1
|
Yue Z, Wu J, Teng D, Wang Z, Voth GA. Activation of the Influenza B M2 Proton Channel (BM2). Biochemistry 2024; 63:3011-3019. [PMID: 39488842 PMCID: PMC11580745 DOI: 10.1021/acs.biochem.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Influenza B viruses have cocirculated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we performed membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant channel to explore its pH-dependent conformational switch. Simulations captured the activation as the first histidine (His19) protonates and revealed the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and preprotonated His27. Crucially, we provided an atomic-level understanding of the symmetric proton conduction by identifying preactivating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible antiflu drug design efforts.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Jiangbo Wu
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Da Teng
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Liu Y, Li C, Freites JA, Tobias DJ, Voth GA. Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1. Proc Natl Acad Sci U S A 2024; 121:e2407479121. [PMID: 39259593 PMCID: PMC11420211 DOI: 10.1073/pnas.2407479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human voltage-gated proton (hHv1) channels are crucial for regulating essential biological processes such as immune cell respiratory burst, sperm capacitation, and cancer cell migration. Despite the significant concentration difference between protons and other ions in physiological conditions, hHv1 demonstrates remarkable proton selectivity. Our calculations of single-proton, cation, and anion permeation free energy profiles quantitatively demonstrate that the proton selectivity of the wild-type channel originates from its strong proton affinity via the titration of the key residues D112 and D174, although the channel imposes similar kinetic blocking effects for protons compared to other ions. A two-proton knock-on model is proposed to mathematically explain the electrophysiological measurements of the pH-dependent proton conductance in the conductive state. Moreover, it is shown that the anion selectivity of the D112N mutant channel is tied to impaired proton transport and substantial anion leakage.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
3
|
Yue Z, Wu J, Teng D, Wang Z, Voth GA. Activation of the influenza B M2 proton channel (BM2). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605324. [PMID: 39091734 PMCID: PMC11291123 DOI: 10.1101/2024.07.26.605324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Influenza B viruses have co-circulated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we perform the membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant to explore its pH-dependent conformational switch. Simulations capture the activation as the first histidine (His19) protonates and reveal the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and pre-protonated His27. Crucially, we provide an atomic-level understanding of the symmetric proton conduction by identifying pre-activating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible anti-flu drug design efforts.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Da Teng
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Teng D, Mironenko AV, Voth GA. QM/CG-MM: Systematic Embedding of Quantum Mechanical Systems in a Coarse-Grained Environment with Accurate Electrostatics. J Phys Chem A 2024; 128:6061-6071. [PMID: 39016145 DOI: 10.1021/acs.jpca.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Quantum Mechanics/Molecular Mechanics (QM/MM) can describe chemical reactions in molecular dynamics (MD) simulations at a much lower cost than ab initio MD. Still, it is prohibitively expensive for many systems of interest because such systems usually require long simulations for sufficient statistical sampling. Additional MM degrees of freedom are often slow and numerous but secondary in interest. Coarse-graining (CG) is well-known to be able to speed up sampling through both reduction in simulation cost and the ability to accelerate the dynamics. Therefore, embedding a QM system in a CG environment can be a promising way of expediting sampling without compromising the information about the QM subsystem. Sinitskiy and Voth first proposed the theory of Quantum Mechanics/Coarse-grained Molecular Mechanics (QM/CG-MM) with a bottom-up CG mapping. Mironenko and Voth subsequently introduced the DFT-QM/CG-MM formalism to couple a Density Functional Theory (DFT) treated QM system and to an apolar environment. Here, we present a more complete theory that addresses MM environments with significant polarity by explicitly accounting for the electrostatic coupling. We demonstrate our QM/CG-MM method with a chloride-methyl chloride SN2 reaction system in acetone, which is sensitive to solvent polarity. The method accurately recapitulates the potential of mean force for the substitution reaction, and the reaction barrier from the best model agrees with the atomistic simulations within sampling error. These models also have generalizability. In two other reactive systems that they have not been trained on, the QM/CG-MM model still achieves the same level of agreement with the atomistic QM/MM models. Finally, we show that in these examples the speed-up in the sampling is proportional to the acceleration of the rotational dynamics of the solvent in the CG system.
Collapse
Affiliation(s)
- Da Teng
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander V Mironenko
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Kaiser S, Yue Z, Peng Y, Nguyen TD, Chen S, Teng D, Voth GA. Molecular Dynamics Simulation of Complex Reactivity with the Rapid Approach for Proton Transport and Other Reactions (RAPTOR) Software Package. J Phys Chem B 2024; 128:4959-4974. [PMID: 38742764 PMCID: PMC11129700 DOI: 10.1021/acs.jpcb.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Simulating chemically reactive phenomena such as proton transport on nanosecond to microsecond and beyond time scales is a challenging task. Ab initio methods are unable to currently access these time scales routinely, and traditional molecular dynamics methods feature fixed bonding arrangements that cannot account for changes in the system's bonding topology. The Multiscale Reactive Molecular Dynamics (MS-RMD) method, as implemented in the Rapid Approach for Proton Transport and Other Reactions (RAPTOR) software package for the LAMMPS molecular dynamics code, offers a method to routinely sample longer time scale reactive simulation data with statistical precision. RAPTOR may also be interfaced with enhanced sampling methods to drive simulations toward the analysis of reactive rare events, and a number of collective variables (CVs) have been developed to facilitate this. Key advances to this methodology, including GPU acceleration efforts and novel CVs to model water wire formation are reviewed, along with recent applications of the method which demonstrate its versatility and robustness.
Collapse
Affiliation(s)
- Scott Kaiser
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhi Yue
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxing Peng
- NVIDIA
Corporation, Santa
Clara, California 95051, United States
| | - Trung Dac Nguyen
- Research
Computing Center, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sijia Chen
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Da Teng
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Costa GJ, Egbemhenghe A, Liang R. Computational Characterization of the Reactivity of Compound I in Unspecific Peroxygenases. J Phys Chem B 2023; 127:10987-10999. [PMID: 38096487 DOI: 10.1021/acs.jpcb.3c06311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the n-heptane substrate catalyzed by Agrocybe aegerita UPO (AaeUPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in AaeUPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of AaeUPO, which will be instrumental in the rational design of UPOs with enhanced properties.
Collapse
Affiliation(s)
- Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Abel Egbemhenghe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Costa GJ, Liang R. Understanding the Multifaceted Mechanism of Compound I Formation in Unspecific Peroxygenases through Multiscale Simulations. J Phys Chem B 2023; 127:8809-8824. [PMID: 37796883 DOI: 10.1021/acs.jpcb.3c04589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.
Collapse
Affiliation(s)
- Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
8
|
Stampolaki Μ, Hoffmann A, Tekwani K, Georgiou K, Tzitzoglaki C, Ma C, Becker S, Schmerer P, Döring K, Stylianakis I, Turcu AL, Wang J, Vázquez S, Andreas LB, Schmidtke M, Kolocouris A. A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid-State NMR. ChemMedChem 2023; 18:e202300182. [PMID: 37377066 DOI: 10.1002/cmdc.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.
Collapse
Affiliation(s)
- Μarianna Stampolaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Anja Hoffmann
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kumar Tekwani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kyriakos Georgiou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Chunlong Ma
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Patrick Schmerer
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kristin Döring
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Ioannis Stylianakis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Andreea L Turcu
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jun Wang
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Santiago Vázquez
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michaela Schmidtke
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Antonios Kolocouris
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| |
Collapse
|
9
|
Kim N, Lee JH, Song Y, Lee JH, Schatz GC, Hwang H. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube. J Phys Chem B 2023. [PMID: 37369069 DOI: 10.1021/acs.jpcb.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The effect of the protonation state of glutamic acid on its translocation through cyclic peptide nanotubes (CPNs) was assessed by using molecular dynamics (MD) simulations. Anionic (GLU-), neutral zwitterionic (GLU0), and cationic (GLU+) forms of glutamic acid were selected as three different protonation states for an analysis of energetics and diffusivity for acid transport across a cyclic decapeptide nanotube. Based on the solubility-diffusion model, permeability coefficients for the three protonation states of the acid were calculated and compared with experimental results for CPN-mediated glutamate transport through CPNs. Potential of mean force (PMF) calculations reveal that, due to the cation-selective nature of the lumen of CPNs, GLU-, so-called glutamate, shows significantly high free energy barriers, while GLU+ displays deep energy wells and GLU0 has mild free energy barriers and wells inside the CPN. The considerable energy barriers for GLU- inside CPNs are mainly attributed to unfavorable interactions with DMPC bilayers and CPNs and are reduced by favorable interactions with channel water molecules through attractive electrostatic interactions and hydrogen bonding. Unlike the distinct PMF curves, position-dependent diffusion coefficient profiles exhibit comparable frictional behaviors regardless of the charge status of three protonation states due to similar confined environments imposed by the lumen of the CPN. The calculated permeability coefficients for the three protonation states clearly demonstrate that glutamic acid has a strong protonation state dependence for its transport through CPNs, as determined by the energetics rather than the diffusivity of the protonation state. In addition, the permeability coefficients also imply that GLU- is unlikely to pass through a CPN due to the high energy barriers inside the CPN, which is in disagreement with experimental measurements, where a considerable amount of glutamate permeating through the CPN was detected. To resolve the discrepancy between this work and the experimental observations, several possibilities are proposed, including a large concentration gradient of glutamate between the inside and outside of lipid vesicles and bilayers in the experiments, the glutamate activity difference between our MD simulations and experiments, an overestimation of energy barriers due to the artifacts imposed in MD simulations, and/or finally a transformation of the protonation state from GLU- to GLU0 to reduce the energy barriers. Overall, our study demonstrates that the protonation state of glutamic acid has a strong effect on the transport of the acid and suggests a possible protonation state change for glutamate permeating through CPNs.
Collapse
Affiliation(s)
- Namho Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yeonho Song
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
10
|
Yue Z, Li C, Voth GA. The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter. Biophys J 2023; 122:1068-1085. [PMID: 36698313 PMCID: PMC10111279 DOI: 10.1016/j.bpj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The triple glutamine (Q) mutant (QQQ) structure of a Cl-/H+ antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl-/H+ antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H+-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl- release. E203 is also involved in the intracellular H+ transfer as an H+ acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H+ transfer in Cl-/H+ antiporters.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Lazaridis T. Molecular origins of asymmetric proton conduction in the influenza M2 channel. Biophys J 2023; 122:90-98. [PMID: 36403086 PMCID: PMC9822799 DOI: 10.1016/j.bpj.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
The M2 proton channel of influenza A is embedded into the viral envelope and allows acidification of the virion when the external pH is lowered. In contrast, no outward proton conductance is observed when the internal pH is lowered, although outward current is observed at positive voltage. Residues Trp41 and Asp44 are known to play a role in preventing pH-driven outward conductance, but the mechanism for this is unclear. We investigate this issue using classical molecular dynamics simulations with periodic proton hops. When all key His37 residues are neutral, inward proton movement is much more facile than outward movement if the His are allowed to shuttle the proton. The preference for inward movement increases further as the charge on the His37 increases. Analysis of the trajectories reveals three factors accounting for this asymmetry. First, in the outward direction, Asp44 traps the hydronium by strong electrostatic interactions. Secondly, Asp44 and Trp41 orient the hydronium with the protons pointing inward, hampering outward Grotthus hopping. As a result, the effective barrier is lower in the inward direction. Trp41 adds to the barrier by weakly H-bonding to potential H+ acceptors. Finally, for charged His, the H3O+ in the inner vestibule tends to get trapped at lipid-lined fenestrations of the cone-shaped channel. Simulations qualitatively reproduce the experimentally observed higher outward conductance of mutants. The ability of positive voltage, unlike proton gradient, to induce an outward current appears to arise from its ability to bias H3O+ and the waters around it toward more H-outward orientations.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
12
|
Liu Y, Li C, Voth GA. Generalized Transition State Theory Treatment of Water-Assisted Proton Transport Processes in Proteins. J Phys Chem B 2022; 126:10452-10459. [PMID: 36459423 PMCID: PMC9762399 DOI: 10.1021/acs.jpcb.2c06703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Transition state theory (TST) is widely employed for estimating the transition rate of a reaction when combined with free energy sampling techniques. A derivation of the transition theory rate expression for a general n-dimensional case is presented in this work which specifically focuses on water-assisted proton transfer/transport reactions, especially for protein systems. Our work evaluates the TST prefactor calculated at the transition state dividing surface compared to one sampled, as an approximation, in the reactant state in four case studies of water-assisted proton transport inside membrane proteins and highlights the significant impact of the prefactor position dependence in proton transport processes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
13
|
Durgan J, Florey O. Many roads lead to CASM: Diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. SCIENCE ADVANCES 2022; 8:eabo1274. [PMID: 36288315 PMCID: PMC9604613 DOI: 10.1126/sciadv.abo1274] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Autophagy is a fundamental catabolic process coordinated by a network of autophagy-related (ATG) proteins. These ATG proteins also perform an important parallel role in "noncanonical" autophagy, a lysosome-associated signaling pathway with key functions in immunity, inflammation, cancer, and neurodegeneration. While the noncanonical autophagy pathway shares the common ATG machinery, it bears key mechanistic and functional distinctions, and is characterized by conjugation of ATG8 to single membranes (CASM). Here, we review the diverse, and still expanding, collection of stimuli and processes now known to harness the noncanonical autophagy pathway, including engulfment processes, drug treatments, TRPML1 and STING signaling, viral infection, and other pathogenic factors. We discuss the multiple associated routes to CASM and assess their shared and distinctive molecular features. By integrating these findings, we propose an updated and unifying mechanism for noncanonical autophagy, centered on ATG16L1 and V-ATPase.
Collapse
|
14
|
Liang R, Bakhtiiari A. Multiscale simulation unravels the light-regulated reversible inhibition of dihydrofolate reductase by phototrexate. J Chem Phys 2022; 156:245102. [DOI: 10.1063/5.0096349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular photoswitches are widely used in photopharmacology, where the biomolecular functions are photo-controlled reversibly with high spatiotemporal precision. Despite the success of this field, it remains elusive how the protein environment modulates the photochemical properties of photoswitches. Understanding this fundamental question is critical for designing more effective light-regulated drugs with mitigated side effects. In our recent work, we employed first-principles non-adiabatic dynamics simulations to probe the effects of protein on the trans to cis photoisomerization of phototrexate (PTX), a photochromic analog of the anticancer therapeutic methotrexate that inhibits the target enzyme dihydrofolate reductase (DHFR). Building upon this study, in this work, we employ multiscale simulations to unravel the full photocycle underlying the light-regulated reversible inhibition of DHFR by PTX, which remains elusive until now. First-principles non-adiabatic dynamics simulations reveal that the cis to trans photoisomerization quantum yield is hindered in the protein due to backward isomerization on the ground-state following non-adiabatic transition, which arises from the favorable binding of the cis isomer with the protein. However, free energy simulations indicate that cis to trans photoisomerization significantly decreases the binding affinity of the PTX. Thus, the cis to trans photoisomerization most likely precedes the ligand unbinding from the protein. We propose the most probable photocycle of the PTX-DHFR system. Our comprehensive simulations highlight the trade-offs among the binding affinity, photoisomerization quantum yield, and the thermal stability of the ligand's different isomeric forms. As such, our work reveals new design principles of light-regulated drugs in photopharmacology.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Amirhossein Bakhtiiari
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
15
|
Ion permeation, selectivity, and electronic polarization in fluoride channels. Biophys J 2022; 121:1336-1347. [PMID: 35151630 PMCID: PMC9034187 DOI: 10.1016/j.bpj.2022.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fluoride channels (Flucs) export toxic F- from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the permeation mechanism at the molecular level has remained elusive. Herein, we have applied constant-pH molecular dynamics and free-energy-sampling methods to investigate fluoride permeation through a Fluc protein from Escherichia coli. We find that fluoride is facile to permeate in its charged form, i.e., F-, by traversing through a non-bonded network. The extraordinary F- selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F- permeation rate calculated using an electronically polarizable force field is significantly more accurate compared with the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F--Fluc interactions.
Collapse
|
16
|
Watkins LC, DeGrado WF, Voth GA. Multiscale Simulation of an Influenza A M2 Channel Mutant Reveals Key Features of Its Markedly Different Proton Transport Behavior. J Am Chem Soc 2022; 144:769-776. [PMID: 34985907 PMCID: PMC8834648 DOI: 10.1021/jacs.1c09281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The influenza A M2 channel, a prototype for viroporins, is an acid-activated viroporin that conducts protons across the viral membrane, a critical step in the viral life cycle. Four central His37 residues control channel activation by binding subsequent protons from the viral exterior, which opens the Trp41 gate and allows proton flux to the interior. Asp44 is essential for maintaining the Trp41 gate in a closed state at high pH, resulting in asymmetric conduction. The prevalent D44N mutant disrupts this gate and opens the C-terminal end of the channel, resulting in increased conduction and a loss of this asymmetric conduction. Here, we use extensive Multiscale Reactive Molecular Dynamics (MS-RMD) and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations with an explicit, reactive excess proton to calculate the free energy of proton transport in this M2 mutant and to study the dynamic molecular-level behavior of D44N M2. We find that this mutation significantly lowers the barrier of His37 deprotonation in the activated state and shifts the barrier for entry to the Val27 tetrad. These free energy changes are reflected in structural shifts. Additionally, we show that the increased hydration around the His37 tetrad diminishes the effect of the His37 charge on the channel's water structure, facilitating proton transport and enabling activation from the viral interior. Altogether, this work provides key insight into the fundamental characteristics of PT in WT M2 and how the D44N mutation alters this PT mechanism, and it expands understanding of the role of emergent mutations in viroporins.
Collapse
Affiliation(s)
- Laura C. Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94158, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States,Corresponding Author
| |
Collapse
|
17
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces. Proc Natl Acad Sci U S A 2021; 118:2113141118. [PMID: 34857630 DOI: 10.1073/pnas.2113141118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Water-assisted proton transport through confined spaces influences many phenomena in biomolecular and nanomaterial systems. In such cases, the water molecules that fluctuate in the confined pathways provide the environment and the medium for the hydrated excess proton migration via Grotthuss shuttling. However, a definitive collective variable (CV) that accurately couples the hydration and the connectivity of the proton wire with the proton translocation has remained elusive. To address this important challenge-and thus to define a quantitative paradigm for facile proton transport in confined spaces-a CV is derived in this work from graph theory, which is verified to accurately describe water wire formation and breakage coupled to the proton translocation in carbon nanotubes and the Cl-/H+ antiporter protein, ClC-ec1. Significant alterations in the conformations and thermodynamics of water wires are uncovered after introducing an excess proton into them. Large barriers in the proton translocation free-energy profiles are found when water wires are defined to be disconnected according to the new CV, even though the pertinent confined space is still reasonably well hydrated and-by the simple measure of the mere existence of a water structure-the proton transport would have been predicted to be facile via that oversimplified measure. In this paradigm, however, the simple presence of water is not sufficient for inferring proton translocation, since an excess proton itself is able to drive hydration, and additionally, the water molecules themselves must be adequately connected to facilitate any successful proton transport.
Collapse
|
19
|
Electrochemical oxygen reduction reaction at conductive polymer PEDOT: Insight from ab initio molecular dynamics simulations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Dragelj J, Mroginski MA, Knapp EW. Beating Heart of Cytochrome c Oxidase: The Shared Proton of Heme a3 Propionates. J Phys Chem B 2021; 125:9668-9677. [PMID: 34427096 DOI: 10.1021/acs.jpcb.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome c oxidase (CcO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CcO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary. One specific pump-active PLS couples to the redox reaction, thus energizing the proton to move across the membrane against electric potential and proton gradient. The PLS should also prevent proton backflow. Therefore, the propionates of the two redox-active hemes in CcO were suggested as PLS candidates although, according to CcO crystal structures, none of the four propionates can be protonated on account of strong H-bonds. Here, we show that modeling the local structure around heme a3 propionates enhances significantly their capability of carrying a proton jointly. This was not possible for the propionates of heme a. The modeled structures are stable in molecular dynamics simulations (MDS) and are energetically similar to the crystal structure. Precise electrostatic energy computations of MDS data are used to estimate the pKA values of all titratable residues in CcO. For the modeled structures, the heme a3 propionates have pKA values high enough to host a proton transiently but not too high to fix the proton permanently. The change in pKA throughout the redox reaction is sufficient to push the proton to the P-side of the membrane and to provide the protons with the necessary amount of energy for ATP synthesis.
Collapse
Affiliation(s)
- Jovan Dragelj
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany.,Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Ernst Walter Knapp
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
21
|
Gelenter MD, Mandala VS, Niesen MJM, Sharon DA, Dregni AJ, Willard AP, Hong M. Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol 2021; 4:338. [PMID: 33712696 PMCID: PMC7955094 DOI: 10.1038/s42003-021-01847-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michiel J M Niesen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Watkins LC, DeGrado WF, Voth GA. Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics. J Am Chem Soc 2020; 142:17425-17433. [PMID: 32933245 PMCID: PMC7564090 DOI: 10.1021/jacs.0c06419] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Prevalent resistance to inhibitors
that target the influenza A
M2 proton channel has necessitated a continued drug design effort,
supported by a sustained study of the mechanism of channel function
and inhibition. Recent high-resolution X-ray crystal structures present
the first opportunity to see how the adamantyl amine class of inhibitors
bind to M2 and disrupt and interact with the channel’s water
network, providing insight into the critical properties that enable
their effective inhibition in wild-type M2. In this work, we examine
the hypothesis that these drugs act primarily as mechanism-based inhibitors
by comparing hydrated excess proton stabilization during proton transport
in M2 with the interactions revealed in the crystal structures, using
the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD,
unlike classical molecular dynamics, models the hydrated proton (hydronium-like
cation) as a dynamic excess charge defect and allows bonds to break
and form, capturing the intricate interactions between the hydrated
excess proton, protein atoms, and water. Through this, we show that
the ammonium group of the inhibitors is effectively positioned to
take advantage of the channel’s natural ability to stabilize
an excess protonic charge and act as a hydronium mimic. Additionally,
we show that the channel is especially stable in the drug binding
region, highlighting the importance of this property for binding the
adamantane group. Finally, we characterize an additional hinge point
near Val27, which dynamically responds to charge and inhibitor binding.
Altogether, this work further illuminates a dynamic understanding
of the mechanism of drug inhibition in M2, grounded in the fundamental
properties that enable the channel to transport and stabilize excess
protons, with critical implications for future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Li C, Yue Z, Espinoza-Fonseca LM, Voth GA. Multiscale Simulation Reveals Passive Proton Transport Through SERCA on the Microsecond Timescale. Biophys J 2020; 119:1033-1040. [PMID: 32814059 DOI: 10.1016/j.bpj.2020.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
The sarcoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions from the cytoplasm to the reticulum lumen at the expense of ATP hydrolysis. In addition to transporting Ca2+, SERCA facilitates bidirectional proton transport across the sarcoplasmic reticulum to maintain the charge balance of the transport sites and to balance the charge deficit generated by the exchange of Ca2+. Previous studies have shown the existence of a transient water-filled pore in SERCA that connects the Ca2+ binding sites with the lumen, but the capacity of this pathway to sustain passive proton transport has remained unknown. In this study, we used the multiscale reactive molecular dynamics method and free energy sampling to quantify the free energy profile and timescale of the proton transport across this pathway while also explicitly accounting for the dynamically coupled hydration changes of the pore. We find that proton transport from the central binding site to the lumen has a microsecond timescale, revealing a novel passive cytoplasm-to-lumen proton flow beside the well-known inverse proton countertransport occurring in active Ca2+ transport. We propose that this proton transport mechanism is operational and serves as a functional conduit for passive proton transport across the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
24
|
Zhang Y, Zhang HX, Zheng QC. In Silico Study of Membrane Lipid Composition Regulating Conformation and Hydration of Influenza Virus B M2 Channel. J Chem Inf Model 2020; 60:3603-3615. [PMID: 32589410 DOI: 10.1021/acs.jcim.0c00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proton conduction of transmembrane influenza virus B M2 (BM2) proton channel is possibly mediated by the membrane environment, but the detailed molecular mechanism is challenging to determine. In this work, how membrane lipid composition regulates the conformation and hydration of BM2 channel is elucidated in silico. The appearance of several important hydrogen-bond networks has been discovered, as the addition of negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) and cholesterol reduces membrane fluidity and augments membrane rigidity. A more rigid membrane environment is beneficial to expand the channel, allow more water to enter the channel, promote channel hydration, and then even affect the proton conduction facilitated by the hydrated channel. Thus, membrane environment could be identified as an important influence factor of conformation and hydration of BM2. These findings can provide a unique perspective for understanding the mechanism of membrane lipid composition regulating conformation and hydration of BM2 and have important significance to the further study of anti-influenza virus B drugs.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
25
|
Li C, Swanson JMJ. Understanding and Tracking the Excess Proton in Ab Initio Simulations; Insights from IR Spectra. J Phys Chem B 2020; 124:5696-5708. [PMID: 32515957 PMCID: PMC7448536 DOI: 10.1021/acs.jpcb.0c03615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proton transport in aqueous media is ubiquitously important in chemical and biological processes. Although ab initio molecular dynamics (AIMD) simulations have made great progress in characterizing proton transport, there has been a long-standing challenge in defining and tracking the excess proton, or more properly, the center of excess charge (CEC) created when a hydrogen nucleus distorts the electron distributions of water molecules in a delocalized and highly dynamic nature. Yet, defining (and biasing) such a CEC is essential when combining AIMD with enhanced sampling methods to calculate the relevant macroscopic properties via free-energy landscapes, which is the standard practice for most processes of interest. Several CEC formulas have been proposed and used, but none have yet been systematically tested or rigorously derived. In this paper, we show that the CEC can be used as a computational tool to disentangle IR features of the solvated excess proton from its surrounding solvent, and in turn, how correlating the features in the excess charge spectrum with the behavior of CEC in simulations enables a systematic evaluation of various CEC definitions. We present a new definition of CEC and show how it overcomes the limitations of those currently available both from a spectroscopic point of view and from a practical perspective of performance in enhanced sampling simulations.
Collapse
Affiliation(s)
- Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jessica M. J. Swanson
- Department of Chemistry, Biological Chemistry Program, and Center for Cell and Genome Science, The University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Ulomskiy EN, Ivanova AV, Gorbunov EB, Esaulkova IL, Slita AV, Sinegubova EO, Voinkov EK, Drokin RA, Butorin II, Gazizullina ER, Gerasimova EL, Zarubaev VV, Rusinov VL. Synthesis and biological evaluation of 6-nitro-1,2,4-triazoloazines containing polyphenol fragments possessing antioxidant and antiviral activity. Bioorg Med Chem Lett 2020; 30:127216. [PMID: 32360104 DOI: 10.1016/j.bmcl.2020.127216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Stable σ-adducts of azolo[5,1-c]triazines and azolo[1,5-a]pyrimidines with different polyphenols were synthesized and their antioxidant and antiviral activity were investigated. Their affinity to viral hemagglutinin was assessed using molecular modelling. The phloroglucinol-modified azolo-azines possessed the highest virus-inhibiting activity. According to the results of the study of antioxidant properties of compounds, the most promising ones exhibiting highest antioxidant capacity were adducts containing in their structure pyrogallol and catechol residues and 6-nitro-triazolotriazin-7-ol scaffold. No correlation between antioxidant and virus-inhibiting activity of compounds studied was detected. The most active compounds demonstrated the ability to prevent binding of viral hemagglutinin with cellular receptor as shown in hemagglutination inhibition assay. Our results demonstrate that polyphenol-modified azolo-azines are prospective for further optimization as potential antivirals and that their action is directed against viral hemagglutinin.
Collapse
Affiliation(s)
- E N Ulomskiy
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Organic and Biomolecular Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation; Institute of Organic Synthesis, Ural Division of RAS, 620990, 22/20 S. Kovalevskoy st./Akademicheskaya st., Yekaterinburg, Russian Federation
| | - A V Ivanova
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Analytical Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - E B Gorbunov
- Institute of Organic Synthesis, Ural Division of RAS, 620990, 22/20 S. Kovalevskoy st./Akademicheskaya st., Yekaterinburg, Russian Federation
| | - I L Esaulkova
- Pasteur Institute for Epidemiology and Microbiology, 197101, 14 Mira st., Saint Petersburg, Russian Federation
| | - A V Slita
- Pasteur Institute for Epidemiology and Microbiology, 197101, 14 Mira st., Saint Petersburg, Russian Federation
| | - E O Sinegubova
- Pasteur Institute for Epidemiology and Microbiology, 197101, 14 Mira st., Saint Petersburg, Russian Federation
| | - E K Voinkov
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Organic and Biomolecular Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - R A Drokin
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Organic and Biomolecular Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - I I Butorin
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Organic and Biomolecular Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - E R Gazizullina
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Analytical Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - E L Gerasimova
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Analytical Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation
| | - V V Zarubaev
- Pasteur Institute for Epidemiology and Microbiology, 197101, 14 Mira st., Saint Petersburg, Russian Federation.
| | - V L Rusinov
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Department of Organic and Biomolecular Chemistry, 620002, 19 Mira St., Yekaterinburg, Russian Federation; Institute of Organic Synthesis, Ural Division of RAS, 620990, 22/20 S. Kovalevskoy st./Akademicheskaya st., Yekaterinburg, Russian Federation
| |
Collapse
|
27
|
M2 amphipathic helices facilitate pH-dependent conformational transition in influenza A virus. Proc Natl Acad Sci U S A 2020; 117:3583-3591. [PMID: 32015120 DOI: 10.1073/pnas.1913385117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The matrix-2 (M2) protein from influenza A virus is a tetrameric, integral transmembrane (TM) protein that plays a vital role in viral replication by proton flux into the virus. The His37 tetrad is a pH sensor in the center of the M2 TM helix that activates the channel in response to the low endosomal pH. M2 consists of different regions that are believed to be involved in membrane targeting, packaging, nucleocapsid binding, and proton transport. Although M2 has been the target of many experimental and theoretical studies that have led to significant insights into its structure and function under differing conditions, the main mechanism of proton transport, its conformational dynamics, and the role of the amphipathic helices (AHs) on proton conductance remain elusive. To this end, we have applied explicit solvent constant pH molecular dynamics using the multisite λ-dynamics approach (CpHMDMSλD) to investigate the buried ionizable residues comprehensively and to elucidate their effect on the conformational transition. Our model recapitulates the pH-dependent conformational transition of M2 from closed to open state when the AH domain is included in the M2 construct, revealing the role of the amphipathic helices on this transition and shedding light on the proton-transport mechanism. This work demonstrates the importance of including the amphipathic helices in future experimental and theoretical studies of ion channels. Finally, our work shows that explicit solvent CpHMDMSλD provides a realistic pH-dependent model for membrane proteins.
Collapse
|
28
|
Fu R, Miao Y, Qin H, Cross TA. Observation of the Imidazole-Imidazolium Hydrogen Bonds Responsible for Selective Proton Conductance in the Influenza A M2 Channel. J Am Chem Soc 2020; 142:2115-2119. [PMID: 31970982 DOI: 10.1021/jacs.9b09985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integral membrane M2 protein is a 97-residue membrane protein that assembles as a tetramer to conduct protons at a slow rate (102-103/s) when activated by low pH. The proton conductance mechanism has been extensively debated in the literature, but it is accepted that the proton conductance is facilitated by hydrogen bonds involving the His37 residues. However, the hydrogen bonding partnership remains unresolved. Here, we report on the measurement of 15N-15N J-couplings of 15N His37-labeled full length M2 (M2FL) protein from Influenza A virus embedded in synthetic liquid crystalline lipid bilayers using two-dimensional J-resolved NMR spectroscopy. We experimentally observed the hydrogen-bond mediated J-couplings between Nδ1 and Nε2 of adjacent His37 imidazole rings, providing direct evidence for the existence of various imidazolium-imidazole hydrogen-bonding geometries in the histidine tetrad at low pH, thus validating the proton conduction mechanism in the M2FL protein by which the proton is transferred through the breaking and reforming of the hydrogen bonds between pairs of His37 residues.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnet Field Lab , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Huajun Qin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Timothy A Cross
- National High Magnet Field Lab , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States.,Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
29
|
Wang R, Carnevale V, Klein ML, Borguet E. First-Principles Calculation of Water p Ka Using the Newly Developed SCAN Functional. J Phys Chem Lett 2020; 11:54-59. [PMID: 31834803 DOI: 10.1021/acs.jpclett.9b02913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acid/base chemistry is an intriguing topic that still constitutes a challenge for computational chemistry. While estimating the acid dissociation constant (or pKa) could shed light on many chemistry processes, especially in the fields of biochemistry and geochemistry, evaluating the relative stability between protonated and nonprotonated species is often very difficult. Indeed, a prerequisite for calculating the pKa of any molecule is an accurate description of the energetics of water dissociation. Here, we applied constrained molecular dynamics simulations, a noncanonical sampling technique, to investigate the water deprotonation process by selecting the OH distance as the reaction coordinate. The calculation is based on density functional theory and the newly developed SCAN functional, which has shown excellent performance in describing water structure. This first benchmark of SCAN on a chemical reaction shows that this functional accurately models the energetics of proton transfer reactions in an aqueous environment. After taking Coulomb long-range corrections and nuclear quantum effects into account, the estimated water pKa is only 1.0 pKa unit different from the target experimental value. Our results show that the combination of SCAN and constrained MD successfully reproduces the chemistry of water and constitutes a good framework for calculating the free energy of chemical reactions of interest.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Department of Biology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Michael L Klein
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
- Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Eric Borguet
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
30
|
Duster AW, Lin H. Tracking Proton Transfer through Titratable Amino Acid Side Chains in Adaptive QM/MM Simulations. J Chem Theory Comput 2019; 15:5794-5809. [DOI: 10.1021/acs.jctc.9b00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam W. Duster
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Hai Lin
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| |
Collapse
|
31
|
Watkins LC, Liang R, Swanson JMJ, DeGrado WF, Voth GA. Proton-Induced Conformational and Hydration Dynamics in the Influenza A M2 Channel. J Am Chem Soc 2019; 141:11667-11676. [PMID: 31264413 DOI: 10.1021/jacs.9b05136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influenza A M2 protein is an acid-activated proton channel responsible for acidification of the inside of the virus, a critical step in the viral life cycle. This channel has four central histidine residues that form an acid-activated gate, binding protons from the outside until an activated state allows proton transport to the inside. While previous work has focused on proton transport through the channel, the structural and dynamic changes that accompany proton flux and enable activation have yet to be resolved. In this study, extensive Multiscale Reactive Molecular Dynamics simulations with explicit Grotthuss-shuttling hydrated excess protons are used to explore detailed molecular-level interactions that accompany proton transport in the +0, + 1, and +2 histidine charge states. The results demonstrate how the hydrated excess proton strongly influences both the protein and water hydrogen-bonding network throughout the channel, providing further insight into the channel's acid-activation mechanism and rectification behavior. We find that the excess proton dynamically, as a function of location, shifts the protein structure away from its equilibrium distributions uniquely for different pH conditions consistent with acid-activation. The proton distribution in the xy-plane is also shown to be asymmetric about the channel's main axis, which has potentially important implications for the mechanism of proton conduction and future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
32
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
33
|
Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol Divers 2019; 24:61-67. [PMID: 30820742 PMCID: PMC7223885 DOI: 10.1007/s11030-019-09932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
Abstract An effective technique for one-stage synthesis of new polycyclic nitrogen-containing compounds has been developed. The procedure involves refluxing mixtures of camphoric acid with aliphatic or aromatic diamine without catalysts. In cases where the starting amine has a low boiling point (less than 200 °C), phenol is used as a solvent, as it is the most optimal one for obtaining products with good yields. It has been shown that the use of Lewis acids as catalysts reduces the yield of the reaction products. A set of compounds have been synthesized, which can be attributed to synthetic analogues of alkaloids. In vitro screening for activity influenza virus A was carried out for the obtained compounds. The synthesized quinazoline-like agent 14 has inhibitory activity against different strains of influenza viruses. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-019-09932-9) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Duster AW, Garza CM, Aydintug BO, Negussie MB, Lin H. Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel. J Chem Theory Comput 2019; 15:892-905. [DOI: 10.1021/acs.jctc.8b01128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam W. Duster
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Christina M. Garza
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Baris O. Aydintug
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Mikias B. Negussie
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Hai Lin
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| |
Collapse
|
35
|
Molugu TR, Brown MF. Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:99-133. [PMID: 30649757 DOI: 10.1007/978-3-030-04278-3_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin-lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
36
|
Branda MM, Guérin DMA. Alkalinization of Icosahedral Non-enveloped Viral Capsid Interior Through Proton Channeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:181-199. [DOI: 10.1007/978-3-030-14741-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, DeGrado WF. Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. J Am Chem Soc 2018; 140:15219-15226. [PMID: 30165017 DOI: 10.1021/jacs.8b06741] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water-mediated interactions play key roles in drug binding. In protein sites with sparse polar functionality, a small-molecule approach is often viewed as insufficient to achieve high affinity and specificity. Here we show that small molecules can enable potent inhibition by targeting key waters. The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine. Structural studies of drug binding to the channel using X-ray crystallography have been limited because of the challenging nature of the target, with the one previously solved crystal structure limited to 3.5 Å resolution. Here we describe crystal structures of amantadine bound to M2 in the Inwardclosed conformation (2.00 Å), rimantadine bound to M2 in both the Inwardclosed (2.00 Å) and Inwardopen (2.25 Å) conformations, and a spiro-adamantyl amine inhibitor bound to M2 in the Inwardclosed conformation (2.63 Å). These X-ray crystal structures of the M2 proton channel with bound inhibitors reveal that ammonium groups bind to water-lined sites that are hypothesized to stabilize transient hydronium ions formed in the proton-conduction mechanism. Furthermore, the ammonium and adamantyl groups of the adamantyl-amine class of drugs are free to rotate in the channel, minimizing the entropic cost of binding. These drug-bound complexes provide the first high-resolution structures of drugs that interact with and disrupt networks of hydrogen-bonded waters that are widely utilized throughout nature to facilitate proton diffusion within proteins.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , 15771 Athens , Greece
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , University of Arizona , Tucson , Arizona 85721 , United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , 15771 Athens , Greece
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
38
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
39
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
40
|
Viso JF, Belelli P, Machado M, González H, Pantano S, Amundarain MJ, Zamarreño F, Branda MM, Guérin DMA, Costabel MD. Multiscale modelization in a small virus: Mechanism of proton channeling and its role in triggering capsid disassembly. PLoS Comput Biol 2018; 14:e1006082. [PMID: 29659564 PMCID: PMC5919690 DOI: 10.1371/journal.pcbi.1006082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 12/04/2022] Open
Abstract
In this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments. Our calculations range from a subtle sub-atomic proton interchange to the dismantling of a large-scale system representing several million of atoms. Our results provide structure-based explanations for the three roles played by the capsid to enable genome release. First, we observe, for the first time, the formation of a hydrophobic gate in the cavity along the five-fold axis of the wild-type virus capsid, which can be disrupted by an ion located in the pore. Second, the channel enables protons to permeate the capsid through a unidirectional Grotthuss-like mechanism, which is the most likely process through which the capsid senses pH. Finally, assuming that the proton leak promotes a charge imbalance in the interior of the capsid, we model an internal pressure that forces shell cracking using coarse-grained simulations. Although qualitatively, this last step could represent the mechanism of capsid opening that allows RNA release. All of our calculations are in agreement with current experimental data obtained using TrV and describe a cascade of events that could explain the destabilization and disassembly of similar icosahedral viruses. Plant and animal small non-enveloped viruses are composed of a capsid shell that encloses the genome. One of the multiple functions played by the capsid is to protect the genome against host defenses and to withstand environmental aggressions, such as dehydration. This highly specialized capsule selectively recognizes and binds to the target tissue infected by the virus. In the viral cycle, the ultimate function of the capsid is to release the genome. Observations of many viruses demonstrate that the pH of the medium can trigger genome release. Nevertheless, the mechanism underlying this process at the atomic level is poorly understood. In this work, we computationally modeled the mechanism by which the capsid senses environmental pH and the destabilization process that permits genome release. Our calculations predict that a cavity that traverses the capsid functions as a hydrophobic gate, a feature already observed in membrane ion channels. Moreover, our results predict that this cavity behaves as a proton diode because the proton transit can only occur from the capsid interior to the exterior. In turn, our calculations describe a cascade of events that could explain the destabilization and dismantling of an insect virus, but this description could also apply to many vertebrate viruses.
Collapse
Affiliation(s)
- Juan Francisco Viso
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Patricia Belelli
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Matías Machado
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Humberto González
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Julia Amundarain
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Fernando Zamarreño
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Maria Marta Branda
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU), Barrio Sarriena S/N, Leioa, Vizcaya, Spain
- * E-mail: (MDC); (DMAG)
| | - Marcelo D. Costabel
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
- * E-mail: (MDC); (DMAG)
| |
Collapse
|
41
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Takizawa N, Kimura T, Watanabe T, Shibasaki M. Anti-influenza virus activity of a salcomine derivative mediated by inhibition of viral RNA synthesis. Arch Virol 2018; 163:1607-1614. [PMID: 29497849 DOI: 10.1007/s00705-018-3779-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 12/25/2022]
Abstract
Influenza virus infection is a major threat to global health. Although vaccines and anti-influenza virus drugs are available, annual influenza virus epidemics result in severe illness, and an influenza pandemic occurs every 20-30 years. To identify candidate anti-influenza virus compounds, we screened approximately 5,000 compounds in an in-house library. We identified MZ7465, a salcomine derivative, as a potent inhibitor of influenza virus propagation. We analyzed the antiviral propagation mechanism of the hit compound by determining the amounts of viral proteins and RNA in infected cells treated with or without the hit compound. Treatment of infected cells with MZ7465 decreased both viral protein and RNA synthesis. In addition, an in vitro assay showed that viral RNA synthesis was directly inhibited by MZ7465. These results suggest that salcomine and its derivatives are potential candidates for the treatment of influenza virus infections.
Collapse
MESH Headings
- Animals
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Bronchi/drug effects
- Bronchi/pathology
- Bronchi/virology
- Cell Line
- Dogs
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Gene Expression Regulation, Viral
- HEK293 Cells
- High-Throughput Screening Assays
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/growth & development
- Madin Darby Canine Kidney Cells
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Structure-Activity Relationship
- Viral Proteins/antagonists & inhibitors
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Naoki Takizawa
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| | - Tomoyuki Kimura
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Masakatsu Shibasaki
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
43
|
Carpenter WB, Fournier JA, Lewis NHC, Tokmakoff A. Picosecond Proton Transfer Kinetics in Water Revealed with Ultrafast IR Spectroscopy. J Phys Chem B 2018; 122:2792-2802. [PMID: 29452488 DOI: 10.1021/acs.jpcb.8b00118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aqueous proton transport involves the ultrafast interconversion of hydrated proton species that are closely linked to the hydrogen bond dynamics of water, which has been a long-standing challenge to experiments. In this study, we use ultrafast IR spectroscopy to investigate the distinct vibrational transition centered at 1750 cm-1 in strong acid solutions, which arises from bending vibrations of the hydrated proton complex. Broadband ultrafast two-dimensional IR spectroscopy and transient absorption are used to measure vibrational relaxation, spectral diffusion, and orientational relaxation dynamics. The hydrated proton bend displays fast vibrational relaxation and spectral diffusion timescales of 200-300 fs; however, the transient absorption anisotropy decays on a remarkably long 2.5 ps timescale, which matches the timescale for hydrogen bond reorganization in liquid water. These observations are indications that the bending vibration of the aqueous proton complex is relatively localized, with an orientation that is insensitive to fast hydrogen bonding fluctuations and dependent on collective structural relaxation of the liquid to reorient. We conclude that the orientational relaxation is a result of proton transfer between configurations that are well described by a Zundel-like proton shared between two flanking water molecules.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
44
|
Abstract
POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.
Collapse
|
45
|
Takizawa N, Yamasaki M. Current landscape and future prospects of antiviral drugs derived from microbial products. J Antibiot (Tokyo) 2017; 71:ja2017115. [PMID: 29018267 PMCID: PMC7091927 DOI: 10.1038/ja.2017.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Viral infections are a major global health threat. Over the last 50 years, significant efforts have been devoted to the development of antiviral drugs and great success has been achieved for some viruses. However, other virus infections, such as epidemic influenza, still spread globally and new threats continue to arise from emerging and re-emerging viruses and drug-resistant viruses. In this review, the contributions of microbial products isolated in Institute of Microbial Chemistry for antiviral research are summarized. In addition, the current state of development of antiviral drugs that target influenza virus and hepatitis B virus, and the future prospects for antivirals from natural products are described and discussed.The Journal of Antibiotics advance online publication, 11 October 2017; doi:10.1038/ja.2017.115.
Collapse
Affiliation(s)
- Naoki Takizawa
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Tokyo Japan
| | - Manabu Yamasaki
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Tokyo Japan
| |
Collapse
|
46
|
XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction. Proc Natl Acad Sci U S A 2017; 114:13357-13362. [PMID: 28835537 DOI: 10.1073/pnas.1705624114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in "wires" inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inwardopen state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.
Collapse
|
47
|
Liang R, Swanson JMJ, Wikström M, Voth GA. Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase. Proc Natl Acad Sci U S A 2017; 114:5924-5929. [PMID: 28536198 PMCID: PMC5468613 DOI: 10.1073/pnas.1703654114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water and uses the released free energy to pump protons against the transmembrane proton gradient. To better understand the proton-pumping mechanism of the wild-type (WT) CcO, much attention has been given to the mutation of amino acid residues along the proton translocating D-channel that impair, and sometimes decouple, proton pumping from the chemical catalysis. Although their influence has been clearly demonstrated experimentally, the underlying molecular mechanisms of these mutants remain unknown. In this work, we report multiscale reactive molecular dynamics simulations that characterize the free-energy profiles of explicit proton transport through several important D-channel mutants. Our results elucidate the mechanisms by which proton pumping is impaired, thus revealing key kinetic gating features in CcO. In the N139T and N139C mutants, proton back leakage through the D-channel is kinetically favored over proton pumping due to the loss of a kinetic gate in the N139 region. In the N139L mutant, the bulky L139 side chain inhibits timely reprotonation of E286 through the D-channel, which impairs both proton pumping and the chemical reaction. In the S200V/S201V double mutant, the proton affinity of E286 is increased, which slows down both proton pumping and the chemical catalysis. This work thus not only provides insight into the decoupling mechanisms of CcO mutants, but also explains how kinetic gating in the D-channel is imperative to achieving high proton-pumping efficiency in the WT CcO.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, IL 60637;
| |
Collapse
|
48
|
Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy. J Mol Biol 2017; 429:2192-2210. [PMID: 28535993 DOI: 10.1016/j.jmb.2017.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
The influenza M2 protein forms an acid-activated proton channel that is essential for virus replication. The transmembrane H37 selects for protons under low external pH while W41 ensures proton conduction only from the N terminus to the C terminus and prevents reverse current under low internal pH. Here, we address the molecular basis for this asymmetric conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits reverse current under low internal pH. Solid-state NMR experiments show that W41F M2 retains the pH-dependent α-helical conformations and tetrameric structure of the wild-type (WT) channel but has significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is shifted toward the π tautomer and less cationic tetrads, consistent with faster forward deprotonation to the C terminus. At low pH, the mutant channel contains more cationic tetrads than the WT channel, consistent with faster reverse protonation from the C terminus. 15N NMR spectra allow the extraction of four H37 pKas and show that the pKas are more clustered in the mutant channel compared to WT M2. Moreover, binding of the antiviral drug, amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as seen in WT M2, but left half of all histidines cationic, unambiguously demonstrating C-terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in WT M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants.
Collapse
|
49
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
50
|
Computational Studies of Molecular Permeation through Connexin26 Channels. Biophys J 2017; 110:584-599. [PMID: 26840724 DOI: 10.1016/j.bpj.2015.11.3528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
A signal property of connexin channels is the ability to mediate selective diffusive movement of molecules through plasma membrane(s), but the energetics and determinants of molecular movement through these channels have yet to be understood. Different connexin channels have distinct molecular selectivities that cannot be explained simply on the basis of size or charge of the permeants. To gain insight into the forces and interactions that underlie selective molecular permeation, we investigated the energetics of two uncharged derivatized sugars, one permeable and one impermeable, through a validated connexin26 (Cx26) channel structural model, using molecular dynamics and associated analytic tools. The system is a Cx26 channel equilibrated in explicit membrane/solvent, shown by Brownian dynamics to reproduce key conductance characteristics of the native channel. The results are consistent with the known difference in permeability to each molecule. The energetic barriers extend through most of the pore length, rather than being highly localized as in ion-specific channels. There is little evidence for binding within the pore. Force decomposition reveals how, for each tested molecule, interactions with water and the Cx26 protein vary over the length of the pore and reveals a significant contribution from hydrogen bonding and interaction with K(+). The flexibility of the pore width varies along its length, and the tested molecules have differential effects on pore width as they pass through. Potential sites of interaction within the pore are defined for each molecule. The results suggest that for the tested molecules, differences in hydrogen bonding and entropic factors arising from permeant flexibility substantially contribute to the energetics of permeation. This work highlights factors involved in selective molecular permeation that differ from those that define selectivity among atomic ions.
Collapse
|