1
|
Montfort WR. Per-ARNT-Sim Domains in Nitric Oxide Signaling by Soluble Guanylyl Cyclase. J Mol Biol 2024; 436:168235. [PMID: 37572934 PMCID: PMC10858291 DOI: 10.1016/j.jmb.2023.168235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Nitric oxide (NO) regulates large swaths of animal physiology including wound healing, vasodilation, memory formation, odor detection, sexual function, and response to infectious disease. The primary NO receptor is soluble guanyly/guanylate cyclase (sGC), a dimeric protein of ∼150 kDa that detects NO through a ferrous heme, leading to a large change in conformation and enhanced production of cGMP from GTP. In humans, loss of sGC function contributes to multiple disease states, including cardiovascular disease and cancer, and is the target of a new class of drugs, sGC stimulators, now in clinical use. sGC evolved through the fusion of four ancient domains, a heme nitric oxide / oxygen (H-NOX) domain, a Per-ARNT-Sim (PAS) domain, a coiled coil, and a cyclase domain, with catalysis occurring at the interface of the two cyclase domains. In animals, the predominant dimer is the α1β1 heterodimer, with the α1 subunit formed through gene duplication of the β1 subunit. The PAS domain provides an extensive dimer interface that remains unchanged during sGC activation, acting as a core anchor. A large cleft formed at the PAS-PAS dimer interface tightly binds the N-terminal end of the coiled coil, keeping this region intact and unchanged while the rest of the coiled coil repacks, and the other domains reposition. This interface buries ∼3000 Å2 of monomer surface and includes highly conserved apolar and hydrogen bonding residues. Herein, we discuss the evolutionary history of sGC, describe the role of PAS domains in sGC function, and explore the regulatory factors affecting sGC function.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Wittenborn EC, Thomas WC, Houghton KA, Wirachman ES, Wu Y, Marletta MA. Role of the Coiled-Coil Domain in Allosteric Activity Regulation in Soluble Guanylate Cyclase. Biochemistry 2023; 62:1568-1576. [PMID: 37129924 PMCID: PMC10686098 DOI: 10.1021/acs.biochem.3c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary nitric oxide (NO) receptor in higher eukaryotes, including humans. NO-dependent signaling via sGC is associated with important physiological effects in the vascular, pulmonary, and neurological systems, and sGC itself is an established drug target for the treatment of pulmonary hypertension due to its central role in vasodilation. Despite isolation in the late 1970s, high-resolution structural information on full-length sGC remained elusive until recent cryo-electron microscopy structures were determined of the protein in both the basal unactivated state and the NO-activated state. These structures revealed large-scale conformational changes upon activation that appear to be centered on rearrangements within the coiled-coil (CC) domains in the enzyme. Here, a structure-guided approach was used to engineer constitutively unactivated and constitutively activated sGC variants through mutagenesis of the CC domains. These results demonstrate that the activation-induced conformational change in the CC domains is necessary and sufficient for determining the level of sGC activity.
Collapse
Affiliation(s)
- Elizabeth C. Wittenborn
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kimberly A. Houghton
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erika S. Wirachman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yang Wu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Guey S, Hervé D, Kossorotoff M, Ha G, Aloui C, Bergametti F, Arnould M, Guenou H, Hadjadj J, Dubois Teklali F, Riant F, Balligand JL, Uzan G, Villoutreix BO, Tournier-Lasserve E. Biallelic variants in NOS3 and GUCY1A3, the two major genes of the nitric oxide pathway, cause moyamoya cerebral angiopathy. Hum Genomics 2023; 17:24. [PMID: 36941667 PMCID: PMC10026487 DOI: 10.1186/s40246-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Moyamoya angiopathy (MMA) is a rare cerebrovascular condition leading to stroke. Mutations in 15 genes have been identified in Mendelian forms of MMA, but they explain only a very small proportion of cases. Our aim was to investigate the genetic basis of MMA in consanguineous patients having unaffected parents in order to identify genes involved in autosomal recessive MMA. METHODS Exome sequencing (ES) was performed in 6 consecutive consanguineous probands having MMA of unknown etiology. Functional consequences of variants were assessed using western blot and protein 3D structure analyses. RESULTS Causative homozygous variants of NOS3, the gene encoding the endothelial nitric oxide synthase (eNOS), and GUCY1A3, the gene encoding the alpha1 subunit of the soluble guanylate cyclase (sGC) which is the major nitric oxide (NO) receptor in the vascular wall, were identified in 3 of the 6 probands. One NOS3 variant (c.1502 + 1G > C) involves a splice donor site causing a premature termination codon and leads to a total lack of eNOS in endothelial progenitor cells of the affected proband. The other NOS3 variant (c.1942 T > C) is a missense variant located into the flavodoxine reductase domain; it is predicted to be destabilizing and shown to be associated with a reduction of eNOS expression. The GUCY1A3 missense variant (c.1778G > A), located in the catalytic domain of the sGC, is predicted to disrupt the tridimensional structure of this domain and to lead to a loss of function of the enzyme. Both NOS3 mutated probands suffered from an infant-onset and severe MMA associated with posterior cerebral artery steno-occlusive lesions. The GUCY1A3 mutated proband presented an adult-onset MMA associated with an early-onset arterial hypertension and a stenosis of the superior mesenteric artery. None of the 3 probands had achalasia. CONCLUSIONS We show for the first time that biallelic loss of function variants in NOS3 is responsible for MMA and that mutations in NOS3 and GUCY1A3 are causing fifty per cent of MMA in consanguineous patients. These data pinpoint the essential role of the NO pathway in MMA pathophysiology.
Collapse
Affiliation(s)
- Stéphanie Guey
- Inserm UMR-S1141, Université Paris Cité, Paris, France.
- Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Hôpital Lariboisière, AP-HP, 75010, Paris, France.
| | - Dominique Hervé
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Manoëlle Kossorotoff
- Department of Pediatric Neurology, French Center for Pediatric Stroke, AP-HP, University Hospital Necker-Enfants Malades, Paris, France
- Inserm U1266, Paris, France
| | - Guillaume Ha
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | - Chaker Aloui
- Inserm UMR-S1141, Université Paris Cité, Paris, France
| | | | - Minh Arnould
- Inserm UMR-S1141, Université Paris Cité, Paris, France
| | - Hind Guenou
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | - Jessica Hadjadj
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| | | | - Florence Riant
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Georges Uzan
- INSERM, UMR-S-MD 1197, Hôpital Paul Brousse, Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 94800, Villejuif, France
| | | | - Elisabeth Tournier-Lasserve
- Inserm UMR-S1141, Université Paris Cité, Paris, France
- Service de Génétique Moléculaire Neurovasculaire, Hôpitaux Lariboisière-Saint-Louis, AP-HP, 75010, Paris, France
| |
Collapse
|
4
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Wittenborn EC, Marletta MA. Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation. Int J Mol Sci 2021; 22:ijms22115439. [PMID: 34064029 PMCID: PMC8196705 DOI: 10.3390/ijms22115439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
The enzyme soluble guanylate cyclase (sGC) is the prototypical nitric oxide (NO) receptor in humans and other higher eukaryotes and is responsible for transducing the initial NO signal to the secondary messenger cyclic guanosine monophosphate (cGMP). Generation of cGMP in turn leads to diverse physiological effects in the cardiopulmonary, vascular, and neurological systems. Given these important downstream effects, sGC has been biochemically characterized in great detail in the four decades since its discovery. Structures of full-length sGC, however, have proven elusive until very recently. In 2019, advances in single particle cryo–electron microscopy (cryo-EM) enabled visualization of full-length sGC for the first time. This review will summarize insights revealed by the structures of sGC in the unactivated and activated states and discuss their implications in the mechanism of sGC activation.
Collapse
|
6
|
Sharina I, Lezgyieva K, Krutsenko Y, Martin E. Higher susceptibility to heme oxidation and lower protein stability of the rare α 1C517Yβ 1 sGC variant associated with moyamoya syndrome. Biochem Pharmacol 2021; 186:114459. [PMID: 33571505 PMCID: PMC8052303 DOI: 10.1016/j.bcp.2021.114459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
NO sensitive soluble guanylyl cyclase (sGC) plays a key role in mediating physiological functions of NO. Genetic alterations of the GUCY1A3 gene, coding for the α1 subunit of sGC, are associated with several cardiovascular dysfunctions. A rare sGC variant with Cys517 → Tyr substitution in the α1subunit, has been associated with moyamoya disease and achalasia. In this report we characterize the properties of this rare sGC variant. Purified α1C517Yβ1 sGC preserved only ~25% of its cGMP-forming activity and showed an elevated Km for GTP substrate. However, the mutant enzyme retained a high affinity for and robust activation by NO, similar to wild type sGC. Purified α1C517Yβ1 enzyme was more sensitive to specific sGC heme oxidizers and less responsive to heme reducing agents. When expressed in COS7 cells, α1C517Yβ1 sGC showed a much stronger response to cinaciguat or gemfibrozil, which targets apo-sGC or sGC with ferric heme, as compared to its NO response or the relative response of the wild type sGC. A stronger response to cinaciguat was also observed for purified α1C517Yβ1 in the absence of reducing agents. In COS7 cells, αCys517β sGC was less stable than the wild type enzyme under normal conditions and exhibited accelerated degradation upon induction of cellular oxidative stress. We conclude that diminished cGMP-forming activity of this sGC variant is aggravated by its high susceptibility to oxidative stress and diminished protein stability. The combination of these deficiencies contributes to the severity of observed moyamoya and achalasia symptoms in human carriers of this rare α1C517Yβ1 sGC variant.
Collapse
Affiliation(s)
- Iraida Sharina
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States
| | - Karina Lezgyieva
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | | | - Emil Martin
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States.
| |
Collapse
|
7
|
Sandner P, Vakalopoulos A, Hahn MG, Stasch JP, Follmann M. Soluble guanylate cyclase stimulators and their potential use: a patent review. Expert Opin Ther Pat 2021; 31:203-222. [PMID: 33395323 DOI: 10.1080/13543776.2021.1866538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: In 2013, riociguat a potent and specific stimulator of the soluble guanylyl cyclase (sGC) was approved as first in class sGC stimulator which reflected a first culmination of intense research and development efforts starting in the mid 1990ies. In the meantime, it turned out that triggering cGMP production by sGC stimulators could have a broad treatment potential. In consequence, various pharmaceutical companies are still very active in identifying novel chemistry for sGC stimulators. After the first generation of sGC stimulators like riociguat or lificiguat, new compound classes with different physicochemical and kinetic profiles were identified, like the sGC stimulators vericiguat or praliciguat.Area covered: Patent literature on sGC stimulators with a focus on recent compounds of the years 2014-2019 as on claimed use and formulations of these compounds. The information was collected from publicly available data sources only (MedLine, EmBase, Chemical Abstracts, Orbit, Dolphin).Expert Opinion: With the recent advancements reported in the patent literature, sGC stimulators might be differentiated due to tissue selectivity or route of application although exhibiting the same molecular mode of action. The indication space of these compounds is potentially very broad and multiple indications in cardiovascular diseases and beyond are under investigation.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiology and Medicinal Chemistry, Wuppertal, Germany.,Hannover Medical School, Institute of Pharmacology, Hannover, Germany
| | - Alexandros Vakalopoulos
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiology and Medicinal Chemistry, Wuppertal, Germany
| | - Michael G Hahn
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiology and Medicinal Chemistry, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiology and Medicinal Chemistry, Wuppertal, Germany.,cMartin Luther University Halle, Institute of Pharmacy, Halle, Halle, Germany
| | - Markus Follmann
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiology and Medicinal Chemistry, Wuppertal, Germany
| |
Collapse
|
8
|
Alapa M, Cui C, Shu P, Li H, Kholodovych V, Beuve A. Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation. Free Radic Biol Med 2021; 162:450-460. [PMID: 33161042 PMCID: PMC7889651 DOI: 10.1016/j.freeradbiomed.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (GC1) and stimulates its catalytic activity to produce cGMP. Despite the key role of the NO-cGMP signaling in cardiovascular physiology, the mechanisms of GC1 activation remain ill-defined. It is believed that conserved cysteines (Cys) in GC1 modulate the enzyme's activity through thiol-redox modifications. We previously showed that GC1 activity is modulated via mixed-disulfide bond by protein disulfide isomerase and thioredoxin 1. Herein we investigated the novel concept that NO-stimulated GC1 activity is mediated by thiol/disulfide switches and aimed to map the specific Cys that are involved. First, we showed that the dithiol reducing agent Tris (2-carboxyethyl)-phosphine reduces GC1 response to NO, indicating the significance of Cys oxidation in NO activation. Second, using dibromobimane, which fluoresces when crosslinking two vicinal Cys thiols, we demonstrated decreased fluorescence in NO-stimulated GC1 compared to unstimulated conditions. This suggested that NO-stimulated GC1 contained more bound Cys, potentially disulfide bonds. Third, to identify NO-regulated Cys oxidation using mass spectrometry, we compared the redox status of all Cys identified in tryptic peptides, among which, ten were oxidized and two were reduced in NO-stimulated GC1. Fourth, we resorted to computational modeling to narrow down the Cys candidates potentially involved in disulfide bond and identified Cys489 and Cys571. Fifth, our mutational studies showed that Cys489 and Cys571 were involved in GC1'response to NO, potentially as a thiol/disulfide switch. These findings imply that specific GC1 Cys sensitivity to redox environment is critical for NO signaling in cardiovascular physiology.
Collapse
Affiliation(s)
- Maryam Alapa
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Chuanlong Cui
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA; Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Ping Shu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Annie Beuve
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Petrova ON, Lamarre I, Fasani F, Grillon C, Negrerie M. Soluble Guanylate Cyclase Inhibitors Discovered among Natural Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3642-3651. [PMID: 33290062 DOI: 10.1021/acs.jnatprod.0c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble guanylate cyclase (sGC) is the human receptor of nitric oxide (NO) in numerous kinds of cells and produces the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) upon NO binding to its heme. sGC is involved in many cell signaling pathways both under healthy conditions and under pathological conditions, such as angiogenesis associated with tumor growth. Addressing the selective inhibition of the NO/cGMP pathway is a strategy worthwhile to be investigated for slowing down tumoral angiogenesis or for curing vasoplegia. However, sGC inhibitors are lacking investigation. We have explored a chemical library of various natural compounds and have discovered inhibitors of sGC. The selected compounds were evaluated for their inhibition of purified sGC in vitro and sGC in endothelial cells. Six natural compounds, from various organisms, have IC50 in the range 0.2-1.5 μM for inhibiting the NO-activated synthesis of cGMP by sGC, and selected compounds exhibit a quantified antiangiogenic activity using an endothelial cell line. These sGC inhibitors can be used directly as tools to investigate angiogenesis and cell signaling or as templates for drug design.
Collapse
Affiliation(s)
- Olga N Petrova
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Orléans, France
| | | | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
10
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Khalid RR, Maryam A, Sezerman OU, Mylonas E, Siddiqi AR, Kokkinidis M. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase. Sci Rep 2020; 10:9488. [PMID: 32528025 PMCID: PMC7289801 DOI: 10.1038/s41598-020-66310-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/04/2020] [Indexed: 01/25/2023] Open
Abstract
In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (hsGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive hsGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hsGC. In the current study, the hsGC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hsGC. Results revealed that in the GTP-bound complex of the hsGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the hsGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.,Department of Biology, University of Crete, 70013, Heraklion, Greece.,Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, 34752, Turkey
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.,Department of Pharmaceutical Chemistry, Biruni Universitesi, Istanbul, 34010, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, 34752, Turkey
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013, Heraklion, Greece
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.
| | - Michael Kokkinidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013, Heraklion, Greece.
| |
Collapse
|
12
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
13
|
Childers KC, Yao XQ, Giannakoulias S, Amason J, Hamelberg D, Garcin ED. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. J Biol Chem 2019; 294:18451-18464. [PMID: 31645439 PMCID: PMC6885636 DOI: 10.1074/jbc.ra119.011010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Sam Giannakoulias
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Joshua Amason
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| |
Collapse
|
14
|
Horst BG, Yokom AL, Rosenberg DJ, Morris KL, Hammel M, Hurley JH, Marletta MA. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. eLife 2019; 8:e50634. [PMID: 31566566 PMCID: PMC6839917 DOI: 10.7554/elife.50634] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71° rotation of the heme-binding β H-NOX and PAS domains. Repositioning of the β H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to move the catalytic domains into an active conformation. YC-1 binds directly between the β H-NOX domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological effects of NO.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
| | - Adam L Yokom
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyUnited States
| | - Kyle L Morris
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Michal Hammel
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - James H Hurley
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael A Marletta
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
15
|
Structural insights into the mechanism of human soluble guanylate cyclase. Nature 2019; 574:206-210. [PMID: 31514202 DOI: 10.1038/s41586-019-1584-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary sensor of nitric oxide. It has a central role in nitric oxide signalling and has been implicated in many essential physiological processes and disease conditions. The binding of nitric oxide boosts the enzymatic activity of sGC. However, the mechanism by which nitric oxide activates the enzyme is unclear. Here we report the cryo-electron microscopy structures of the human sGCα1β1 heterodimer in different functional states. These structures revealed that the transducer module bridges the nitric oxide sensor module and the catalytic module. Binding of nitric oxide to the β1 haem-nitric oxide and oxygen binding (H-NOX) domain triggers the structural rearrangement of the sensor module and a conformational switch of the transducer module from bending to straightening. The resulting movement of the N termini of the catalytic domains drives structural changes within the catalytic module, which in turn boost the enzymatic activity of sGC.
Collapse
|
16
|
Weichsel A, Kievenaar JA, Curry R, Croft JT, Montfort WR. Instability in a coiled-coil signaling helix is conserved for signal transduction in soluble guanylyl cyclase. Protein Sci 2019; 28:1830-1839. [PMID: 31411784 DOI: 10.1002/pro.3707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC-1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N-terminus in sGC activates cyclase activity near the C-terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small-molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled-coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad-repeating pattern for coiled-coil motifs, but also invariant positions that disfavor coiled-coil stability. Full-length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled-coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.
Collapse
Affiliation(s)
- Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Jessica A Kievenaar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Roslyn Curry
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Jacob T Croft
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Khalid RR, Maryam A, Fadouloglou VE, Siddiqi AR, Zhang Y. Cryo-EM density map fitting driven in-silico structure of human soluble guanylate cyclase (hsGC) reveals functional aspects of inter-domain cross talk upon NO binding. J Mol Graph Model 2019; 90:109-119. [PMID: 31055154 PMCID: PMC7956049 DOI: 10.1016/j.jmgm.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
The human soluble Guanylate Cyclase (hsGC) is a heterodimeric heme-containing enzyme which regulates many important physiological processes. In eukaryotes, hsGC is the only known receptor for nitric oxide (NO) signaling. Improper NO signaling results in various disease conditions such as neurodegeneration, hypertension, stroke and erectile dysfunction. To understand the mechanisms of these diseases, structure determination of the hsGC dimer complex is crucial. However, so far all the attempts for the experimental structure determination of the protein were unsuccessful. The current study explores the possibility to model the quaternary structure of hsGC using a hybrid approach that combines state-of-the-art protein structure prediction tools with cryo-EM experimental data. The resultant 3D model shows close consistency with structural and functional insights extracted from biochemistry experiment data. Overall, the atomic-level complex structure determination of hsGC helps to unveil the inter-domain communication upon NO binding, which should be of important usefulness for elucidating the biological function of this important enzyme and for developing new treatments against the hsGC associated human diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Biostatistics and Medical Informatics, Acibadem Universitesi, Istanbul, 34752, Turkey; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Pharmaceutical Chemistry, Biruni Universitesi, Istanbul, 34010, Turkey.
| | - Vasiliki E Fadouloglou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| |
Collapse
|
18
|
Elgert C, Rühle A, Sandner P, Behrends S. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC. Biochem Pharmacol 2019; 163:142-153. [DOI: 10.1016/j.bcp.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
19
|
Khalid RR, Siddiqi AR, Mylonas E, Maryam A, Kokkinidis M. Dynamic Characterization of the Human Heme Nitric Oxide/Oxygen (HNOX) Domain under the Influence of Diatomic Gaseous Ligands. Int J Mol Sci 2019; 20:E698. [PMID: 30736292 PMCID: PMC6387030 DOI: 10.3390/ijms20030698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023] Open
Abstract
Soluble guanylate cyclase (sGC) regulates numerous physiological processes. The β subunit Heme Nitric Oxide/Oxygen (HNOX) domain makes this protein sensitive to small gaseous ligands. The structural basis of the activation mechanism of sGC under the influence of ligands (NO, O₂, CO) is poorly understood. We examine the effect of different ligands on the human sGC HNOX domain. HNOX systems with gaseous ligands were generated and explored using Molecular Dynamics (MD). The distance between heme Fe2+ and histidine in the NO-ligated HNOX (NO-HNOX) system is larger compared to the O₂, CO systems. NO-HNOX rapidly adopts the conformation of the five-group metal coordination system. Loops α, β, γ and helix-f exhibit increased mobility and different hydrogen bond networks in NO-HNOX compared to the other systems. The removal of His from the Fe coordination sphere in NO-HNOX is assisted by interaction of the imidazole ring with the surrounding residues which in turn leads to the release of signaling helix-f and activation of the sGC enzyme. Insights into the conformational dynamics of a human sGC HNOX domain, especially for regions which are functionally critical for signal transduction, are valuable in the understanding of cardiovascular diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
- Department of Biology, University of Crete, 70013 Heraklion, Greece.
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Greece.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
| | - Michael Kokkinidis
- Department of Biology, University of Crete, 70013 Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Greece.
| |
Collapse
|
20
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
22
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
23
|
Comparative Studies of the Dynamics Effects of BAY60-2770 and BAY58-2667 Binding with Human and Bacterial H-NOX Domains. Molecules 2018; 23:molecules23092141. [PMID: 30149624 PMCID: PMC6225106 DOI: 10.3390/molecules23092141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a key enzyme implicated in various physiological processes such as vasodilation, thrombosis and platelet aggregation. The enzyme’s Heme-Nitric oxide/Oxygen (H-NOX) binding domain is the only sensor of nitric oxide (NO) in humans, which on binding with NO activates sGC to produce the second messenger cGMP. H-NOX is thus a hot target for drug design programs. BAY60-2770 and BAY58-2667 are two widely studied activators of sGC. Here we present comparative molecular dynamics studies to understand the molecular details characterizing the binding of BAY60-2770 and BAY58-2667 with the human H-NOX (hH-NOX) and bacterial H-NOX (bH-NOX) domains. HartreeFock method was used for parametrization of both the activators. A 50 ns molecular dynamics (MD) simulation was run to identify the functionally critical regions of the H-NOX domains. The CPPTRAJ module was used for analysis. BAY60-2770 on binding with bH-NOX, triggered rotational movement in signaling helix F and significant dynamicity in loops α and β, but in hH-NOX domain the compound showed relatively lesser aforementioned structural fluctuations. Conversely, hH-NOX ligated BAY58-2667 experienced highest transitions in its helix F due to electrostatic interactions with D84, T85 and R88 residues which are not conserved in bH-NOX. These conformational transformations might be essential to communicate with downstream PAS, CC and cyclase domains of sGC. Comparative MD studies revealed that BAY bound bHNOX dynamics varied from that of hH-NOX, plausibly due to some key residues such as R40, F74 and Y112 which are not conserved in bacteria. These findings will help to the design of novel drug leads to cure diseases associated to human sGC.
Collapse
|
24
|
Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 2018; 77:65-74. [PMID: 29704567 PMCID: PMC6919197 DOI: 10.1016/j.niox.2018.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
25
|
Hespen CW, Bruegger JJ, Guo Y, Marletta MA. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins. ACS Chem Biol 2018; 13:1631-1639. [PMID: 29757599 DOI: 10.1021/acschembio.8b00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
Collapse
Affiliation(s)
- Charles W. Hespen
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Joel J. Bruegger
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Yirui Guo
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Michael A. Marletta
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
- Department of Chemistry, Department of Molecular and Cell Biology, QB3 Institute, University of California—Berkeley, 374B Stanley Hall, Berkeley, California 94720-3220, United States
| |
Collapse
|
26
|
Sömmer A, Behrends S. Methods to investigate structure and activation dynamics of GC-1/GC-2. Nitric Oxide 2018; 78:S1089-8603(17)30348-8. [PMID: 29705716 DOI: 10.1016/j.niox.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme consisting of one α and one β subunit. The α1β1 (GC-1) and α2β1 (GC-2) heterodimers are important for NO signaling in humans and catalyse the conversion from GTP to cGMP. Each sGC subunit consists of four domains. Several crystal structures of the isolated domains are available. However, crystals of full-length sGC have failed to materialise. In consequence, the detailed three dimensional structure of sGC remains unknown to date. Different techniques including stopped-flow spectroscopy, Förster-resonance energy transfer, direct fluorescence, analytical ultracentrifugation, chemical cross-linking, small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and protein thermal shift assays, were used to collect indirect information. Taken together, this circumstantial evidence from different groups brings forth a plausible model of sGC domain arrangement, spatial orientation and dynamic rearrangement upon activation. For analysis of the active conformation the stable binding mode of sGC activators has a significant methodological advantage over the transient, elusive, complex and highly concentration dependent effects of NO in many applications. The methods used and the results obtained are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
27
|
Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide 2018; 77:53-64. [PMID: 29702251 PMCID: PMC6005667 DOI: 10.1016/j.niox.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5′-triphosphate (GTP) into cyclic guanosine 3′,5′-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
Collapse
Affiliation(s)
- Kenneth C Childers
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA
| | - Elsa D Garcin
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA.
| |
Collapse
|
28
|
Sömmer A, Behrends S. Synergistic stabilisation of NOsGC by cinaciguat and non-hydrolysable nucleotides: Evidence for sGC activator-induced communication between the heme-binding and catalytic domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:702-711. [PMID: 29653192 DOI: 10.1016/j.bbapap.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 11/29/2022]
Abstract
Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme consisting of one α and one β subunit. Each subunit consists of four domains: the N-terminal heme-nitric oxide oxygen binding (HNOX) domain, a PAS domain, a coiled-coil domain and the C-terminal catalytic domain. Upon activation by the endogenous ligand NO or activating drugs, NOsGC catalyses the conversion of GTP to cGMP. Although several crystal structures of the isolated domains are known, the structure of the full-length enzyme and the interdomain conformational changes during activation remain unsolved to date. In the current study, we performed protein thermal shift assays of purified NOsGC to identify discrete conformational states amenable to further analysis e.g. by crystallisation. A non-hydrolysable substrate analogue binding to the catalytic domain led to a subtle change in melting temperature. An activator drug binding to the HNOX domain led to a small increase. However, the combination of substrate analogue and activator drug led to a marked synergistic increase from 51 °C to 60 °C. This suggests reciprocal communication between HNOX domain and catalytic domain and formation of a stable activated conformation amenable to further biophysical characterization.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
29
|
Shah RC, Sanker S, Wood KC, Durgin BG, Straub AC. Redox regulation of soluble guanylyl cyclase. Nitric Oxide 2018; 76:97-104. [PMID: 29578056 DOI: 10.1016/j.niox.2018.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 11/15/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase (NO-sGC) signaling pathway regulates the cardiovascular, neuronal, and gastrointestinal systems. Impaired sGC signaling can result in disease and system-wide organ failure. This review seeks to examine the redox control of sGC through heme and cysteine regulation while discussing therapeutic drugs that target various conditions. Heme regulation involves mechanisms of insertion of the heme moiety into the sGC protein, the molecules and proteins that control switching between the oxidized (Fe3+) and reduced states (Fe2+), and the activity of heme degradation. Modifications to cysteine residues by S-nitrosation on the α1 and β1 subunits of sGC have been shown to be important in sGC signaling. Moreover, redox balance and localization of sGC is thought to control downstream effects. In response to altered sGC activity due to changes in the redox state, many therapeutic drugs have been developed to target decreased NO-sGC signaling. The importance and relevance of sGC continues to grow as sGC dysregulation leads to numerous disease conditions.
Collapse
Affiliation(s)
- Rohan C Shah
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Subramaniam Sanker
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany G Durgin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Vercellino I, Rezabkova L, Olieric V, Polyhach Y, Weinert T, Kammerer RA, Jeschke G, Korkhov VM. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Proc Natl Acad Sci U S A 2017; 114:E9821-E9828. [PMID: 29087332 PMCID: PMC5699072 DOI: 10.1073/pnas.1712621114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nucleotidyl cyclases, including membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate. Although mutations within this region in various cyclases have been linked to genetic diseases, the molecular details of their effects on the enzymes remain unknown. Here, we report an X-ray structure of the cytosolic portion of the membrane-integral adenylyl cyclase Cya from Mycobacterium intracellulare in a nucleotide-bound state. The helical domains of each Cya monomer form a tight hairpin, bringing the two catalytic domains into an active dimerized state. Mutations in the helical domain of Cya mimic the disease-related mutations in human proteins, recapitulating the profiles of the corresponding mutated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1. Our experiments with full-length Cya and its cytosolic domain link the mutations to protein stability, and the ability to induce an active dimeric conformation of the catalytic domains. Sequence conservation indicates that this domain is an integral part of cyclase machinery across protein families and species. Our study provides evidence for a role of the helical domain in establishing a catalytically competent dimeric cyclase conformation. Our results also suggest that the disease-associated mutations in the corresponding regions of human nucleotidyl cyclases disrupt the normal helical domain structure.
Collapse
Affiliation(s)
- Irene Vercellino
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Vincent Olieric
- Macromolecular Crystallography Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology in Zurich (ETH Zurich), 8093 Zurich, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology in Zurich (ETH Zurich), 8093 Zurich, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland;
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo. Sci Rep 2017; 7:43112. [PMID: 28230071 PMCID: PMC5322342 DOI: 10.1038/srep43112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/19/2017] [Indexed: 11/12/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing metalloprotein in NO-sGC-cGMP signaling. NO binds to the heme of sGC to catalyze the synthesis of the second messenger cGMP, which plays a critical role in several physiological processes. However, the molecular mechanism for sGC to mediate the NO signaling remains unclear. Here fluorophore FlAsH-EDT2 and fluorescent proteins were employed to study the NO-induced sGC activation. FlAsH-EDT2 labeling study revealed that NO binding to the H-NOX domain of sGC increased the distance between H-NOX and PAS domain and the separation between H-NOX and coiled-coil domain. The heme pocket conformation changed from “closed” to “open” upon NO binding. In addition, the NO-induced conformational change of sGC was firstly investigated in vivo through fluorescence lifetime imaging microscopy. The results both in vitro and in vivo indicated the conformational change of the catalytic domain of sGC from “open” to “closed” upon NO binding. NO binding to the heme of H-NOX domain caused breaking of Fe-N coordination bond, initiated the domain moving and conformational change, induced the allosteric effect of sGC to trigger the NO-signaling from H-NOX via PAS & coiled-coil to the catalytic domain, and ultimately stimulates the cyclase activity of sGC.
Collapse
|
32
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
33
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
34
|
Vijayaraghavan J, Kramp K, Harris ME, van den Akker F. Inhibition of soluble guanylyl cyclase by small molecules targeting the catalytic domain. FEBS Lett 2016; 590:3669-3680. [PMID: 27654641 DOI: 10.1002/1873-3468.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
Soluble guanylyl cyclase (sGC) plays a crucial role in cyclic nucleotide signaling that regulates numerous important physiological processes. To identify new sGC inhibitors that may prevent the formation of the active catalytic domain conformation, we carried out an in silico docking screen targeting a 'backside pocket' of the inactive sGC catalytic domain structure. Compounds 1 and 2 were discovered to inhibit sGC even at high/saturating nitric oxide concentrations. Both compounds also inhibit the BAY 58-2667-activated sGC as well as BAY 41-2272-stimulated sGC activity. Additional biochemical analyses showed that compound 2 also inhibits the isolated catalytic domain, thus demonstrating functional binding to this domain. Both compounds have micromolar affinity for sGC and are potential leads to develop more potent sGC inhibitors.
Collapse
Affiliation(s)
| | - Kristopher Kramp
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
35
|
Pan J, Zhang X, Yuan H, Xu Q, Zhang H, Zhou Y, Huang ZX, Tan X. The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:488-500. [PMID: 26876536 DOI: 10.1016/j.bbapap.2016.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
Abstract
Heme oxidation and loss of soluble guanylate cyclase (sGC) is thought to be an important contributor to the development of cardiovascular diseases. Nevertheless, it remains unknown why the heme loses readily in oxidized sGC. In the current study, the conformational change of sGC upon heme oxidation by ODQ was studied based on the fluorescence resonance energy transfer (FRET) between the heme and a fluorophore fluorescein arsenical helix binder (FlAsH-EDT2) labeled at different domains of sGC β1. This study provides an opportunity to monitor the domain movement of sGC relative to the heme. The results indicated that heme oxidation by ODQ in truncated sCC induced the heme-associated αF helix moving away from the heme, the Per/Arnt/Sim domain (PAS) domain moving closer to the heme, but led the helical domain going further from the heme. We proposed that the synergistic effect of these conformational changes of the discrete region upon heme oxidation forces the heme pocket open, and subsequent heme loss readily. Furthermore, the kinetic studies suggested that the heme oxidation was a fast process and the conformational change was a relatively slow process. The kinetics of heme loss from oxidized sGC was monitored by a new method based on the heme group de-quenching the fluorescence of FlAsH-EDT2.
Collapse
Affiliation(s)
- Jie Pan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Xiaoxue Zhang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Hong Yuan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Qiming Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huijuan Zhang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Yajun Zhou
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Zhong-Xian Huang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Xiangshi Tan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
36
|
Heckler EJ, Kholodovych V, Jain M, Liu T, Li H, Beuve A. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction. PLoS One 2015; 10:e0143523. [PMID: 26618351 PMCID: PMC4664405 DOI: 10.1371/journal.pone.0143523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.
Collapse
Affiliation(s)
- Erin J. Heckler
- Department of Pharmacology and Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Vladyslav Kholodovych
- High Performance and Research Computing, OIRT, Rutgers University, New Brunswick, NJ, United States of America
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mohit Jain
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Tong Liu
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Hong Li
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Annie Beuve
- Department of Pharmacology and Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hunt AP, Lehnert N. Heme-nitrosyls: electronic structure implications for function in biology. Acc Chem Res 2015; 48:2117-25. [PMID: 26114618 DOI: 10.1021/acs.accounts.5b00167] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The question of why mammalian systems use nitric oxide (NO), a potentially hazardous and toxic diatomic, as a signaling molecule to mediate important functions such as vasodilation (blood pressure control) and nerve signal transduction initially perplexed researchers when this discovery was made in the 1980s. Through extensive research over the past two decades, it is now well rationalized why NO is used in vivo for these signaling functions, and that heme proteins play a dominant role in NO signaling in mammals. Key insight into the properties of heme-nitrosyl complexes that make heme proteins so well poised to take full advantage of the unique properties of NO has come from in-depth structural, spectroscopic, and theoretical studies on ferrous and ferric heme-nitrosyls. This Account highlights recent findings that have led to greater understanding of the electronic structures of heme-nitrosyls, and the contributions that model complex studies have made to elucidate Fe-NO bonding are highlighted. These results are then discussed in the context of the biological functions of heme-nitrosyls, in particular in soluble guanylate cyclase (sGC; NO signaling), nitrophorins (NO transport), and NO-producing enzymes. Central to this Account is the thermodynamic σ-trans effect of NO, and how this relates to the activation of the universal mammalian NO sensor sGC, which uses a ferrous heme as the high affinity "NO detection unit". It is shown via detailed spectroscopic and computational studies that the strong and very covalent Fe(II)-NO σ-bond is at the heart of the strong thermodynamic σ-trans effect of NO, which greatly weakens the proximal Fe-NHis (or Fe-SCys) bond in six-coordinate ferrous heme-nitrosyls. In sGC, this causes the dissociation of the proximally bound histidine ligand upon NO binding to the ferrous heme, inducing a significant conformational change that activates the sGC catalytic domain for the production of cGMP. This, in turn, leads to vasodilation and nerve signal transduction. Studies on ferrous heme-nitrosyl model complexes have allowed for a quantification of this thermodynamic σ-trans effect of NO, through the use of high-resolution crystal structures, binding constant studies, single-crystal vibrational spectroscopy and density functional theory (DFT) calculations. These studies have further identified the singly occupied molecular orbital (SOMO) of the NO complexes as the key MO that mediates the thermodynamic σ-trans effect of NO. In comparison to ferrous heme-nitrosyls, ferric heme-nitrosyls display thermodynamically much weaker Fe-NO bonds (from NO binding constants), but at the same time much stronger Fe-NO bonds in their ground states (from vibrational spectroscopy). Using spectroscopic investigations coupled to DFT calculations, this apparent contradiction has been rationalized with the involvement of at least three different electronic states in the binding/dissociation of NO to/from ferric hemes. This is of key significance for the release of NO from NO-producing enzymes like NOS, and further forms the basis for ferric hemes to serve as NO transporters in biological systems.
Collapse
Affiliation(s)
- Andrew P. Hunt
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
39
|
Sarkar A, Dai Y, Haque MM, Seeger F, Ghosh A, Garcin ED, Montfort WR, Hazen SL, Misra S, Stuehr DJ. Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. J Biol Chem 2015; 290:21615-28. [PMID: 26134567 DOI: 10.1074/jbc.m115.645515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1-359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.
Collapse
Affiliation(s)
| | - Yue Dai
- From the Departments of Pathobiology
| | | | - Franziska Seeger
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | | | - Elsa D Garcin
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | - William R Montfort
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | - Saurav Misra
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | | |
Collapse
|
40
|
Motion of proximal histidine and structural allosteric transition in soluble guanylate cyclase. Proc Natl Acad Sci U S A 2015; 112:E1697-704. [PMID: 25831539 DOI: 10.1073/pnas.1423098112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 μs with [NO] = 200 μM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 μs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 μs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.
Collapse
|
41
|
Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. Circ J 2015; 79:463-9. [PMID: 25746521 DOI: 10.1253/circj.cj-15-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble guanylyl cyclase (sGC) is the physiological receptor for nitric oxide (NO) and NO-releasing drugs, and is a key enzyme in several cardiovascular signaling pathways. Its activation induces the synthesis of the second messenger cGMP. cGMP regulates the activity of various downstream proteins, including cGMP-dependent protein kinase G, cGMP-dependent phosphodiesterases and cyclic nucleotide gated ion channels leading to vascular relaxation, inhibition of platelet aggregation, and modified neurotransmission. Diminished sGC function contributes to a number of disorders, including cardiovascular diseases. Knowledge of its regulation is a prerequisite for understanding the pathophysiology of deficient sGC signaling. In this review we consolidate the available information on sGC signaling, including the molecular biology and genetics of sGC transcription, translation and function, including the effect of rare variants, and present possible new targets for the development of personalized medicine in vascular diseases.
Collapse
Affiliation(s)
- Jana Wobst
- Department of Cardiovascular Diseases, German Heart Center Munich, Technical University Munich
| | | | | | | | | | | |
Collapse
|
42
|
Moeller A, Lee SC, Tao H, Speir JA, Chang G, Urbatsch IL, Potter CS, Carragher B, Zhang Q. Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 2015; 23:450-460. [PMID: 25661651 DOI: 10.1016/j.str.2014.12.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/12/2014] [Indexed: 01/10/2023]
Abstract
ATP-binding cassette (ABC) exporters are ubiquitously found in all kingdoms of life and their members play significant roles in mediating drug pharmacokinetics and multidrug resistance in the clinic. Significant questions and controversies remain regarding the relevance of their conformations observed in X-ray structures, their structural dynamics, and mechanism of transport. Here, we used single particle electron microscopy (EM) to delineate the entire conformational spectrum of two homologous ABC exporters (bacterial MsbA and mammalian P-glycoprotein) and the influence of nucleotide and substrate binding. Newly developed amphiphiles in complex with lipids that support high protein stability and activity enabled EM visualization of individual complexes in a membrane-mimicking environment. The data provide a comprehensive view of the conformational flexibility of these ABC exporters under various states and demonstrate not only similarities but striking differences between their mechanistic and energetic regulation of conformational changes.
Collapse
Affiliation(s)
- Arne Moeller
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sung Chang Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Houchao Tao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey A Speir
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geoffrey Chang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Clinton S Potter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bridget Carragher
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Hunter SC, Smith BA, Hoffmann CM, Wang X, Chen YS, McIntyre GJ, Xue ZL. Intermolecular Interactions in Solid-State Metalloporphyrins and Their Impacts on Crystal and Molecular Structures. Inorg Chem 2014; 53:11552-62. [DOI: 10.1021/ic5015835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Seth C. Hunter
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Brenda A. Smith
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christina M. Hoffmann
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaoping Wang
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yu-Sheng Chen
- ChemMatCARS,
Center for Advanced Radiation Sources, The University of Chicago, Argonne, Illinois 60439, United States
| | | | - Zi-Ling Xue
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
44
|
Abstract
NOSs are homodimeric multidomain enzymes responsible for producing NO. In mammals, NO acts as an intercellular messenger in a variety of signaling reactions, as well as a cytotoxin in the innate immune response. Mammals possess three NOS isoforms--inducible, endothelial, and neuronal NOS--that are composed of an N-terminal oxidase domain and a C-terminal reductase domain. Calmodulin (CaM) activates NO synthesis by binding to the helical region connecting these two domains. Although crystal structures of isolated domains have been reported, no structure is available for full-length NOS. We used high-throughput single-particle EM to obtain the structures and higher-order domain organization of all three NOS holoenzymes. The structures of inducible, endothelial, and neuronal NOS with and without CaM bound are similar, consisting of a dimerized oxidase domain flanked by two separated reductase domains. NOS isoforms adopt many conformations enabled by three flexible linkers. These conformations represent snapshots of the continuous electron transfer pathway from the reductase domain to the oxidase domain, which reveal that only a single reductase domain participates in electron transfer at a time, and that CaM activates NOS by constraining rotational motions and by directly binding to the oxidase domain. Direct visualization of these large conformational changes induced during electron transfer provides significant insight into the molecular underpinnings governing NO formation.
Collapse
|
45
|
Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 2014; 5:134. [PMID: 24772092 PMCID: PMC3983488 DOI: 10.3389/fphys.2014.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.
Collapse
Affiliation(s)
- Natasha M Rogers
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Franziska Seeger
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH Bethesda, MD, USA
| | - Jeffrey S Isenberg
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
46
|
Seeger F, Quintyn R, Tanimoto A, Williams GJ, Tainer JA, Wysocki VH, Garcin ED. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Biochemistry 2014; 53:2153-65. [PMID: 24669844 PMCID: PMC3985721 DOI: 10.1021/bi500129k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Soluble guanylate cyclase (sGC) plays
a central role in the cardiovascular
system and is a drug target for the treatment of pulmonary hypertension.
While the three-dimensional structure of sGC is unknown, studies suggest
that binding of the regulatory domain to the catalytic domain maintains
sGC in an autoinhibited basal state. The activation signal, binding
of NO to heme, is thought to be transmitted via the regulatory and
dimerization domains to the cyclase domain and unleashes the full
catalytic potential of sGC. Consequently, isolated catalytic domains
should show catalytic turnover comparable to that of activated sGC.
Using X-ray crystallography, activity measurements, and native mass
spectrometry, we show unambiguously that human isolated catalytic
domains are much less active than basal sGC, while still forming heterodimers.
We identified key structural elements regulating the dimer interface
and propose a novel role for residues located in an interfacial flap
and a hydrogen bond network as key modulators of the orientation of
the catalytic subunits. We demonstrate that even in the absence of
the regulatory domain, additional sGC domains are required to guide
the appropriate conformation of the catalytic subunits associated
with high activity. Our data support a novel regulatory mechanism
whereby sGC activity is tuned by distinct domain interactions that
either promote or inhibit catalytic activity. These results further
our understanding of heterodimerization and activation of sGC and
open additional drug discovery routes for targeting the NO–sGC–cGMP
pathway via the design of small molecules that promote a productive
conformation of the catalytic subunits or disrupt inhibitory domain
interactions.
Collapse
Affiliation(s)
- Franziska Seeger
- University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Underbakke ES, Iavarone AT, Chalmers MJ, Pascal BD, Novick S, Griffin PR, Marletta MA. Nitric oxide-induced conformational changes in soluble guanylate cyclase. Structure 2014; 22:602-11. [PMID: 24560804 DOI: 10.1016/j.str.2014.01.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO binding to activation of the catalytic domain.
Collapse
Affiliation(s)
- Eric S Underbakke
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anthony T Iavarone
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Bruce D Pascal
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott Novick
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael A Marletta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|