1
|
Doray B, Jennings BC, Yang X, Liu L, Venkatarangan V, Kornfeld S, Li M. LYSET facilitates integration of both the N- and C-terminal transmembrane helices/cytoplasmic domains of GlcNAc-1-phosphotransferase. Mol Biol Cell 2025; 36:br12. [PMID: 39937677 PMCID: PMC12005095 DOI: 10.1091/mbc.e24-08-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
LYSET is a recently identified Golgi transmembrane (TM) protein, and inactivating mutations in the LYSET gene phenocopy mucolipidosis II (MLII), the lysosomal storage disease caused by loss of function of GlcNAc-1-phosphotransferase αβ (GNPTαβ), which tags lysosomal hydrolases with the mannose 6-phosphate (M6P) tag for delivery to lysosomes. It is conceivable that LYSET facilitates integration of both hydrophilic TM helices (TMHs) of GNPTαβ and retain the latter in the Golgi, although this has only been directly demonstrated for the N-terminal TMH wherein a membrane-stabilized GNPTαβ variant restores lysosomal function in cells lacking LYSET. Here we show that the C-terminal TMH of GNPTαβ also contributes to LYSET-mediated Golgi retention. In addition, disease-causing patient mutations in the N-terminal TMH of GNPTαβ, which increase the hydrophilicity of the helix, are partly rescued by overexpression of LYSET. Finally, we show that a membrane-stabilized GNPTαβ variant, despite overcoming the requirement for LYSET, still requires COPI-mediated recycling via the N-terminal cytosolic domain (CD) for GNPTαβ retention and function in the Golgi.
Collapse
Affiliation(s)
- Baraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lin Liu
- M6P Therapeutics, St. Louis, MO 63108
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Yang X, Doray B, Venkatarangan V, Jennings BC, Henn D, Liang J, Zhao H, Zhang W, Zhang B, Yu L, Chen L, Kornfeld S, Li M. Molecular Insights into the Regulation of GNPTAB by TMEM251. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627003. [PMID: 39677738 PMCID: PMC11643035 DOI: 10.1101/2024.12.05.627003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear. In this study, we demonstrate that TMEM251 is a two-transmembrane protein indispensable for GNPT stability, cleavage by Site-1-Protease (S1P), and enzymatic activity. We reconcile conflicting models by showing that TMEM251 enhances GNPT cleavage and prevents its mislocalization to lysosomes for degradation. We further establish that TMEM251 achieves this by interacting with GOLPH3 and retromer complexes to anchor the TMEM251-GNPT complex at the Golgi. Alanine mutagenesis identified F4XXR7 motif in TMEM251's N-tail for GOLPH3 binding. Together, our findings uncover TMEM251's multi-faceted role in stabilizing GNPT, retaining it at the Golgi, and ensuring the fidelity of the M6P pathway, thereby providing insights into its molecular function.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Current address: Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haikun Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Liu Z, Sun M, Zhang W, Ren J, Qu X. Target-Specific Bioorthogonal Reactions for Precise Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202308396. [PMID: 37548083 DOI: 10.1002/anie.202308396] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Richards CM, Jabs S, Qiao W, Varanese LD, Schweizer M, Mosen PR, Riley NM, Klüssendorf M, Zengel JR, Flynn RA, Rustagi A, Widen JC, Peters CE, Ooi YS, Xie X, Shi PY, Bartenschlager R, Puschnik AS, Bogyo M, Bertozzi CR, Blish CA, Winter D, Nagamine CM, Braulke T, Carette JE. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 2022; 378:eabn5648. [PMID: 36074821 PMCID: PMC9547973 DOI: 10.1126/science.abn5648] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. Here, we used genome-scale CRISPR screens to identify Lysosomal Enzyme Trafficking factor (LYSET) as essential for infection by cathepsin-dependent viruses including SARS-CoV-2. LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery, and mutations in LYSET can explain the phenotype of the associated disorder.
Collapse
Affiliation(s)
- Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Varanese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michaela Schweizer
- Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter R Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Malte Klüssendorf
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James R Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Arjun Rustagi
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - John C Widen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine E Peters
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford, CA, USA
| | - Catherine A Blish
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Pechincha C, Groessl S, Kalis R, de Almeida M, Zanotti A, Wittmann M, Schneider M, de Campos RP, Rieser S, Brandstetter M, Schleiffer A, Müller-Decker K, Helm D, Jabs S, Haselbach D, Lemberg MK, Zuber J, Palm W. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 2022; 378:eabn5637. [PMID: 36074822 DOI: 10.1126/science.abn5637] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Here, through genetic screens in defined nutrient conditions we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable owing to a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.
Collapse
Affiliation(s)
- Catarina Pechincha
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Sven Groessl
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Robert Kalis
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Melanie de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Zanotti
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Marten Wittmann
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- MS-based Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rafael P de Campos
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Sarah Rieser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- MS-based Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
7
|
Mucolipidoses Overview: Past, Present, and Future. Int J Mol Sci 2020; 21:ijms21186812. [PMID: 32957425 PMCID: PMC7555117 DOI: 10.3390/ijms21186812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mucolipidosis II and III (ML II/III) are caused by a deficiency of uridine-diphosphate N-acetylglucosamine: lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. The process is performed by a sequential two-step process: first, GlcNAc-1-phosphotransferase catalyzes the transfer of GlcNAc-1-phosphate to the selected mannose residues on lysosomal enzymes in the cis-Golgi network. The second step removes GlcNAc from lysosomal enzymes by N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (uncovering enzyme) and exposes the mannose 6-phosphate (M6P) residues in the trans-Golgi network, in which the enzymes are targeted to the lysosomes by M6Preceptors. A deficiency of GlcNAc-1-phosphotransferase causes the hypersecretion of lysosomal enzymes out of cells, resulting in a shortage of multiple lysosomal enzymes within lysosomes. Due to a lack of GlcNAc-1-phosphotransferase, the accumulation of cholesterol, phospholipids, glycosaminoglycans (GAGs), and other undegraded substrates occurs in the lysosomes. Clinically, ML II and ML III exhibit quite similar manifestations to mucopolysaccharidoses (MPSs), including specific skeletal deformities known as dysostosis multiplex and gingival hyperplasia. The life expectancy is less than 10 years in the severe type, and there is no definitive treatment for this disease. In this review, we have described the updated diagnosis and therapy on ML II/III.
Collapse
|
8
|
Lee WS, Jennings BC, Doray B, Kornfeld S. Disease-causing missense mutations within the N-terminal transmembrane domain of GlcNAc-1-phosphotransferase impair endoplasmic reticulum translocation or Golgi retention. Hum Mutat 2020; 41:1321-1328. [PMID: 32220096 DOI: 10.1002/humu.24019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/22/2020] [Indexed: 11/10/2022]
Abstract
Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6-phosphate moiety by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and β subunits, which are initially synthesized as a single precursor that is cleaved by Site-1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αβ (MLIII αβ). Two recent studies have reported the first patient mutations within the N-terminal transmembrane domain (TMD) of the α subunit of GlcNAc-1-phosphotransferase that cause either MLII or MLIII αβ. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc-1-phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αβ, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N-terminal TMD of GlcNAc-1-phosphotransferase as an important determinant of Golgi localization.
Collapse
Affiliation(s)
- Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Benjamin C Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 2019; 593:2452-2465. [DOI: 10.1002/1873-3468.13553] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| |
Collapse
|
10
|
Velho RV, Harms FL, Danyukova T, Ludwig NF, Friez MJ, Cathey SS, Filocamo M, Tappino B, Güneş N, Tüysüz B, Tylee KL, Brammeier KL, Heptinstall L, Oussoren E, van der Ploeg AT, Petersen C, Alves S, Saavedra GD, Schwartz IV, Muschol N, Kutsche K, Pohl S. The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on GNPTAB and GNPTG mutations. Hum Mutat 2019; 40:842-864. [PMID: 30882951 DOI: 10.1002/humu.23748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
Abstract
Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/β-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.
Collapse
Affiliation(s)
- Renata Voltolini Velho
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana Danyukova
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nataniel F Ludwig
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto Giannina Gaslini, Genova, Italy
| | - Barbara Tappino
- Laboratorio di Genetica Molecolare e Biobanche, Istituto Giannina Gaslini, Genova, Italy
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University Cerrahpasa, Medicine School, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa, Medicine School, Istanbul, Turkey
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Kathryn L Brammeier
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Lesley Heptinstall
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Esmee Oussoren
- Department of Pediatrics, Center for LyMannose phosphorylation in health and diseasesosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for LyMannose phosphorylation in health and diseasesosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Christine Petersen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Alves
- Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Gloria Durán Saavedra
- División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ida V Schwartz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicole Muschol
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Pohl
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF-Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019; 58:6987-6992. [PMID: 30888728 DOI: 10.1002/anie.201901760] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 01/05/2023]
Abstract
As a typical bioorthogonal reaction, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been used for drug design and synthesis. However, for localized drug synthesis, it is important to be able to determine where the CuAAC reaction occurs in living cells. In this study, we constructed a heterogeneous copper catalyst on a metal-organic framework that could preferentially accumulate in the mitochondria of living cells. Our system enabled the localized synthesis of drugs through a site-specific CuAAC reaction in mitochondria with good biocompatibility. Importantly, the subcellular catalytic process for localized drug synthesis avoided the problems of the delivery and distribution of toxic molecules. In vivo tumor therapy experiments indicated that the localized synthesis of resveratrol-derived drugs led to greater antitumor efficacy and minimized side effects usually associated with drug delivery and distribution.
Collapse
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
12
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
13
|
Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proc Natl Acad Sci U S A 2018; 115:8984-8989. [PMID: 30126980 DOI: 10.1073/pnas.1810291115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycosyltransferases of the mammalian Golgi complex must recycle between the stacked cisternae of that organelle to maintain their proper steady-state localization. This trafficking is mediated by COPI-coated vesicles, but how the glycosyltransferases are incorporated into these transport vesicles is poorly understood. Here we show that the N-terminal cytoplasmic tails (N-tails) of a number of cis Golgi glycosyltransferases which share a ϕ-(K/R)-X-L-X-(K/R) sequence bind directly to the δ- and ζ-subunits of COPI. Mutations of this N-tail motif impair binding to the COPI subunits, leading to mislocalization of the transferases to lysosomes. The physiological importance of these interactions is illustrated by mucolipidosis III patients with missense mutations in the N-tail of GlcNAc-1-phosphotransferase that cause the transferase to be rapidly degraded in lysosomes. These studies establish that direct binding of the N-tails of mammalian cis Golgi glycosyltransferases with COPI subunits is essential for recycling within the Golgi.
Collapse
|
14
|
Site-1 protease and lysosomal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2162-2168. [PMID: 28693924 DOI: 10.1016/j.bbamcr.2017.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/22/2022]
Abstract
The Golgi-resident site-1 protease (S1P) is a key regulator of cholesterol homeostasis and ER stress responses by converting latent transcription factors sterol regulatory element binding proteins (SREPBs) and activating transcription factor 6 (ATF6), as well as viral glycoproteins to their active forms. S1P is also essential for lysosome biogenesis via proteolytic activation of the hexameric GlcNAc-1-phosphotransferase complex required for modification of newly synthesized lysosomal enzymes with the lysosomal targeting signal, mannose 6-phosphate. In the absence of S1P, the catalytically inactive α/β-subunit precursor of GlcNAc-1-phosphotransferase fails to be activated and results in missorting of newly synthesized lysosomal enzymes, and lysosomal accumulation of non-degraded material, which are biochemical features of defective GlcNAc-1-phosphotransferase subunits and the associated pediatric lysosomal diseases mucolipidosis type II and III. The early embryonic death of S1P-deficient mice and the importance of various S1P-regulated biological processes, including lysosomal homeostasis, cautioned for clinical inhibition of S1P. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
15
|
Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, Shapiro L, Honig B, Vakhrushev SY, Clausen H, Halim A. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem 2017; 292:11586-11598. [PMID: 28512129 DOI: 10.1074/jbc.m117.794487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient O-Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of O-Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating O-Man glycosylation and the major enzyme elongating O-Man glycans, the protein O-mannose β-1,2-N-acetylglucosaminyltransferase, POMGnT1. Surprisingly, O-mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the O-Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT O-mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel O-mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Hiren Jitendra Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | | | - Julia Brasch
- the Department of Biochemistry and Molecular Biophysics
| | - Lawrence Shapiro
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics.,Zuckerman Mind Brain Behavior Institute, Department of Systems Biology, and.,Howard Hughes Medical Institute Columbia University, New York, New York 10032
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| | - Adnan Halim
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and
| |
Collapse
|
16
|
van Meel E, Kornfeld S. Mucolipidosis III GNPTG Missense Mutations Cause Misfolding of the γ Subunit of GlcNAc-1-Phosphotransferase. Hum Mutat 2016; 37:623-6. [PMID: 27038293 DOI: 10.1002/humu.22993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/08/2016] [Indexed: 11/08/2022]
Abstract
The lysosomal storage disorder ML III γ is caused by defects in the γ subunit of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the enzyme that tags lysosomal enzymes with the mannose 6-phosphate lysosomal targeting signal. In patients with this disorder, most of the newly synthesized lysosomal enzymes are secreted rather than being sorted to lysosomes, resulting in increased levels of these enzymes in the plasma. Several missense mutations in GNPTG, the gene encoding the γ subunit, have been reported in mucolipidosis III γ patients. However, in most cases, the impact of these mutations on γ subunit function has remained unclear. Here, we report that the variants c.316G>A (p.G106S), c.376G>A (p.G126S), and c.425G>A (p.C142Y) cause misfolding of the γ subunit, whereas another variant, c.857C>T (p.T286M), does not appear to alter γ subunit function. The misfolded γ subunits were retained in the ER and failed to rescue the lysosomal targeting of lysosomal acid glycosidases.
Collapse
Affiliation(s)
- Eline van Meel
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
17
|
Redmann V, Lamb CA, Hwang S, Orchard RC, Kim S, Razi M, Milam A, Park S, Yokoyama CC, Kambal A, Kreamalmeyer D, Bosch MK, Xiao M, Green K, Kim J, Pruett-Miller SM, Ornitz DM, Allen PM, Beatty WL, Schmidt RE, DiAntonio A, Tooze SA, Virgin HW. Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Sci Rep 2016; 6:23326. [PMID: 26987296 PMCID: PMC4796910 DOI: 10.1038/srep23326] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022] Open
Abstract
CLEC16A is in a locus genetically linked to autoimmune diseases including multiple sclerosis, but the function of this gene in the nervous system is unknown. Here we show that two mouse strains carrying independent Clec16a mutations developed neurodegenerative disease characterized by motor impairments and loss of Purkinje cells. Neurons from Clec16a-mutant mice exhibited increased expression of the autophagy substrate p62, accumulation of abnormal intra-axonal membranous structures bearing the autophagy protein LC3, and abnormal Golgi morphology. Multiple aspects of endocytosis, lysosome and Golgi function were normal in Clec16a-deficient murine embryonic fibroblasts and HeLa cells. However, these cells displayed abnormal bulk autophagy despite unimpaired autophagosome formation. Cultured Clec16a-deficient cells exhibited a striking accumulation of LC3 and LAMP-1 positive autolysosomes containing undigested cytoplasmic contents. Therefore Clec16a, an autophagy protein that is critical for autolysosome function and clearance, is required for Purkinje cell survival.
Collapse
Affiliation(s)
- Veronika Redmann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher A. Lamb
- The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK
| | - Seungmin Hwang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Robert C. Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Minoo Razi
- The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK
| | - Ashley Milam
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunmin Park
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine C. Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Kambal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marie K. Bosch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maolei Xiao
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Green
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Shondra M. Pruett-Miller
- Genome Engineering and iPSC Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul M. Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sharon A. Tooze
- The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Barea JJ, van Meel E, Kornfeld S, Bird LM. Tuberous sclerosis, polycystic kidney disease and mucolipidosis III gamma caused by a microdeletion unmasking a recessive mutation. Am J Med Genet A 2015; 167A:2844-6. [PMID: 26108976 PMCID: PMC4708255 DOI: 10.1002/ajmg.a.37213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jaime J. Barea
- Department of Pediatrics, University of California, San Diego, California
- Division of Dysmorphology/Genetics, Rady Children’s Specialists of San Diego, San Diego, California
| | - Eline van Meel
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lynne M. Bird
- Department of Pediatrics, University of California, San Diego, California
- Division of Dysmorphology/Genetics, Rady Children’s Specialists of San Diego, San Diego, California
| |
Collapse
|
19
|
Hasanagic M, van Meel E, Luan S, Aurora R, Kornfeld S, Eissenberg JC. The lysosomal enzyme receptor protein (LERP) is not essential, but is implicated in lysosomal function in Drosophila melanogaster. Biol Open 2015; 4:1316-25. [PMID: 26405051 PMCID: PMC4610224 DOI: 10.1242/bio.013334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
The lysosomal enzyme receptor protein (LERP) of Drosophila melanogaster is the ortholog of the mammalian cation-independent mannose 6-phosphate (Man 6-P) receptor, which mediates trafficking of newly synthesized lysosomal acid hydrolases to lysosomes. However, flies lack the enzymes necessary to make the Man 6-P mark, and the amino acids implicated in Man 6-P binding by the mammalian receptor are not conserved in LERP. Thus, the function of LERP in sorting of lysosomal enzymes to lysosomes in Drosophila is unclear. Here, we analyze the consequence of LERP depletion in S2 cells and intact flies. RNAi-mediated knockdown of LERP in S2 cells had little or no effect on the cellular content or secretion of several lysosomal hydrolases. We generated a novel Lerp null mutation, Lerp(F6), which abolishes LERP protein expression. Lerp mutants have normal viability and fertility and display no overt phenotypes other than reduced body weight. Lerp mutant flies exhibit a 30-40% decrease in the level of several lysosomal hydrolases, and are hypersensitive to dietary chloroquine and starvation, consistent with impaired lysosome function. Loss of LERP also enhances an eye phenotype associated with defective autophagy. Our findings implicate Lerp in lysosome function and autophagy.
Collapse
Affiliation(s)
- Medina Hasanagic
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Eline van Meel
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shan Luan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
20
|
Velho RV, De Pace R, Klünder S, Sperb-Ludwig F, Lourenço CM, Schwartz IVD, Braulke T, Pohl S. Analyses of disease-related GNPTAB mutations define a novel GlcNAc-1-phosphotransferase interaction domain and an alternative site-1 protease cleavage site. Hum Mol Genet 2015; 24:3497-505. [PMID: 25788519 PMCID: PMC4498157 DOI: 10.1093/hmg/ddv100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
Mucolipidosis II (MLII) and III alpha/beta are autosomal-recessive diseases of childhood caused by mutations in GNPTAB encoding the α/β-subunit precursor protein of the GlcNAc-1-phosphotransferase complex. This enzyme modifies lysosomal hydrolases with mannose 6-phosphate targeting signals. Upon arrival in the Golgi apparatus, the newly synthesized α/β-subunit precursor is catalytically activated by site-1 protease (S1P). Here we performed comprehensive expression studies of GNPTAB mutations, including two novel mutations T644M and T1223del, identified in Brazilian MLII/MLIII alpha/beta patients. We show that the frameshift E757KfsX1 and the non-sense R587X mutations result in the retention of enzymatically inactive truncated precursor proteins in the endoplasmic reticulum (ER) due to loss of cytosolic ER exit motifs consistent with a severe clinical phenotype in homozygosity. The luminal missense mutations, C505Y, G575R and T644M, partially impaired ER exit and proteolytic activation in accordance with less severe MLIII alpha/beta disease symptoms. Analogous to the previously characterized S399F mutant, we found that the missense mutation I403T led to retention in the ER and loss of catalytic activity. Substitution of further conserved residues in stealth domain 2 (I346 and W357) revealed similar biochemical properties and allowed us to define a putative binding site for accessory proteins required for ER exit of α/β-subunit precursors. Interestingly, the analysis of the Y937_M972del mutant revealed partial Golgi localization and formation of abnormal inactive β-subunits generated by S1P which correlate with a clinical MLII phenotype. Expression analyses of mutations identified in patients underline genotype–phenotype correlations in MLII/MLIII alpha/beta and provide novel insights into structural requirements of proper GlcNAc-1-phosphotransferase activity.
Collapse
Affiliation(s)
- Renata Voltolini Velho
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Avenida Paulo Gama 110, 90040-060 Porto Alegre, Brazil
| | - Raffaella De Pace
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sarah Klünder
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Fernanda Sperb-Ludwig
- Laboratory of Basic Research and Advanced Investigations in Neurosciences, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcellos 2350, 90035-903 Porto Alegre, Brazil and
| | - Charles Marques Lourenço
- Neurogenetics Unit, Department of Neurology, School of Medicine of Ribeirao Preto, University of São Paulo, Avenida Bandeirantes 3900, 14050-260 Ribeirão Preto, Brazil
| | - Ida V D Schwartz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Avenida Paulo Gama 110, 90040-060 Porto Alegre, Brazil, Laboratory of Basic Research and Advanced Investigations in Neurosciences, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcellos 2350, 90035-903 Porto Alegre, Brazil and
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany,
| |
Collapse
|
21
|
Qian Y, van Meel E, Flanagan-Steet H, Yox A, Steet R, Kornfeld S. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition. J Biol Chem 2014; 290:3045-56. [PMID: 25505245 DOI: 10.1074/jbc.m114.612507] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits.
Collapse
Affiliation(s)
- Yi Qian
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Eline van Meel
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | | - Alex Yox
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Stuart Kornfeld
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|