1
|
Zhou J, Wang L, Cheng X, Liu L, Wang Q, Qi X, Peng J, Liu J, Hsiang T, Jiang Y. A novel partitivirus with four dsRNA segments causing no obvious symptoms in Aspergillus flavus. Arch Virol 2025; 170:101. [PMID: 40234273 DOI: 10.1007/s00705-025-06287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Aspergillus flavus partitivirus 2 (AfPV2) isolate XC-8 from the fungus Aspergillus flavus strain XC-8 was sequenced and analyzed. AfPV2 contains four segments, dsRNA1 to 4. dsRNA1 is 1907 bp in length with an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 565 amino acids (aa). dsRNA2 is 1936 bp in length with an ORF encoding a putative capsid protein (CP) of 508 aa. dsRNA3 is 1799 bp in length with an ORF encoding a hypothetical protein of 482 aa. dsRNA4 is 1650 bp in length with an ORF encoding a hypothetical protein of 400 aa. Phylogenetic analysis showed that AfPV2 is a member of the genus Alphapartitivirus of the family Partitiviridae. BLASTp analysis showed that AfPV2 isolate XC-8 belongs to the same species as AfPV2 isolate UniPR6, which only has two dsRNA segments (GenBank nos. MZ600060.1 and MZ600061.1). Infection by AfPV2 isolate XC-8 did not cause any obvious significant phenotypic changes in A. flavus.
Collapse
Affiliation(s)
- Jianhong Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaolan Cheng
- Dalian International Travel Health Care Centre, Port Clinic of Dalian Customs District, Dalian, 116001, China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Jian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Jiayu Liu
- Key Laboratory of Medical Insects, Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Zhang W, Zhong J, Zhu JZ, Chen Y, Wang YR. Two novel mitoviruses coinfecting the fungus Colletotrichum karstii. Arch Virol 2025; 170:100. [PMID: 40216691 DOI: 10.1007/s00705-025-06290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Here, we isolated two novel mycoviruses coinfecting the fugus Colletotrichum karstii, which were designated as "Colletotrichum karstii mitovirus 1" (CkMV1) and "Colletotrichum karstii mitovirus 2" (CkMV2). The length of the complete genome of CkMV1 is 2,441 nucleotides, and that of CkMV2 is 2,391 nucleotides. Both contain a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). BLAST searches showed that the amino acids (aa) sequences of CkMV1 and CkMV2 had the highest amino acid sequence identity of 35.41% and 52.37% to the RdRp of Pleurotus pulmonarius duamitovirus 1 and Fusarium oxysporum f. sp. cubense mitovirus 4, respectively. Phylogenetic analysis based on RdRp sequences revealed that CkMV1 grouped with members of the genus Duamitovirus and that CkMV2 grouped with members of the genus Unuamitovirus, both within the family Mitoviridae.
Collapse
Affiliation(s)
- Wei Zhang
- College of Agronomy, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunmin, Yunnan Province, 650021, P.R. China.
| | - Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China.
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, College of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Gao L, Li W, Jia J, Cheng J, Fu Y, Xiao X, Cai Q, Lin Y, Chen T, Li B, Yu X, Hsiang T, Jiang D, Xie J. Exploration of mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum potentially uncovers mycovirus cross-taxa transmission. Virus Res 2025; 354:199552. [PMID: 40021014 PMCID: PMC11925586 DOI: 10.1016/j.virusres.2025.199552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Sclerotinia sclerotiorum is a worldwide plant pathogenic fungus. Identifying novel mycoviruses in this fungus can aid in developing fungal disease control strategies and enhance our understanding of viral evolution. Here, we analyzed mycovirus composition in S. sclerotiorum strain XZ69, and identified six ssRNA mycoviruses, including five known mycoviruses and one unassigned mycovirus. The newly identified mycovirus, tentatively named Sclerotinia sclerotiorum narna-like virus 1 (SsNLV1/XZ69), possesses a full-length genome of 3534 nucleotides, containing a single ORF that encodes an RNA-dependent RNA polymerase (RdRp) of 1090 amino acids. The RdRp encoded by SsNLV1/XZ69 shares 60.4 % identity with that encoded by Monilinia narnavirus H. SsNLV1/XZ69 phylogenetically clusters with unclassified narna-like viruses potentially infecting fungi, plants, and animals, and they form an independent branch that is distant from established families, therefore supporting the establishment of a new family to accommodate these viruses. Sclerotinia sclerotiorum fusarivirus 3 (SsFV3/XZ69) share 97 % amino acid identities with preciously reported Botrytis cinerea fusarivirus 8 (BcFV8). This last mycovirus originated from Botrytis cinerea, and hence this reveals that cross-genus transmission of SsFV3 or BcFV8 between B. cinerea and S. sclerotiorum may have potentially occurred. Mycovirus elimination, horizontal transmission, and RNA transfection experiments revealed that Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1/XZ69), SsNSRV2/XZ69, and SsFV3/XZ69 may be associated with hypovirulence in S. sclerotiorum, and strain XZ69 exhibits potential disease biocontrol on rapeseed seedlings. Our study expands our understanding of viral evolution, and may provide new potential biocontrol agents for S. sclerotiorum.
Collapse
Affiliation(s)
- Lixia Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weimeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jichun Jia
- College of Plant Protection, Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Wang Q, Chen M, Xie Y. Discovery of novel mycoviruses from fungi associated with mango leaf spots. Front Microbiol 2025; 16:1545534. [PMID: 40078552 PMCID: PMC11897279 DOI: 10.3389/fmicb.2025.1545534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Mango (Mangifera indica) is a commercially significant fruit crop cultivated globally. However, leaf spot diseases are common in mango orchards, which severely impact the yield. Mycoviruses hold promise as potential biocontrol agents. To investigate this possibility, fungi were isolated from mango leaf spot lesions, resulting in the identification of six strains that contained double-stranded RNA (dsRNA). Through BLASTx analysis of the NCBI non-redundant database, 27 mycovirus-related contigs were identified, which corresponded to 10 distinct viruses grouped into 8 lineages: Alternaviridae, Chrysoviridae, Partitiviridae, Polymycoviridae, Orthototiviridae, Deltaflexiviridae, Narnaviridae, and Bunyaviricetes. Full genomic sequences of these viruses were characterized and confirmed to be associated with their host fungi. The findings included six novel mycoviruses, three previously unreported viruses discovered in new hosts, and one virus strain. These results highlight the diversity and taxonomy of mycoviruses found in fungi associated with mango leaf spots.
Collapse
Affiliation(s)
- Qihua Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Mengyi Chen
- Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanling Xie
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Wu CF, Regedanz E, Mathew F, Kashyap R, Mohan K, Marzano SYL. Mycovirome of Diaporthe helianthi and D. gulyae, causal agents of Phomopsis stem canker of sunflower (Helianthus annuus L.). Virus Res 2025; 351:199521. [PMID: 39732174 PMCID: PMC11750566 DOI: 10.1016/j.virusres.2024.199521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Diaporthe gulyae and D. helianthi cause Phomopsis stem canker, which is a yield-limiting fungal disease of sunflower (Helianthus annuus L.) in the United States. In this study, the mycovirus population was characterized in D. gulyae and D. helianthi using 52 and 42 isolates, respectively, that were recovered from diseased sunflower plants randomly sampled from commercial sunflower fields in the U.S. states of Minnesota, Nebraska, North Dakota, and South Dakota. Total RNA extracts depleted of rRNA from each fungus were pooled to construct one library for sequencing to obtain 20 GB per library of raw reads using a metatranscriptomics approach. Only the family Mitoviridae was present in both Diaporthe species. Twelve and nine novel viral contigs were discovered infecting D. gulyae and D. helianthi, respectively. Additionally, we detected two of the same viruses infecting D. helianthi, Helianthus annuus leaf-associated partitivirus 3 and 5, that were detected in a direct sunflower metatranscriptome reported before. Interestingly, Qinvirus, which is mostly known as a group of insect viruses, was found in a contig. An ambivirus that is rarely reported in the phylum Ascomycota was also discovered in this study. Besides an understanding of virome diversity, the mycovirome survey provides the first clue of biological molecules that can be further developed for antifungal purposes.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Department of Plant Pathology, Ohio State University, Wooster, OH, United States
| | - Elizabeth Regedanz
- USDA-ARS, Application Technology Research Unit, Wooster, OH, United States
| | - Febina Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Ruchika Kashyap
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Karthika Mohan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | |
Collapse
|
6
|
Ma X, Zhang X, Zhai L, Jiang Y, Moffett P, Zhang Y, Song F, Song X, Wang Z, He L, Ji S, Wu L. Molecular characterization of a novel victorivirus isolated from Stagonosporopsis citrulli. Arch Virol 2024; 170:14. [PMID: 39666116 DOI: 10.1007/s00705-024-06185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
Members of the fungal genus Stagonosporopsis are important plant pathogens that can cause severe disease on a wide range of economically important plants and crops. Here, a novel victorivirus, tentatively named "Stagonosporopsis citrulli victorivirus 1" (SciVV1), was isolated from S. citrulli isolate HS2-8. The SciVV1 genome is 5,163 nucleotides in length, with a predicted GC content of 63.85%, and contains two open reading frames (ORF1 and ORF2), which overlap at an AUGA sequence. ORF1 and ORF2 are predicted to encode a coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). A phylogenetic tree based on RdRp amino acid (aa) sequences showed that SciVV1 clustered together with members of the genus Victorivirus in the family Pseudototiviridae. Our results indicate that SciVV1 is a novel victorivirus. This is the first report of the complete genome sequence of SciVV1 infecting S. citrulli.
Collapse
Affiliation(s)
- Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China.
| | - Xing Zhang
- College of Life Science and Technology, Yangtze Normal University, Chongqing, 408000, China
| | - Lifeng Zhai
- College of Life Science and Technology, Yangtze Normal University, Chongqing, 408000, China
| | - Yingchun Jiang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Yu Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Fang Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Xin Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Zhijing Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Ligang He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China
| | - Shengmei Ji
- College Of Horticulture & Forestry Sciences, Hubei Vocational College of Bio-Technology, Wuhan, Hubei, 430070, P. R. China
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, P. R. China.
| |
Collapse
|
7
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
8
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
9
|
Ma X, Huang R, Zhai L, Jiang Y, Moffett P, Wang Z, Song X, Zhang Y, Song F, He L, Ji S, Wu L. Molecular characterization of a novel partitivirus with four segments isolated from Fusarium solani, the causal agent of citrus root rot. J Gen Virol 2024; 105. [PMID: 39526878 DOI: 10.1099/jgv.0.002043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
We report here the identification of a dsRNA virus, obtained from Fusarium solani strain Newher-7, tentatively named F. solani partitivirus 3 (FsPV3). It consists of four dsRNA segments (dsRNA1-4) with lengths of 1961, 1900, 1830 and 1830 bp, respectively. Sequence analysis showed that dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA2 encodes a capsid protein (CP), dsRNA3 encodes a hypothetical protein of unknown function and dsRNA4 encodes two hypothetical proteins of unknown function. Amino acid sequence comparisons showed that the RdRp of FsPV3 is most similar to that of Hulunbuir Parti tick virus 1. In contrast, the CP of FsPV3, as well as the hypothetical protein encoded by ORF3 of dsRNA3, was most similar to cognate proteins encoded by Colletotrichum-associated partitivirus 2. However, the two hypothetical proteins encoded by dsRNA4 showed no significant similarity to the available sequences in the National Center for Biotechnology Information database and encoded no apparent conserved domains. Phylogenetic analysis of the RdRp and CP showed that FsPV3 clustered together with other species in the genus Alphapartitivirus. Given that proteins encoded by FsPV3 are not sufficiently highly homologous to a single known virus and that it encodes two novel proteins, we suggest that FsPV3 should be regarded as a new member of the genus Alphapartitivirus in the family Partitiviridae. This is the first report of FsPV3 infecting F. solani.
Collapse
Affiliation(s)
- XiaoFang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Rui Huang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408000, PR China
| | - LiFeng Zhai
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408000, PR China
| | - YingChun Jiang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - ZhiJing Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Xin Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yu Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Fang Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - LiGang He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - ShengMei Ji
- College of Horticulture & Forestry Sciences, Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
| | - LiMing Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| |
Collapse
|
10
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
11
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed A, Khan HA, Jamal A, Virk N, Bhatti MF. Characterization of two novel fusariviruses co-infecting a single isolate of phytopathogenic fungus Botrytis cinerea. Virus Genes 2024; 60:402-411. [PMID: 38717669 DOI: 10.1007/s11262-024-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024]
Abstract
A wide diversity of mycoviruses has been reported from Botrytis species, some with the potential to suppress the pathogenic abilities of this fungus. Considering their importance, this study was devised to find potential hypovirulence-associated mycoviruses found in Botrytis cinerea strains isolated from Pakistani strawberry fields. Here we report the complete genome characterization of two fusariviruses co-infecting a single isolate of phytopathogenic fungus B. cinerea (Kst14a). The viral genomes were sequenced by deep sequencing using total RNA fractions of the Kst14a isolate. The identified viruses were tentatively named Botrytis cinerea fusarivirus 9 (BcFV9) and Botrytis cinerea fusarivirus 3a (BcFV3a). Both viruses had a single-segmented (ssRNA) genome having a size of 6424 and 8370 nucleotides encoding two discontinuous open reading frames (ORFs). ORF-1 of both mycoviruses encodes for a polyprotein having a conserved domain of RNA-dependent RNA polymerase (RdRP) and a helicase domain (Hel) which function in RNA replication, while ORF2 encodes a hypothetical protein with an unknown function, respectively. Phylogenetic analysis indicated that BcFV9 made a clade with the genus Alphafusarivirus and BcFV3a fall in the genus Betafusarivirus in the family Fusariviridae. To our knowledge, this is the first report of two fusariviruses identified in isolates of B. cinerea from Pakistan. Both mycoviruses successfully transfected to a compatible strain of B. cinerea (Mst11). A comparison of virus-free (VF) and virus-infected (VI) isogenic lines showed the presence of these viruses was causing hypovirulence in infected strains. Virus-infected strains also had a small lesion size while testing the pathogenicity via apple assay.
Collapse
Affiliation(s)
- Aqeel Ahmed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Atif Jamal
- Crop Disease Research Institute (CDRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- EBS Business School, EBS Universität für Wirtschaft und Recht, Rheingaustrasse 1, 65375, Oestrich-Winkel, Germany
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
13
|
Hai D, Li J, Jiang D, Cheng J, Fu Y, Xiao X, Yin H, Lin Y, Chen T, Li B, Yu X, Cai Q, Chen W, Kotta-Loizou I, Xie J. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat Commun 2024; 15:4748. [PMID: 38834585 DOI: 10.1038/s41467-024-49110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.
Collapse
Affiliation(s)
- Du Hai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jincang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ioly Kotta-Loizou
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Ding H, Wang Y, Li C, Shuai S, An H, Fang S, Zhang S, Deng Q. Molecular characterization of a single-negative-stranded RNA virus from the rice blast fungus Magnaporthe oryzae isolate NJ39. Arch Virol 2024; 169:128. [PMID: 38802709 DOI: 10.1007/s00705-024-06054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024]
Abstract
A novel negative-sense single-stranded RNA mycovirus, designated as "Magnaporthe oryzae mymonavirus 1" (MoMNV1), was identified in the rice blast fungus Magnaporthe oryzae isolate NJ39. MoMNV1 has a single genomic RNA segment consisting of 10,515 nucleotides, which contains six open reading frames. The largest open reading frame contains 5837 bases and encodes an RNA replicase. The six open reading frames have no overlap and are arranged linearly on the genome, but the spacing of the genes is small, with a maximum of 315 bases and a minimum of 80 bases. Genome comparison and phylogenetic analysis indicated that MoMNV1 is a new member of the genus Penicillimonavirus of the family Mymonaviridae.
Collapse
Affiliation(s)
- Hang Ding
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Yao Wang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Cong Li
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Simin Shuai
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, China
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434005, Hubei, China.
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, China.
| |
Collapse
|
15
|
Lu X, Dai Z, Xue J, Li W, Ni P, Xu J, Zhou C, Zhang W. Discovery of novel RNA viruses through analysis of fungi-associated next-generation sequencing data. BMC Genomics 2024; 25:517. [PMID: 38797853 PMCID: PMC11129472 DOI: 10.1186/s12864-024-10432-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However, compared to other virome studies, the research on fungi-associated viruses remains limited. RESULTS In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bioprojects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified, all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classified into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae, Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus, or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their groups is largely driven by cross-species transmission events. CONCLUSIONS These findings are of significant importance for understanding the diversity, evolution, and relationships between genome structure and function of fungal viruses. However, further investigation is needed to study their interactions.
Collapse
Affiliation(s)
- Xiang Lu
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Jiaxin Xue
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
16
|
Jia J, Nan L, Song Z, Chen X, Xia J, Cheng L, Zhang B, Mu F. Cross-species transmission of a novel bisegmented orfanplasmovirus in the phytopathogenic fungus Exserohilum rostratum. Front Microbiol 2024; 15:1409677. [PMID: 38846572 PMCID: PMC11153860 DOI: 10.3389/fmicb.2024.1409677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Linjie Nan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zehao Song
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Hassan S, Syun-Ichi U, Shabeer S, Kiran TA, Wu CF, Moriyama H, Coutts RHA, Kotta Loizou I, Jamal A. Molecular and biological characterization of a novel partitivirus from Talaromyces pinophilus. Virus Res 2024; 343:199351. [PMID: 38453057 PMCID: PMC10982079 DOI: 10.1016/j.virusres.2024.199351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.
Collapse
Affiliation(s)
- Sidra Hassan
- Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture (Affiliated with Quaid-i-Azam University), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Urayama Syun-Ichi
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Saba Shabeer
- Department of Bioscience, COMSATS University, Islamabad 44000, Pakistan; Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Tahseen Ali Kiran
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom
| | - Ioly Kotta Loizou
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom.
| | - Atif Jamal
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
18
|
Schiwek S, Slonka M, Alhussein M, Knierim D, Margaria P, Rose H, Richert-Pöggeler KR, Rostás M, Karlovsky P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel) 2024; 16:131. [PMID: 38535797 PMCID: PMC10975473 DOI: 10.3390/toxins16030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| | - Matthäus Slonka
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Dennis Knierim
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Hanna Rose
- Institute of Horticultural Production Systems, University of Hannover, 30419 Hannover, Germany
| | - Katja R. Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Michael Rostás
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
20
|
Xu M, Liu H, Jia X, Zou X, Lu Y, Sui L, Li Q, Zhang Z, Liu J. The complete genome sequences of a negative single-stranded RNA virus and a double-stranded RNA virus coinfecting the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2024; 169:42. [PMID: 38332318 DOI: 10.1007/s00705-024-05985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.
Collapse
Affiliation(s)
- Mengnan Xu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xue Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Yizhuo Lu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
- Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Zhengkun Zhang
- Jilin Normal University, Siping, 136000, China.
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China.
- Jilin Agricultural University, Changchun, 130118, China.
| | | |
Collapse
|
21
|
Forgia M, Daghino S, Chiapello M, Ciuffo M, Turina M. New clades of viruses infecting the obligatory biotroph Bremia lactucae representing distinct evolutionary trajectory for viruses infecting oomycetes. Virus Evol 2024; 10:veae003. [PMID: 38361818 PMCID: PMC10868552 DOI: 10.1093/ve/veae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Recent advances in high throughput sequencing (HTS) approaches allowed a broad exploration of viromes from different fungal hosts, unveiling a great diversity of mycoviruses with interesting evolutionary features. The word mycovirus historically applies also to viruses infecting oomycetes but most studies are on viruses infecting fungi, with less mycoviruses found and characterized in oomycetes, particularly in the obligatory biotrophs. We, here, describe the first virome associated to Bremia lactucae, the causal agent of lettuce downy mildew, which is an important biotrophic pathogen for lettuce production and a model system for the molecular aspects of the plant-oomycetes interactions. Among the identified viruses, we could detect (1) two new negative sense ssRNA viruses related to the yueviruses, (2) the first example of permuted RdRp in a virus infecting fungi/oomycetes, (3) a new group of bipartite dsRNA viruses showing evidence of recent bi-segmentation and concomitantly, a possible duplication event bringing a bipartite genome to tripartite, (4) a first representative of a clade of viruses with evidence of recombination between distantly related viruses, (5) a new open reading frame (ORF)an virus encoding for an RdRp with low homology to known RNA viruses, and (6) a new virus, belonging to riboviria but not conserved enough to provide a conclusive phylogenetic placement that shows evidence of a recombination event between a kitrinoviricota-like and a pisuviricota-like sequence. The results obtained show a great diversity of viruses and evolutionary mechanisms previously unreported for oomycetes-infecting viruses, supporting the existence of a large diversity of oomycetes-specific viral clades ancestral of many fungal and insect virus clades.
Collapse
Affiliation(s)
| | - Stefania Daghino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Branze 39, Brescia 25123, Italy
| |
Collapse
|
22
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
23
|
Ye L, Shi X, He Y, Chen J, Xu Q, Shafik K, Fu L, Yin Y, Kotta-Loizou I, Xu W. A novel botybirnavirus with a unique satellite dsRNA causes latent infection in Didymella theifolia isolated from tea plants. Microbiol Spectr 2023; 11:e0003323. [PMID: 37962342 PMCID: PMC10714997 DOI: 10.1128/spectrum.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE A novel botybirnavirus, infecting the tea plant pathogen Didymella theifolia and tentatively named Didymella theifolia botybirnavirus 1 (DtBRV1), together with an additional double-stranded RNA (dsRNA), was characterized. DtBRV1 comprises two dsRNAs (1 and 2) encapsidated in isometric virions, while dsRNA3 is a satellite. The satellite represents a unique specimen since it contains a duplicated region and has high similarity to the two botybirnavirus dsRNAs, supporting the notion that it most likely originated from a deficient genomic component. The biological characteristics of DtBRV1 were further determined. With their unique molecular traits, DtBRV1 and its related dsRNA expand our understanding of virus diversity, taxonomy, and evolution.
Collapse
Affiliation(s)
- Liangchao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xinyu Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yunqiang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jiao Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Qingeng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Lanning Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yumeng Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
24
|
Hassan S, Syun-ichi U, Shabeer S, Wu CF, Moriyama H, Coutts RHA, Kotta-Loizou I, Jamal A. Molecular and biological characterization of a partitivirus from Paecilomyces variotii. J Gen Virol 2023; 104:001925. [PMID: 38015047 PMCID: PMC10768695 DOI: 10.1099/jgv.0.001925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Paeciliomyces variotii is a thermo-tolerant, ubiquitous fungus commonly found in food products, indoor environments, soil and clinical samples. It is a well-known biocontrol agent used against phytopathogenic fungi and its metabolites have many industrial applications. Rare reports of P. variotii-related human infections have been found in the medical literature. In this study, we report for the first time the infection of P. variotii isolated from a soil sample collected in a rice field with a double-stranded RNA virus, Paeciliomyces variotii partitivirus 1 (PvPV-1) in the family Partitiviridae. P. variotii harboured icosahedral virus particles 30 nm in diameter with two dsRNA segments 1758 and 1356 bp long. Both dsRNA1 and dsRNA2 have a single open reading frame encoding proteins of 63 and 40 kDa, respectively. These proteins have significant similarity to the RNA-dependent RNA polymerase and capsid protein encoded by the genomic segments of several viruses from the family Partitiviridae. Phylogenetic analysis revealed that PvPV-1 belongs to the family Partitiviridae but in an unclassified group/genus, tentatively nominated Zetapartitivirus. PvPV-1 was found to increase the growth rate of the host fungus, as indicated by time course experiments performed on a range of different media for virus-infected and virus-free isogenic lines. Further, dual-culture assays performed for both isogenic lines confirmed the antagonistic potential of P. variotii against other phytopathogenic fungi. The findings of this study assist us in understanding P. variotii as a potential biocontrol agent, together with plant-fungus-virus interactions.
Collapse
Affiliation(s)
- Sidra Hassan
- Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture (Affiliated with Quaid-i-Azam University), National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Urayama Syun-ichi
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Saba Shabeer
- Department of Bioscience, COMSATS University, Islamabad, 44000, Pakistan
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Atif Jamal
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| |
Collapse
|
25
|
Umer M, Mubeen M, Shakeel Q, Ali S, Iftikhar Y, Bajwa RT, Anwar N, Rao MJ, He Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023; 11:2515. [PMID: 37894173 PMCID: PMC10609472 DOI: 10.3390/microorganisms11102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.
Collapse
Affiliation(s)
- Muhammad Umer
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Rabia Tahir Bajwa
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Naureen Anwar
- Department of Biology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejun He
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
26
|
Li S, Zhu H, He Y, Hong N, Wang G, Wang L. BdCV1-Encoded P3 Silencing Suppressor Identification and Its Roles in Botryosphaeria dothidea, Causing Pear Ring Rot Disease. Cells 2023; 12:2386. [PMID: 37830600 PMCID: PMC10571871 DOI: 10.3390/cells12192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Pear ring rot disease is an important branch disease, caused by Botryosphaeria dothidea. With the discovery of fungal viruses, the use of their attenuated properties for biological control provides a new strategy for the biological control of fungal disease. RNA silencing is a major antiviral defense mechanism in plants, insects, and fungi. Viruses encode and utilize RNA silencing suppressors to suppress host defenses. Previous studies revealed that Botryosphaeria dothidea chrysovirus 1 (BdCV1) exhibited weak pathogenicity and could activate host gene silencing by infecting B. dothidea. The aim of our study was to investigate whether BdCV1 can encode a silencing suppressor and what effect it has on the host. In this study, the capability of silencing inhibitory activity of four BdCV1-encoded proteins was analyzed, and the P3 protein was identified as a BdCV1 RNA silencing suppressor in the exotic host Nicotiana benthamiana line 16c. In addition, we demonstrated that P3 could inhibit local silencing, block systemic RNA silencing, and induce the necrosis reaction of tobacco leaves. Furthermore, overexpression of P3 could slow down the growth rate and reduce the pathogenicity of B. dothidea, and to some extent affect the expression level of RNA silencing components and virus-derived siRNAs (vsiRNAs). Combined with transcriptomic analysis, P3 had an effect on the gene expression and biological process of B. dothidea. The obtained results provide new theoretical information for further study of interaction between BdCV1 P3 as a potential silencing suppressor and B. dothidea.
Collapse
Affiliation(s)
- Shanshan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haodong Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Khan HA, Mukhtar M, Bhatti MF. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 2023; 54:1459-1478. [PMID: 37523037 PMCID: PMC10485235 DOI: 10.1007/s42770-023-01073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (-ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, "CCHH" motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.
| | - Mamuna Mukhtar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
28
|
Li W, Sun H, Cao S, Zhang A, Zhang H, Shu Y, Chen H. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot. Microbiol Spectr 2023; 11:e0052223. [PMID: 37436153 PMCID: PMC10433806 DOI: 10.1128/spectrum.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2023] Open
Abstract
Rhizoctonia cerealis is the pathogen of wheat sharp eyespot, which occurs throughout temperate wheat-growing regions of the world. In this project, the genomes of viruses from four strains of R. cerealis were analyzed based on Illumina high-throughput transcriptome sequencing (RNA-Seq) data. After filtering out reads that mapped to the fungal genome, viral genomes were assembled. In total, 131 virus-like sequences containing complete open reading frames (ORFs), belonging to 117 viruses, were obtained. Based on phylogenetic analysis, some of them were identified as novel members of the families Curvulaviridae, Endornaviridae, Hypoviridae, Mitoviridae, Mymonaviridae, and Phenuiviridae, while others were unclassified viruses. Most of these viruses from R. cerealis were significantly different from the viruses already reported. We propose the establishment of a new family, Rhizoctobunyaviridae, and two new genera, Rhizoctobunyavirus and Iotahypovirus. We further clarified the distribution and coinfection of these viruses in the four strains. Surprisingly, 39 viral genomes of up to 12 genera were found in strain R1084. Strain R0942, containing the fewest viruses, also contained 21 viral genomes belonging to 10 genera. Based on the RNA-Seq data, we estimated the accumulation level of some viruses in host cells and found that the mitoviruses in R. cerealis generally have very high accumulation. In conclusion, in the culturable phytopathogenic fungus R. cerealis, we discovered a considerable diversity of mycoviruses and a series of novel viruses. This study expands our understanding of the mycoviral diversity in R. cerealis and provides a rich resource for the further use of mycoviruses to control wheat sharp eyespot. IMPORTANCE Rhizoctonia cerealis is a binucleate fungus that is widely distributed worldwide and can cause sharp eyespot disease in cereal crops. In this study, 131 virus-like sequences belonging to 117 viruses were obtained based on analysis of high-throughput RNA-Seq data from four strains of R. cerealis. Many of these viruses were novel members of various virus families, while others were unclassified viruses. As a result, a new family named Rhizoctobunyaviridae and two new genera, Rhizoctobunyavirus and Iotahypovirus, were proposed. Moreover, the discovery of multiple viruses coinfecting a single host and the high accumulation levels of mitoviruses have shed light on the complex interactions between different viruses in a single host. In conclusion, a significant diversity of mycoviruses was discovered in the culturable phytopathogenic fungus R. cerealis. This study expands our understanding of mycoviral diversity, and provides a valuable resource for the further utilization of mycoviruses to control wheat diseases.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
29
|
Wu Z, Tian X, Liu X, Zhou J, Yu W, Qi X, Peng J, Hsiang T, Wang Q, Wu N, Jiang Y. Complete genome sequence of a novel chrysovirus infecting Aspergillus terreus. Arch Virol 2023; 168:209. [PMID: 37474811 DOI: 10.1007/s00705-023-05839-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
A double-stranded RNA (dsRNA) mycovirus was obtained from Aspergillus terreus strain HJ3-26 and designated "Aspergillus terreus chrysovirus 1" (AtCV1). It consists of four dsRNA segments (dsRNA1-4) with lengths of 3612 bp, 3132 bp, 3153 bp, and 3144 bp, respectively. Sequence analysis showed that dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA2 encodes a capsid protein, and both dsRNA3 and dsRNA4 encode hypothetical proteins. Phylogenetic analysis of the RdRp suggested that AtCV1 is a member of a new species of the genus Alphachrysovirus in the family Chrysoviridae. This is the first chrysovirus obtained from A. terreus.
Collapse
Affiliation(s)
- Zunqiu Wu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
- National experimental demonstration center of basic medicine (Guizhou Medical University, 550025, Guiyang, Guizhou Province, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Jianhong Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Biology and Engineering, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph), N1G 2W1, Guelph, ON, Canada
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Ning Wu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China.
- National experimental demonstration center of basic medicine (Guizhou Medical University, 550025, Guiyang, Guizhou Province, China.
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China.
| |
Collapse
|
30
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
31
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
32
|
Ye Y, Liu Y, Zhang Y, Wang X, Li H, Li P. Metatranscriptome-based strategy reveals the existence of novel mycoviruses in the plant pathogenic fungus Fusarium oxysporum f. sp. cubense. Front Microbiol 2023; 14:1193714. [PMID: 37275129 PMCID: PMC10234264 DOI: 10.3389/fmicb.2023.1193714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (Foc) is a devastating plant pathogen that caused a great financial loss in the banana's source area. Metatranscriptomic analysis was used to determine the diversity of mycoviruses in 246 isolates of F. oxysporum f. sp. cubense. Partial or nearly complete genomes of 20 mycoviruses were obtained by BLASTp analysis of RNA sequences using the NCBI database. These 20 viruses were grouped into five distinct lineages, namely Botourmiaviridae, Endornaviridae, Mitoviridae, Mymonaviridae, Partitiviridae, and two non-classified mycoviruses lineages. To date, there is no report of the presence of mycoviruses in this pathogen. In this study, we demonstrate the presence of mycoviruses isolated from Foc. These findings enhance our overall knowledge of viral diversity and taxonomy in Foc. Further characterization of these mycoviruses is warranted, especially in terms of exploring these novel mycoviruses for innovative biocontrol of banana Fusarium wilt disease.
Collapse
|
33
|
Zhao YJ, Shirouzu T, Chiba Y, Hosaka K, Moriyama H, Urayama SI, Hagiwara D. Identification of novel RNA mycoviruses from wild mushroom isolates in Japan. Virus Res 2023; 325:199045. [PMID: 36681193 DOI: 10.1016/j.virusres.2023.199045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The characterization of viruses from environmental samples could aid in our understanding of their ecological significance and potential for biotechnological exploitation. While there has been much focus on pathogenic fungi or commercially cultivated mushrooms, attention to viruses from wild Basidiomycota mushrooms is lacking. Therefore, in this study, we conducted viral screening of fungal mycelia isolated from wild basidiocarps using agarose gel electrophoresis (AGE) and fragmented and primer-ligated dsRNA sequencing (FLDS). Among the 51 isolates, seven isolates were detected with virus-like bands during the initial screening with AGE, but only five isolates were detected with viruses after long-term storage. Using the FLDS method, we obtained seven viral genome sequences, including five double-stranded RNA (dsRNA) viruses belonging to Partitiviridae and Curvulaviridae, one positive-sense single-stranded RNA (ssRNA) virus belonging to Endornaviridae and one negative-sense ssRNA virus belonging to Tulasviridae (Bunyavirales). All viruses characterized in this study are novel species. These findings greatly expanded our knowledge of the diversity of RNA viruses from environmental samples.
Collapse
Affiliation(s)
- Yan-Jie Zhao
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Shirouzu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
34
|
Huang H, Hua X, Pang X, Zhang Z, Ren J, Cheng J, Fu Y, Xiao X, Lin Y, Chen T, Li B, Liu H, Jiang D, Xie J. Discovery and Characterization of Putative Glycoprotein-Encoding Mycoviruses in the Bunyavirales. J Virol 2023; 97:e0138122. [PMID: 36625579 PMCID: PMC9888262 DOI: 10.1128/jvi.01381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.
Collapse
Affiliation(s)
- Huang Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangmin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xidan Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhongmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
35
|
Complete genome sequence of a novel mycovirus from Pleurotus citrinopileatus. Arch Virol 2023; 168:66. [PMID: 36653596 DOI: 10.1007/s00705-022-05668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023]
Abstract
The complete genome sequence of a novel single-stranded [+ ssRNA] positive-sense (+) RNA mycovirus, designated as "Pleurotus citrinopileatus ourmiavirus 1" (PcOV1), isolated from Pleurotus citrinopileatus strain CCMJ2141, was determined. The complete genome of PcOV1 is composed of 2,535 nucleotides. It contains a single open reading frame (ORF), which encodes a protein of 657 amino acids (aa) containing conserved domains of an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp sequences revealed that PcOV1 is a new member of the genus Ourmiavirus in the family Botourmiaviridae. This is the first virus from P. citrinopileatus to be characterized.
Collapse
|
36
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
37
|
He L, Wang P, Yang G, Chen X, Huang B. A novel polymycovirus infecting the entomopathogenic fungus Metarhizium brunneum. Arch Virol 2023; 168:6. [DOI: 10.1007/s00705-022-05684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
|
38
|
Jiang Y, Tian X, Liu X, Yang B, Wang N, Wang Q, Yu W, Qi X, Peng J, Hsiang T. Complete genome sequence of a novel chrysovirus infecting Talaromyces neofusisporus. Arch Virol 2022; 167:2789-2793. [PMID: 36156748 DOI: 10.1007/s00705-022-05582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus was isolated from Talaromyces neofusisporus isolate HJ1-6 and named "Talaromyces neofusisporus chrysovirus 1" (TnCV1). It was found to consist of four dsRNA segments (TnCV1-1, TnCV1-2, TnCV1-3, and TnCV1-4) with lengths of 3595 bp, 3063 bp, 3054 bp, and 2876 bp, respectively. Sequence analysis showed that TnCV1-1 contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 1136 amino acids (aa), TnCV1-2 contains an ORF encoding a hypothetical protein of 906 aa, TnCV1-3 contains an ORF encoding a putative capsid protein (CP) of 938 aa, and TnCV1-4 contains an ORF encoding a hypothetical protein of 849 aa. The 5' and 3' untranslated regions (UTRs) of TnCV1-1, TnCV1-2, TnCV1-3, and TnCV1-4 showed a high degree of sequence similarity to each other. Phylogenetic analysis based on RdRp sequences suggested that TnCV1 is a new member of the genus Alphachrysovirus in the family Chrysoviridae. This is the first chrysovirus isolated from T. neofusisporus.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China. .,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China.
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Nianxue Wang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| |
Collapse
|
39
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
40
|
Jiāng D, Ayllón MA, Marzano SYL, Kondō H, Turina M, ICTV Report Consortium. ICTV Virus Taxonomy Profile: Mymonaviridae 2022. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Typical members of the family Mymonaviridae produce filamentous, enveloped virions containing a single molecule of linear, negative-sense RNA of about about 10 kb, but some may not produce any virions. The family includes several genera, some with multiple species. Mymonavirids usually infect filamentous fungi, but a few have been identified associated with insects, oomycetes or plants. At least one virus, Sclerotinia sclerotiorum negative-stranded RNA virus 1, induces hypovirulence in its fungal host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mymonaviridae, which is available at ictv.global/report/mymonaviridae.
Collapse
Affiliation(s)
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and Dpto. Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Shin-Yi L. Marzano
- United States Department of Agriculture, Agricultural Research Service, Toledo, Ohio, USA
| | - Hideki Kondō
- Institute of Plant Science and Resources (IPSR), Okayama University, Okayama, Japan
| | - Massimo Turina
- Institute for Sustainable Plant Protection, Torino 10135, Italy
| | | |
Collapse
|
41
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
42
|
Zhu Q, Lin Y, Lyu X, Qu Z, Lu Z, Fu Y, Cheng J, Xie J, Chen T, Li B, Cheng H, Chen W, Jiang D. Fungal Strains with Identical Genomes Were Found at a Distance of 2000 Kilometers after 40 Years. J Fungi (Basel) 2022; 8:1212. [PMID: 36422033 PMCID: PMC9697809 DOI: 10.3390/jof8111212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2023] Open
Abstract
Heredity and variation are inherent characteristics of species and are mainly reflected in the stability and variation of the genome; the former is relative, while the latter is continuous. However, whether life has both stable genomes and extremely diverse genomes at the same time is unknown. In this study, we isolated Sclerotinia sclerotiorum strains from sclerotium samples in Quincy, Washington State, USA, and found that four single-sclerotium-isolation strains (PB4, PB273, PB615, and PB623) had almost identical genomes to the reference strain 1980 isolated in the west of Nebraska 40 years ago. The genome of strain PB4 sequenced by the next-generation sequencing (NGS) and Pacific Biosciences (PacBio) sequencing carried only 135 single nucleotide polymorphisms (SNPs) and 18 structural variations (SVs) compared with the genome of strain 1980 and 48 SNPs were distributed on Contig_20. Based on data generated by NGS, three other strains, PB273, PB615, and PB623, had 256, 275, and 262 SNPs, respectively, against strain 1980, which were much less than in strain PB4 (532 SNPs) and none of them occurred on Contig_20, suggesting much closer genomes to strain 1980 than to strain PB4. All other strains from America and China are rich in SNPs with a range of 34,391-77,618 when compared with strain 1980. We also found that there were 39-79 SNPs between strain PB4 and its sexual offspring, 53.1% of which also occurred on Contig_20. Our discoveries show that there are two types of genomes in S. sclerotiorum, one is very stable and the other tends to change constantly. Investigating the mechanism of such genome stability will enhance our understanding of heredity and variation.
Collapse
Affiliation(s)
- Qili Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyang Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Cheng
- Xinyang Academy of Agricultural Sciences, Xinyang 464000, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
43
|
Shamsi W, Kondo H, Ulrich S, Rigling D, Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res 2022; 320:198901. [PMID: 36058013 DOI: 10.1016/j.virusres.2022.198901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
The native Japanese population of the fungus Hymenoscyphus fraxineus, the causal agent of ash dieback in Europe, was screened for viruses using a high-throughput sequencing method. Five RNA viruses were detected in 116 fungal isolates sequenced via Illumina RNA-seq platform, with an overall virus prevalence of 11.2%. The viruses were completely sequenced by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) followed by Sanger sequencing. The sequences appear to represent new species from three established families (Mito-, Endorna- and Partitiviridae), one recognized genus (Botybirnavirus) and a negative-sense single-stranded RNA virus in the order Bunyavirales from the proposed family "Mybuviridae". The highest prevalence was found for the mitovirus (7.8%), that had two genomic forms (linear and circular), while the other viruses were detected each in one isolate. Co-infection of a mitovirus and an endornavirus was also observed in one of the infected isolates. Here we describe the molecular characterization of the identified viruses. This study expands the diversity of viruses in H. fraxineus and provides the basis for investigating the virus-mediated control of ash dieback in Europe.
Collapse
Affiliation(s)
- Wajeeha Shamsi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Sven Ulrich
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Daniel Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| |
Collapse
|
44
|
Guo J, Zhou X, Xie F, Cao J, Liu S, Zhong J, Zhu H. Hypovirulence caused by mycovirus in Colletotrichum fructicola. FRONTIERS IN PLANT SCIENCE 2022; 13:1038781. [PMID: 36275531 PMCID: PMC9585321 DOI: 10.3389/fpls.2022.1038781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Colletotrichum fructicola is a pathogenic fungus causing leaf black spot and fruit rot disease in a wide variety of crops. Some mycoviruses that cause detrimental effects on fungal hosts could be useful in studying the pathogenesis of fungal hosts. In this study, we reported two mycoviruses, Colletotrichum fructicola ourmia-like virus 1- Colletotrichum gloeosporioides ourmia-like virus 1 (CfOLV1-CgOLV1) and Colletotrichum fructicola ourmia-like virus 2 (CfOLV2), from a C. fructicola fungus. The complete genome sequences of CfOLV1-CgOLV1 and CfOLV2 contain 2,516 bp and 2,048 bp, respectively. Both of these viruses contain only one open reading frame (ORF), which encodes an RNA-dependent RNA polymerase (RdRp). CfOLV1-CgOLV1 was identical as the previously reported virus CgOLV1. Phylogenetic analysis showed that CfOLV2 is closely related to Scleroulivirus and Magoulivirus in the family Botourmiaviridae. Virus elimination and horizontal transmission experiments proved that the associated mycoviruses could reduce the pathogenicity of the host C. fructicola. In addition, we found that the virus-containing strains showed a much higher percentage of appressorium formation and more melanin production compared to isogenic virus-free strain, and the presence of the virus is detrimental to the growth of host fungi and regulates the integrity of the cell wall. Transcriptomic analysis showed that mycovirus infection caused various abnormal genes expression in C. fructicola. To the best of our knowledge, this is the first report of a hypovirulence-associated ourmia-like mycovirus in C. fructicola.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhong
- *Correspondence: Hongjian Zhu, ;Jie Zhong,
| | | |
Collapse
|
45
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
46
|
Jo Y, Choi H, Chu H, Cho WK. Unveiling Mycoviromes Using Fungal Transcriptomes. Int J Mol Sci 2022; 23:ijms231810926. [PMID: 36142838 PMCID: PMC9501391 DOI: 10.3390/ijms231810926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses infecting fungi are referred to as mycoviruses. Here, we carried out in silico mycovirome studies using public fungal transcriptomes mostly derived from mRNA libraries. We identified 468 virus-associated contigs assigned to 5 orders, 21 families, 26 genera, and 88 species. We assembled 120 viral genomes with diverse RNA and DNA genomes. The phylogenetic tree and genome organization unveiled the possible host origin of mycovirus species and diversity of their genome structures. Most identified mycoviruses originated from fungi; however, some mycoviruses had strong phylogenetic relationships with those from insects and plants. The viral abundance and mutation frequency of mycoviruses were very low; however, the compositions and populations of mycoviruses were very complex. Although coinfection of diverse mycoviruses in the fungi was common in our study, most mycoviromes had a dominant virus species. The compositions and populations of mycoviruses were more complex than we expected. Viromes of Monilinia species revealed that there were strong deviations in the composition of viruses and viral abundance among samples. Viromes of Gigaspora species showed that the chemical strigolactone might promote virus replication and mutations, while symbiosis with endobacteria might suppress virus replication and mutations. This study revealed the diversity and host distribution of mycoviruses.
Collapse
Affiliation(s)
- Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hoseong Choi
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyosub Chu
- Bertis R&D Division, Bertis Inc., Seongnam 13605, Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Correspondence: ; Tel.: +82-31-290-7860
| |
Collapse
|
47
|
He Y, Zou Q, Li S, Zhu H, Hong N, Wang G, Wang L. Molecular characterization of a new fusarivirus infecting Botryosphaeria dothidea, the causal agent of pear ring rot disease. Arch Virol 2022; 167:1893-1897. [PMID: 35668128 DOI: 10.1007/s00705-022-05492-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Here, a novel mycovirus, tentatively designated as "Botryosphaeria dothidea fusarivirus 2" (BdFV2), was discovered in Botryosphaeria dothidea strain JZ-3. The complete genome sequence is 6,271 nucleotides (nt) in length, excluding the poly(A) tail, and contains two putative open reading frames (ORFs). The larger ORF1 encodes a polypeptide of 1,552 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) domains and a viral helicase domain. The ORF1-encoded polypeptide shares 19.47-78.70% sequence identity with those of other fusariviruses and shares the highest sequence identity (78.70%) with the corresponding protein aa sequences of Neofusicoccum luteum fusarivirus 1 (NlFV1) isolate CBS110299. The small ORF2 encodes a hypothetical protein with 479 aa, which is predicted to contain a chromosome segregation protein SMC domain of unknown function. Sequence alignments and phylogenetic analysis indicated that BdFV2 is a distinct member of the recently established family Fusariviridae. BdFV2 appears to be a novel fusarivirus infecting a pathogenic B. dothidea strain that causes pear ring rot disease.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Shanshan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Haodong Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
48
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
49
|
Bocos-Asenjo IT, Niño-Sánchez J, Ginésy M, Diez JJ. New Insights on the Integrated Management of Plant Diseases by RNA Strategies: Mycoviruses and RNA Interference. Int J Mol Sci 2022; 23:9236. [PMID: 36012499 PMCID: PMC9409477 DOI: 10.3390/ijms23169236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.
Collapse
Affiliation(s)
- Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
50
|
A novel fungal negative-stranded RNA virus related to mymonaviruses in Auricularia heimuer. Arch Virol 2022; 167:2223-2227. [PMID: 35962823 DOI: 10.1007/s00705-022-05540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Here, we report the characterization of a novel (-)ssRNA mycovirus isolated from Auricularia heimuer CCMJ1222, using a combination of RNA-seq, reverse transcription polymerase chain reaction, 5' and 3' rapid amplification of cDNA ends, and Sanger sequencing. Based on database searches, sequence alignment, and phylogenetic analysis, we designated the virus as "Auricularia heimuer negative-stranded RNA virus 1" (AhNsRV1). This virus has a monopartite RNA genome related to mymonaviruses (order Mononegavirales). The AhNsRV1 genome consists of 11,441 nucleotides and contains six open reading frames (ORFs). The largest ORF encodes a putative RNA-dependent RNA polymerase; the other ORFs encode hypothetical proteins with no conserved domains or known function. AhNsRV1 is the first (-)ssRNA virus and the third virus known to infect A. heimuer.
Collapse
|