1
|
Staffler R, Pasternack R, Hils M, Kaiser W, Möller FM. Nucleotide binding kinetics and conformational change analysis of tissue transglutaminase with switchSENSE. Anal Biochem 2020; 605:113719. [PMID: 32697952 DOI: 10.1016/j.ab.2020.113719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Function, activity, and interactions of proteins crucially depend on their three-dimensional structure and are often regulated by effector binding and environmental changes. Tissue transglutaminase (Transglutaminase 2, TG2) is a multifunctional protein, allosterically regulated by nucleotides and Ca2+ ions, which trigger opposing conformational changes. Here we introduce switchSENSE as a versatile tool for TG2 characterization and provide novel insights into protein conformation as well as analyte binding kinetics. For the first time, we succeeded in measuring the kinetic rate constants and affinities (kon, koff, KD) for guanosine nucleotides (GMP, GDP, GTP, GTPγS). Further, the conformational changes induced by GDP, Ca2+ and the covalent inhibitor Z-DON were observed by changes in TG2's hydrodynamic diameter. We confirmed the well-known compaction by guanosine nucleotides and extension by Ca2+, and provide evidence for TG2 conformations so far not described by structural analysis. Moreover, we analyze the influence of the peptidic Z-DON inhibitor and the R580A mutation on the conformational responsiveness of TG2 to its natural effectors. In summary, this work shows how the combination of structural and kinetic information obtained by switchSENSE opens new perspectives for the characterization of conformationally active proteins and their interactions with ligands, e.g. potential drug candidates.
Collapse
Affiliation(s)
- Regina Staffler
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | | - Martin Hils
- Zedira GmbH, Roesslerstrasse 83, 64293, Darmstadt, Germany
| | - Wolfgang Kaiser
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | |
Collapse
|
2
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
3
|
Schöppner P, Csaba G, Braun T, Daake M, Richter B, Lange OF, Zacharias M, Zimmer R, Haslbeck M. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins. J Mol Biol 2016; 428:1544-57. [PMID: 26953259 DOI: 10.1016/j.jmb.2016.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing.
Collapse
Affiliation(s)
- Patricia Schöppner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gergely Csaba
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany
| | - Tatjana Braun
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Daake
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Bettina Richter
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Oliver F Lange
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Strasse 1, 85747 Garching, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany.
| | - Martin Haslbeck
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
4
|
Hauser C, Wodtke R, Löser R, Pietsch M. A fluorescence anisotropy-based assay for determining the activity of tissue transglutaminase. Amino Acids 2016; 49:567-583. [PMID: 26886924 DOI: 10.1007/s00726-016-2192-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023]
Abstract
Tissue transglutaminase (TGase 2) is the most abundantly expressed enzyme of the transglutaminase family and involved in a large variety of pathological processes, such as neurodegenerative diseases, disorders related to autoimmunity and inflammation as well as tumor growth, progression and metastasis. As a result, TGase 2 represents an attractive target for drug discovery and development, which requires assays that allow for the characterization of modulating agents and are appropriate for high-throughput screening. Herein, we report a fluorescence anisotropy-based approach for the determination of TGase 2's transamidase activity, following the time-dependent increase in fluorescence anisotropy due to the enzyme-catalyzed incorporation of fluorescein- and rhodamine B-conjugated cadaverines 1-3 (acyl acceptor substrates) into N,N-dimethylated casein (acyl donor substrate). These cadaverine derivatives 1-3 were obtained by solid-phase synthesis. To allow efficient conjugation of the rhodamine B moiety, different linkers providing secondary amine functions, such as sarcosyl and isonipecotyl, were introduced between the cadaverine and xanthenyl entities in compounds 2 and 3, respectively, with acyl acceptor 3 showing the most optimal substrate properties of the compounds investigated. The assay was validated for the search of both irreversible and reversible TGase 2 inhibitors using the inactivators iodoacetamide and a recently published L-lysine-derived acrylamide and the allosteric binder GTP, respectively. In addition, the fluorescence anisotropy-based method was proven to be suitable for high-throughput screening (Z' factor of 0.86) and represents a non-radioactive and highly sensitive assay for determining the active TGase 2 concentration.
Collapse
Affiliation(s)
- Christoph Hauser
- Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technical University Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Department of Chemistry and Food Chemistry, Technical University Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Markus Pietsch
- Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Lorand L, Murthy SNP, Khan AA, Xue W, Lockridge O, Chishti AH. Transglutaminase-mediated remodeling of the human erythrocyte membrane skeleton: relevance for erythrocyte diseases with shortened cell lifespan. ACTA ACUST UNITED AC 2012; 78:385-414. [PMID: 22220479 DOI: 10.1002/9781118105771.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular Biology, Feinberg Medical School Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
6
|
Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, Macdonald D. A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. ACTA ACUST UNITED AC 2010; 15:478-87. [PMID: 20395409 DOI: 10.1177/1087057110366035] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Huntington's disease (HD) is associated with increased expression levels and activity of tissue transglutaminase (TG2), an enzyme primarily known for its cross-linking of proteins. To validate TG2 as a therapeutic target for HD in transgenic models and for eventual clinical development, a selective and brain-permeable inhibitor is required. Here, a comprehensive profiling platform of biochemical and cellular assays is presented which has been established to evaluate the potency, cellular efficacy, subtype selectivity and the mechanism-of-action of known and novel TG2 inhibitors. Several classes of inhibitors have been characterized including: the commonly used pseudo-substrate inhibitors, cystamine and putrescine (which are generally nonspecific for TG2 and therefore not practical for drug development), the various peptidic inhibitors that target the active site cysteine residue (which display excellent selectivity but in general have poor cellular activity), and the allosteric reversible small-molecule hydrazides (which show poor selectivity and a lack of cellular activity and could not be improved despite considerable medicinal chemistry efforts). In addition, a set of inhibitors identified from a collection of pharmacologically active compounds was found to be unselective for TG2. Moreover, inhibition at the guanosine triphosphate binding site has been examined, but apart from guanine nucleotides, no such inhibitors have been identified. In addition, the promising pharmacological profile of a TG2 inhibitor is presented which is currently in lead optimization to be developed as a tool compound.
Collapse
|
7
|
Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R. Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 2009; 39:297-304. [PMID: 20033238 DOI: 10.1007/s00726-009-0442-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/01/2009] [Indexed: 01/10/2023]
Abstract
The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 microM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of "apparent binding sites" in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K (D) approximately 0.15 microM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.
Collapse
Affiliation(s)
- Carlo M Bergamini
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Ward Building, Room 7-334, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Zanetti L, Ristoratore F, Bertoni A, Cariello L. Characterization of sea urchin transglutaminase, a protein regulated by guanine/adenine nucleotides. J Biol Chem 2004; 279:49289-97. [PMID: 15381689 DOI: 10.1074/jbc.m405926200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transglutaminases (TGs) are calcium-dependent enzymes that catalyze the transamidation of glutamine residues to form intermolecular isopeptide bonds. Nine distinct TGs have been identified in mammals, and three of them (types 2, 3, and 5) are regulated by GTP/ATP and are able to hydrolyze GTP, working as bifunctional enzymes. We have isolated a cDNA clone encoding a TG from a cDNA library prepared from the blastula stage of sea urchin Paracentrotus lividus (PlTG). The cDNA sequence has an open reading frame coding for a protein of 738 amino acids, including a Cys active site and two other residues critical for catalytic activity, His and Asp. We have studied its expression pattern by in situ hybridization and have also demonstrated that the in vitro expressed PlTG had GTP- and ATP-hydrolyzing activity; moreover, GTP inhibited the transamidating activity of this enzyme as it does that of human TG2, TG3, and TG5.
Collapse
Affiliation(s)
- Laura Zanetti
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | | | | | |
Collapse
|
10
|
O'Neill GM, Prasanna Murthy SN, Lorand L, Khanna R, Liu SC, Hanspal M, Hanada T, Chishti AH. Activation of transglutaminase in mu-calpain null erythrocytes. Biochem Biophys Res Commun 2003; 307:327-31. [PMID: 12859959 DOI: 10.1016/s0006-291x(03)01184-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intracellular transglutaminases (protein-glutamine: amine gamma-glutamyltransferase, EC 2.3.2.13) are calcium-dependent thiol enzymes that catalyze the covalent cross-linking of proteins, including those in the erythrocyte membrane. Several studies suggest that the activation of some transglutaminases is positively regulated by the calcium-dependent cysteine protease, mu-calpain. Using mu-calpain null (Capn1(-/-)) mouse erythrocytes, we demonstrate that the activation of soluble as well as membrane-bound forms of transglutaminase (TG2) in mouse erythrocytes was independent of mu-calpain. Also, the absence of mu-calpain or any detectable cysteine protease did not affect the transglutaminase activity in the erythrocyte lysate. Our studies also identify physiological substrates of mu-calpain in the erythrocyte membrane and show that their cleavage has no discernible effect on the transglutaminase mediated cross-linking of membrane proteins. Taken together, these data suggest the existence of a calpain-independent mechanism for the activation of transglutaminase 2 by calcium ions in the mouse erythrocytes and presumably also in non-erythroid cells.
Collapse
Affiliation(s)
- Gerald M O'Neill
- Department of Medicine, Center for Biomedical Research, CBR 404, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 01235-29, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Z, Vezza R, Plappert T, McNamara P, Lawson JA, Austin S, Praticò D, Sutton MSJ, FitzGerald GA. COX-2-dependent cardiac failure in Gh/tTG transgenic mice. Circ Res 2003; 92:1153-61. [PMID: 12702643 DOI: 10.1161/01.res.0000071749.22027.45] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gh is a GTP binding protein that couples to the thromboxane receptor (TP), but also functions as tissue transglutaminase II (tTG). A transgenic mouse model was generated in which Gh was overexpressed (GhOE) in ventricular myocytes under the control of the alpha-myosin heavy chain promoter. Heart rate was elevated and both blood pressure and left ventricular ejection fraction were depressed in GhOEs. Left ventricular mass was increased, consistent with genetic and ultrastructural evidence of hypertrophy. Fibrosis and apoptosis were also augmented. Survival declined disproportionately in older GhOEs. Cardiomyocyte expression of COX-2, thromboxane synthase (TxS), and the receptors for TxA2 (the TP), PGF2alpha (the FP), and PGI2 (the IP) were upregulated and urinary 8,12-iso-iPF2alpha-VI,2,3-dinor-6-keto-PGF1alpha and 2,3-dinor-thromboxane B2 were increased in GhOEs, reflecting increased lipid peroxidation and cyclooxygenase (COX) activation. Selective COX-2 inhibition, TP antagonism, and suppression of lipid peroxidation each rescued the cardiac phenotype. Infusion of an FP agonist exacerbated the phenotype, whereas administration of an IP agonist improved cardiac function. Directed cardiac overexpression of Gh/tTG causes both TG activation and increased TP/Gh-dependent signaling. The COX-2-dependent increase in TxA2 generation augments cardiac hypertrophy, whereas formation of PGI2 by the same isozyme ameliorates the phenotype. Oxidant stress may contribute, via regulation of COX-2 expression and/or ligation of the TP and the FP by isoprostanes. Gh/tTG activation regulates expression of COX-2 and its products may differentially modulate cardiomyocyte commitment to cell death or survival.
Collapse
Affiliation(s)
- Zhibing Zhang
- Center for Experimental Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pa 19104-6084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Murthy SNP, Iismaa S, Begg G, Freymann DM, Graham RM, Lorand L. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc Natl Acad Sci U S A 2002; 99:2738-42. [PMID: 11867764 PMCID: PMC122417 DOI: 10.1073/pnas.052715799] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transglutaminase 2 (TG2) is a distinctive member of the family of Ca2+-dependent enzymes recognized mostly by their abilities to catalyze the posttranslational crosslinking of proteins. TG2 uniquely binds and hydrolyzes GTP; binding GTP inhibits its crosslinking activity but allows it to function in signal transduction (hence the G(h) designation). The core domain of TG2 (residues 139-471, rat) comprises the papain-like catalytic triad and the GTP-binding domain (residues 159-173) and contains almost all of the conserved tryptophans of the protein. Examining point mutations at Trp positions 180, 241, 278, 332, and 337 showed that, upon binding 2'-(or 3')-O-(N-methylanthraniloyl)GTP (mantGTP), the Phe-332 mutant was the weakest (35% less than wild type) in resonance energy transfer from the protein (lambda(exc, max) = 290 nm) to the mant fluorophore (lambda(em) = 444 nm) and had a reduced affinity for mantGTP. Trp-332, situated near the catalytic center and the nucleotide-binding area of TG2, may be part of the allosteric relay machinery that transmits negative effector signals from nucleotide binding to the active center of TG2. A most important observation was that, whereas no enzyme activity could be detected when Trp-241 was replaced with Ala or Gln, partial preservation of catalytic activity was seen with substitutions by Tyr > Phe > His. The results indicate that Trp-241 is essential for catalysis, possibly by stabilizing the transition states by H-bonding, quadrupole-ion, or van der Waals interactions. This contrasts with the evolutionarily related papain family of cysteine proteases, which uses Gln-19 (papain) for stabilizing the transition state.
Collapse
Affiliation(s)
- S N Prasanna Murthy
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ambrus A, Bányai I, Weiss MS, Hilgenfeld R, Keresztessy Z, Muszbek L, Fésüs L. Calcium binding of transglutaminases: a 43Ca NMR study combined with surface polarity analysis. J Biomol Struct Dyn 2001; 19:59-74. [PMID: 11565852 DOI: 10.1080/07391102.2001.10506720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Transglutaminases (TGases) form cross-links between glutamine and lysine side-chains of polypeptides in a Ca2+-dependent reaction. The structural basis of the Ca2+-effect is poorly defined. 43Ca NMR, surface polarity analysis combined with multiple sequence alignment and the construction of a new homology model of human tissue transglutaminase (tTGase) were used to obtain structural information about Ca2+ binding properties of factor XIII-A2, tTGase and TGase 3 (each of human origin). 43Ca NMR provided higher average dissociation constants titrating on a wide Ca2+-concentration scale than previous studies with equilibrium dialysis performed in shorter ranges. These results suggest the existence of low affinity Ca2+ binding sites on both FXIII-A and tTGase in addition to high affinity ones in accordance with our surface polarity analysis identifying high numbers of negatively charged clusters. Upon increasing the salt concentration or activating with thrombin, FXIII-A2 partially lost its original Ca2+ affinity; the NMR data suggested different mechanisms for the two activation processes. The NMR provided structural evidence of GTP-induced conformational changes on the tTGase molecule diminishing all of its Ca2+ binding sites. NMR data on the Ca2+ binding properties of the TGase 3 are presented here; it binds Ca2+ the most tightly, which is weakened after its proteolytic activation. The investigated TGases seem to have very symmetric Ca2+ binding sites and no EF-hand motifs.
Collapse
Affiliation(s)
- A Ambrus
- University of Debrecen, Department of Biochemistry and Molecular Biology, Hungary
| | | | | | | | | | | | | |
Collapse
|