our results reveal key insights into the process of ATP hydrolysis by condensin and how the energy it releases promotes genome remodeling and stability during cell division.
Collapse
|
47
|
Nürenberg-Goloub E, Heinemann H, Gerovac M, Tampé R. Ribosome recycling is coordinated by processive events in two asymmetric ATP sites of ABCE1. Life Sci Alliance 2018; 1. [PMID: 30198020 PMCID: PMC6124641 DOI: 10.26508/lsa.201800095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The stepwise ribosome disassembly in the translation cycle of eukaryotes and archaea is scheduled by discrete molecular events within the asymmetric ribosome recycling factor ABCE1. Ribosome recycling orchestrated by ABCE1 is a fundamental process in protein translation and mRNA surveillance, connecting termination with initiation. Beyond the plenitude of well-studied translational GTPases, ABCE1 is the only essential factor energized by ATP, delivering the energy for ribosome splitting via two nucleotide-binding sites by a yet unknown mechanism. Here, we define how allosterically coupled ATP binding and hydrolysis events in ABCE1 empower ribosome recycling. ATP occlusion in the low-turnover control site II promotes formation of the pre-splitting complex and facilitates ATP engagement in the high-turnover site I, which in turn drives the structural reorganization required for ribosome splitting. ATP hydrolysis and ensuing release of ABCE1 from the small subunit terminate the post-splitting complex. Thus, ABCE1 runs through an allosterically coupled cycle of closure and opening at both sites, consistent with a processive clamp model. This study delineates the inner mechanics of ABCE1 and reveals why various ABCE1 mutants lead to defects in cell homeostasis, growth, and differentiation.
Collapse
Affiliation(s)
- Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Holger Heinemann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Milan Gerovac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| |
Collapse
|
48
|
Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L, Gera J, Gmür S, Spies P, Gygax D, Geertsma ER, Dawson RJ, Seeger MA. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife 2018; 7:34317. [PMID: 29792401 PMCID: PMC5967865 DOI: 10.7554/elife.34317] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins.
Collapse
Affiliation(s)
- Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Cedric Aj Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Stohler
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nicolas Bocquet
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Melanie N Hug
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martin Siegrist
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Lisa Hetemann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jennifer Gera
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Samira Gmür
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Peter Spies
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Daniel Gygax
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roger Jp Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Puljung MC. Cryo-electron microscopy structures and progress toward a dynamic understanding of K ATP channels. J Gen Physiol 2018; 150:653-669. [PMID: 29685928 PMCID: PMC5940251 DOI: 10.1085/jgp.201711978] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Puljung reviews recent cryo-EM KATP channel structures and proposes a mechanism by which ligand binding results in channel opening. Adenosine triphosphate (ATP)–sensitive K+ (KATP) channels are molecular sensors of cell metabolism. These hetero-octameric channels, comprising four inward rectifier K+ channel subunits (Kir6.1 or Kir6.2) and four sulfonylurea receptor (SUR1 or SUR2A/B) subunits, detect metabolic changes via three classes of intracellular adenine nucleotide (ATP/ADP) binding site. One site, located on the Kir subunit, causes inhibition of the channel when ATP or ADP is bound. The other two sites, located on the SUR subunit, excite the channel when bound to Mg nucleotides. In pancreatic β cells, an increase in extracellular glucose causes a change in oxidative metabolism and thus turnover of adenine nucleotides in the cytoplasm. This leads to the closure of KATP channels, which depolarizes the plasma membrane and permits Ca2+ influx and insulin secretion. Many of the molecular details regarding the assembly of the KATP complex, and how changes in nucleotide concentrations affect gating, have recently been uncovered by several single-particle cryo-electron microscopy structures of the pancreatic KATP channel (Kir6.2/SUR1) at near-atomic resolution. Here, the author discusses the detailed picture of excitatory and inhibitory ligand binding to KATP that these structures present and suggests a possible mechanism by which channel activation may proceed from the ligand-binding domains of SUR to the channel pore.
Collapse
Affiliation(s)
- Michael C Puljung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, England, UK
| |
Collapse
|
50
|
Zoghbi ME, Altenberg GA. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:854-867. [PMID: 28801111 DOI: 10.1016/j.bbamem.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Maria E Zoghbi
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Atwater, CA, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79423-6551, USA.
| |
Collapse
|