1
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Lombardo Z, Mukerji I. Site-Specific Investigation of DNA Holliday Junction Dynamics and Structure with 6-Methylisoxanthopterin, a Fluorescent Guanine Analog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590264. [PMID: 38659790 PMCID: PMC11042373 DOI: 10.1101/2024.04.19.590264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporate the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and thermodynamic stability, along with fluorescence quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| |
Collapse
|
3
|
Wald J, Marlovits TC. Holliday junction branch migration driven by AAA+ ATPase motors. Curr Opin Struct Biol 2023; 82:102650. [PMID: 37604043 DOI: 10.1016/j.sbi.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 08/23/2023]
Abstract
Holliday junctions are key intermediate DNA structures during genetic recombination. One of the first Holliday junction-processing protein complexes to be discovered was the well conserved RuvAB branch migration complex present in bacteria that mediates an ATP-dependent movement of the Holliday junction (branch migration). Although the RuvAB complex served as a paradigm for the processing of the Holliday junction, due to technical limitations the detailed structure and underlying mechanism of the RuvAB branch migration complex has until now remained unclear. Recently, structures of a reconstituted RuvAB complex actively-processing a Holliday junction were resolved using time-resolved cryo-electron microscopy. These structures showed distinct conformational states at different stages of the migration process. These structures made it possible to propose an integrated model for RuvAB Holliday junction branch migration. Furthermore, they revealed unexpected insights into the highly coordinated and regulated mechanisms of the nucleotide cycle powering substrate translocation in the hexameric AAA+ RuvB ATPase. Here, we review these latest advances and describe areas for future research.
Collapse
Affiliation(s)
- Jiri Wald
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
4
|
Zhang X, Zhou Z, Dai L, Chao Y, Liu Z, Huang M, Qu Q, Lin Z. Cryo-EM structure of the RuvAB-Holliday junction intermediate complex from Pseudomonas aeruginosa. FRONTIERS IN PLANT SCIENCE 2023; 14:1139106. [PMID: 37025142 PMCID: PMC10071043 DOI: 10.3389/fpls.2023.1139106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Holliday junction (HJ) is a four-way structured DNA intermediate in homologous recombination. In bacteria, the HJ-specific binding protein RuvA and the motor protein RuvB together form the RuvAB complex to catalyze HJ branch migration. Pseudomonas aeruginosa (P. aeruginosa, Pa) is a ubiquitous opportunistic bacterial pathogen that can cause serious infection in a variety of host species, including vertebrate animals, insects and plants. Here, we describe the cryo-Electron Microscopy (cryo-EM) structure of the RuvAB-HJ intermediate complex from P. aeruginosa. The structure shows that two RuvA tetramers sandwich HJ at the junction center and disrupt base pairs at the branch points of RuvB-free HJ arms. Eight RuvB subunits are recruited by the RuvA octameric core and form two open-rings to encircle two opposite HJ arms. Each RuvB subunit individually binds a RuvA domain III. The four RuvB subunits within the ring display distinct subdomain conformations, and two of them engage the central DNA duplex at both strands with their C-terminal β-hairpins. Together with the biochemical analyses, our structure implicates a potential mechanism of RuvB motor assembly onto HJ DNA.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Lin Dai
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | | | - Qianhui Qu
- Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
5
|
Lombardo Z, Mukerji I. Site-specific investigation of DNA Holliday Junction dynamics and structure with 6-Methylisoxanthopterin, a fluorescent guanine analog. TRENDS IN PHOTOCHEMISTRY & PHOTOBIOLOGY 2023; 22:85-102. [PMID: 39371247 PMCID: PMC11450702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporated the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate that the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| |
Collapse
|
6
|
Dai L, Lu L, Zhang X, Wu J, Li J, Lin Z. Identification of small-molecule inhibitors of the DNA repair proteins RuvAB from Pseudomonas aeruginosa. Bioorg Med Chem 2022; 73:117022. [PMID: 36155320 DOI: 10.1016/j.bmc.2022.117022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
The Holliday junction (HJ) branch migrator RuvAB complex plays a fundamental role during homologous recombination and DNA damage repair, and therefore, is an attractive target for the treatment of bacterial pathogens. Pseudomonas aeruginosa (P. aeruginosa, Pa) is one of the most common clinical opportunistic bacterial pathogens, which can cause a series of life-threatening acute or chronic infections. Here, we performed a high throughput small-molecule screening targeting PaRuvAB using the FRET-based HJ branch migration assay. We identified that corilagin, bardoxolone methyl (BM) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) could efficiently inhibit the branch migration activity of PaRuvAB, with IC50 values of 0.40 ± 0.04 μM, 0.38 ± 0.05 μM and 4.64 ± 0.27 μM, respectively. Further biochemical and molecular docking analyses demonstrated that corilagin directly bound to PaRuvB at the ATPase domain, and thus prevented ATP hydrolysis. In contrast, BM and SKQ1 acted through blocking the interactions between PaRuvA and HJ DNA. Finally, these compounds were shown to increase the susceptibility of P. aeruginosa to UV-C irradiation. Our work, for the first time, reports the small-molecule inhibitors of RuvA and RuvB from any species, providing valuable chemical tools to dissect the functional role of each individual protein in vivo.
Collapse
Affiliation(s)
- Lin Dai
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lian Lu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Mahmoud R, Dhakal S. Single-Molecule Analysis of DNA Branch Migration under Biomimetic Environments. J Phys Chem B 2022; 126:7252-7261. [DOI: 10.1021/acs.jpcb.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roaa Mahmoud
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Brovarets’ OO, Muradova A, Hovorun DM. Novel horizons of the conformationally-tautomeric transformations of the G·T base pairs: quantum-mechanical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
10
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
11
|
Direct unfolding of RuvA-HJ complex at the single-molecule level. Biophys J 2021; 120:1894-1902. [PMID: 33737156 DOI: 10.1016/j.bpj.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
The repair of double-stranded DNA breaks via homologous recombination involves a four-way cross-strand intermediate known as Holliday junction (HJ), which is recognized, processed, and resolved by a specific set of proteins. RuvA, a prokaryotic HJ-binding protein, is known to stabilize the square-planar conformation of the HJ, which is otherwise a short-lived intermediate. Despite much progress being made regarding the molecular mechanism of RuvA-HJ interactions, the mechanochemical aspect of this protein-HJ complex is yet to be investigated. Here, we employed an optical-tweezers-based, single-molecule manipulation assay to detect the formation of RuvA-HJ complex and determined its mechanical and thermodynamic properties in a manner that would be impossible with traditional ensemble techniques. We found that the binding of RuvA increases the unfolding force (Funfold) of the HJ by ∼2-fold. Compared with the ΔGunfold of the HJ alone (54 ± 13 kcal/mol), the increased free energy of the RuvA-HJ complex (101 ± 20 kcal/mol) demonstrates that the RuvA protein stabilizes HJs. Interestingly, the protein remains bound to the mechanically melted HJ, facilitating its refolding at an unusually high force when the stretched DNA molecule is relaxed. These results suggest that the RuvA protein not only stabilizes the HJs but also induces refolding of the HJs. The single-molecule platform that we employed here for studying the RuvA-HJ interaction is broadly applicable to study other HJ-binding proteins involved in the critical DNA repair process.
Collapse
|
12
|
The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc Natl Acad Sci U S A 2019; 116:25068-25077. [PMID: 31767757 DOI: 10.1073/pnas.1909017116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.
Collapse
|
13
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
14
|
Gibbs DR, Dhakal S. Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry 2018; 57:3616-3624. [PMID: 29767969 DOI: 10.1021/acs.biochem.8b00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) and ensemble analyses, we show that RuvA stably binds to the HJ, halting its conformational dynamics. Our FRET experiments in different ionic environments created by Mg2+ and Na+ ions suggest that RuvA binds to the HJ via electrostatic interaction. Further, while recent studies have indicated that the HR process can be modulated for therapeutic applications by selective targeting of the HJ by chemotherapeutic drugs, we investigated the effect of drug-modified HJ on binding. Using cisplatin as a proof-of-concept drug, we show that RuvA binds to the cisplatin-modified HJ as efficiently as to the unmodified HJ, demonstrating that RuvA accommodates for the cisplatin-introduced charges and/or topological changes on the HJ.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| | - Soma Dhakal
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| |
Collapse
|
15
|
Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, Mazin AV. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun 2018; 9:34. [PMID: 29295984 PMCID: PMC5750232 DOI: 10.1038/s41467-017-02497-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Collapse
Affiliation(s)
- Nadish Goyal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Bruce E Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
16
|
Structure of the Holliday junction: applications beyond recombination. Biochem Soc Trans 2017; 45:1149-1158. [PMID: 28842529 DOI: 10.1042/bst20170048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The Holliday junction (HJ) is an essential element in recombination and related mechanisms. The structure of this four-stranded DNA assembly, which is now well-defined alone and in complex with proteins, has led to its applications in areas well outside of molecular recombination, including nanotechnology and biophysics. This minireview explores some interesting recent research on the HJ, as it has been adapted to design regular two- or three-dimensional lattices for crystal engineering, and more complex systems through DNA origami. In addition, the sequence dependence of the structure is discussed in terms how it can be applied to characterize the geometries and energies of various noncovalent interactions, including halogen bonds in oxidatively damaged (halogenated) bases and hydrogen bonds associated with the epigenetic 5-hydroxylmethylcytosine base.
Collapse
|
17
|
Zhai B, DuPrez K, Doukov TI, Li H, Huang M, Shang G, Ni J, Gu L, Shen Y, Fan L. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. J Mol Biol 2017; 429:1009-1029. [PMID: 28238763 PMCID: PMC5565510 DOI: 10.1016/j.jmb.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 11/15/2022]
Abstract
Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Tzanko I Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Huan Li
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Mengting Huang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China.
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Bacteriophage T5 gene D10 encodes a branch-migration protein. Sci Rep 2016; 6:39414. [PMID: 28009009 PMCID: PMC5180179 DOI: 10.1038/srep39414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022] Open
Abstract
Helicases catalyze the unwinding of double-stranded nucleic acids where structure and phosphate backbone contacts, rather than nucleobase sequence, usually determines substrate specificity. We have expressed and purified a putative helicase encoded by the D10 gene of bacteriophage T5. Here we report that this hitherto uncharacterized protein possesses branch migration and DNA unwinding activity. The initiation of substrate unwinding showed some sequence dependency, while DNA binding and DNA-dependent ATPase activity did not. DNA footprinting and purine-base interference assays demonstrated that D10 engages these substrates with a defined polarity that may be established by protein-nucleobase contacts. Bioinformatic analysis of the nucleotide databases revealed genes predicted to encode proteins related to D10 in archaebacteria, bacteriophages and in viruses known to infect a range of eukaryotic organisms.
Collapse
|
19
|
Isolation and Analysis of Salt Response of Lactobacillusplantarum FS5-5 from Dajiang. Indian J Microbiol 2016; 56:451-460. [PMID: 27784942 DOI: 10.1007/s12088-016-0588-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/22/2016] [Indexed: 12/30/2022] Open
Abstract
From 15 samples of dajiang collected in northeast of China, three salt resistant lactic acid bacteria were isolated and identified as Lactobacillusplantarum through physiological studies and 16S rDNA sequence alignment. L. plantarum FS5-5 showed better growth in an environment with 12 % (w/v) NaCl than the other two strains. The expression of proteins extracted from L.plantarum FS5-5 cultured in de Man, Rogosa, and Sharp (MRS) containing 0, 3, 6 and 9 % (w/v) NaCl was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results showed that 42 kinds of proteins were identified, which could be divided into three groups: 27 kinds of proteins related to protein synthesis and degradation, six kinds of proteins related to carbohydrate metabolism and energy metabolism, nine proteins related to nucleic acid metabolism. Overexpression of these proteins imply that a series of changes have occurred in the process of protein synthesis and degradation, carbohydrate metabolism, energy metabolism and nucleic acid metabolism after L.plantarum FS5-5 exposed to salt stress. All these proteins may have effects on the salt-tolerant characteristics of the L.plantarum FS5-5.
Collapse
|
20
|
Moiseeva ED, Bazhulina NP, Gursky YG, Grokhovsky SL, Surovaya AN, Gursky GV. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1. J Biomol Struct Dyn 2016; 35:704-723. [PMID: 26987269 DOI: 10.1080/07391102.2016.1161561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg2+ ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg2+ ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3'-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences.
Collapse
Affiliation(s)
- E D Moiseeva
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - N P Bazhulina
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - Y G Gursky
- b Russian Cardiology Research-and-Production Complex , 3ya Cherepkovskaya ul. 15a, 121552 Moscow , Russia
| | - S L Grokhovsky
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - A N Surovaya
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - G V Gursky
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| |
Collapse
|
21
|
Iwasa T, Han YW, Hiramatsu R, Yokota H, Nakao K, Yokokawa R, Ono T, Harada Y. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Sci Rep 2015; 5:18177. [PMID: 26658024 PMCID: PMC4677358 DOI: 10.1038/srep18177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation.
Collapse
Affiliation(s)
- Takuma Iwasa
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yong-Woon Han
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda, Tokyo 102-0075, Japan
| | - Ryo Hiramatsu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroaki Yokota
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kimiko Nakao
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Technology, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshie Harada
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda, Tokyo 102-0075, Japan
| |
Collapse
|
22
|
Iverson D, Serrano C, Brahan AM, Shams A, Totsingan F, Bell AJ. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions. Arch Biochem Biophys 2015; 587:1-11. [PMID: 26348651 DOI: 10.1016/j.abb.2015.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.
Collapse
Affiliation(s)
- Douglas Iverson
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Crystal Serrano
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ann Marie Brahan
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Arik Shams
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Anthony J Bell
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
23
|
Biophysical highlights from 54 years of macromolecular crystallography. Biophys J 2014; 106:510-25. [PMID: 24507592 DOI: 10.1016/j.bpj.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022] Open
Abstract
The United Nations has declared 2014 the International Year of Crystallography, and in commemoration, this review features a selection of 54 notable macromolecular crystal structures that have illuminated the field of biophysics in the 54 years since the first excitement of the myoglobin and hemoglobin structures in 1960. Chronological by publication of the earliest solved structure, each illustrated entry briefly describes key concepts or methods new at the time and key later work leveraged by knowledge of the three-dimensional atomic structure.
Collapse
|
24
|
Badawi M, Giraud I, Vavre F, Grève P, Cordaux R. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Genome Biol Evol 2014; 6:2654-64. [PMID: 25230723 PMCID: PMC4224334 DOI: 10.1093/gbe/evu207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Fabrice Vavre
- Université de Lyon, UMR CNRS 5558 Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| |
Collapse
|
25
|
Abstract
Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes.
Collapse
Affiliation(s)
- Haley D M Wyatt
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Stephen C West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
26
|
Deakyne JS, Huang F, Negri J, Tolliday N, Cocklin S, Mazin AV. Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. J Biol Chem 2013; 288:31567-80. [PMID: 24043618 PMCID: PMC3814753 DOI: 10.1074/jbc.m113.502195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
RAD54, an important homologous recombination protein, is a member of the SWI2/SNF2 family of ATPase-dependent DNA translocases. In vitro, RAD54 stimulates RAD51-mediated DNA strand exchange and promotes branch migration of Holliday junctions. It is thought that an ATPase-dependent DNA translocation is required for both of these RAD54 activities. Here we identified, by high-throughput screening, a specific RAD54 inhibitor, streptonigrin (SN), and used it to investigate the mechanisms of RAD54 activities. We found that SN specifically targets the RAD54 ATPase, but not DNA binding, through direct interaction with RAD54 and generation of reactive oxygen species. Consistent with the dependence of branch migration (BM) on the ATPase-dependent DNA translocation of RAD54, SN inhibited RAD54 BM. Surprisingly, the ability of RAD54 to stimulate RAD51 DNA strand exchange was not significantly affected by SN, indicating a relatively smaller role of RAD54 DNA translocation in this process. Thus, the use of SN enabled us to identify important differences in the effect of the RAD54 ATPase and DNA translocation on two major activities of RAD54, BM of Holliday junctions and stimulation of DNA pairing.
Collapse
Affiliation(s)
- Julianna S. Deakyne
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Fei Huang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Joseph Negri
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Nicola Tolliday
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Alexander V. Mazin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
27
|
Totsingan F, Bell AJ. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions. Protein Sci 2013; 22:1552-62. [PMID: 23963921 DOI: 10.1002/pro.2342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.
Collapse
|
28
|
Bazhulina NP, Surovaya AN, Gursky YG, Andronova VL, Moiseeva ED, Nikitin CACM, Golovkin MV, Galegov GА, Grokhovsky SL, Gursky GV. Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. J Biomol Struct Dyn 2013; 32:1456-73. [PMID: 23879454 PMCID: PMC4066892 DOI: 10.1080/07391102.2013.820110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80 bp). The protein also binds to a single-stranded DNA (OriS*) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3'-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5'- and 3'- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А + Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied.
Collapse
Affiliation(s)
- N P Bazhulina
- a V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , ul. Vavilova 32, 119991 , Moscow , Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wienk H, Slootweg JC, Speerstra S, Kaptein R, Boelens R, Folkers GE. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition. Nucleic Acids Res 2013; 41:6739-49. [PMID: 23661679 PMCID: PMC3711432 DOI: 10.1093/nar/gkt354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center For Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Rideout MC, Naili I, Boldt JL, Flores-Fujimoto A, Patra S, Rostron JE, Segall AM. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2. Peptides 2013; 40:112-22. [PMID: 23291222 PMCID: PMC3646928 DOI: 10.1016/j.peptides.2012.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022]
Abstract
DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Ilham Naili
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jeffrey L. Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - America Flores-Fujimoto
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: , Phone: (619) 594-6528, Fax: (619) 594-5676
| |
Collapse
|
31
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
32
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
33
|
Sluijter M, Estevão S, Hoogenboezem T, Hartwig NG, van Rossum AMC, Vink C. The RuvA homologues from Mycoplasma genitalium and Mycoplasma pneumoniae exhibit unique functional characteristics. PLoS One 2012; 7:e38301. [PMID: 22666500 PMCID: PMC3364216 DOI: 10.1371/journal.pone.0038301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The DNA recombination and repair machineries of Mycoplasma genitalium and Mycoplasma pneumoniae differ considerably from those of gram-positive and gram-negative bacteria. Most notably, M. pneumoniae is unable to express a functional RecU Holliday junction (HJ) resolvase. In addition, the RuvB homologues from both M. pneumoniae and M. genitalium only exhibit DNA helicase activity but not HJ branch migration activity in vitro. To identify a putative role of the RuvA homologues of these mycoplasmas in DNA recombination, both proteins (RuvAMpn and RuvAMge, respectively) were studied for their ability to bind DNA and to interact with RuvB and RecU. In spite of a high level of sequence conservation between RuvAMpn and RuvAMge (68.8% identity), substantial differences were found between these proteins in their activities. First, RuvAMge was found to preferentially bind to HJs, whereas RuvAMpn displayed similar affinities for both HJs and single-stranded DNA. Second, while RuvAMpn is able to form two distinct complexes with HJs, RuvAMge only produced a single HJ complex. Third, RuvAMge stimulated the DNA helicase and ATPase activities of RuvBMge, whereas RuvAMpn did not augment RuvB activity. Finally, while both RuvAMge and RecUMge efficiently bind to HJs, they did not compete with each other for HJ binding, but formed stable complexes with HJs over a wide protein concentration range. This interaction, however, resulted in inhibition of the HJ resolution activity of RecUMge.
Collapse
Affiliation(s)
- Marcel Sluijter
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Silvia Estevão
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Theo Hoogenboezem
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Nico G. Hartwig
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Annemarie M. C. van Rossum
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cornelis Vink
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Das D, Folkers GE, van Dijk M, Jaspers NGJ, Hoeijmakers JHJ, Kaptein R, Boelens R. The structure of the XPF-ssDNA complex underscores the distinct roles of the XPF and ERCC1 helix- hairpin-helix domains in ss/ds DNA recognition. Structure 2012; 20:667-75. [PMID: 22483113 DOI: 10.1016/j.str.2012.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/22/2012] [Accepted: 02/17/2012] [Indexed: 11/26/2022]
Abstract
Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction.
Collapse
Affiliation(s)
- Devashish Das
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Ofer I. Wilner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Khanduja JS, Muniyappa K. Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J Biol Chem 2012; 287:1345-60. [PMID: 22094465 PMCID: PMC3256873 DOI: 10.1074/jbc.m111.304741] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/14/2011] [Indexed: 11/06/2022] Open
Abstract
Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins.
Collapse
Affiliation(s)
- Jasbeer Singh Khanduja
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Fukui K, Kuramitsu S. Structure and Function of the Small MutS-Related Domain. Mol Biol Int 2011; 2011:691735. [PMID: 22091410 PMCID: PMC3200294 DOI: 10.4061/2011/691735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/13/2011] [Indexed: 01/04/2023] Open
Abstract
MutS family proteins are widely distributed in almost all organisms from bacteria to human and play central roles in various DNA transactions such as DNA mismatch repair and recombinational events. The small MutS-related (Smr) domain was originally found in the C-terminal domain of an antirecombination protein, MutS2, a member of the MutS family. MutS2 is thought to suppress homologous recombination by endonucleolytic resolution of early intermediates in the process. The endonuclease activity of MutS2 is derived from the Smr domain. Interestingly, sequences homologous to the Smr domain are abundant in a variety of proteins other than MutS2 and can be classified into 3 subfamilies. Recently, the tertiary structures and endonuclease activities of all 3 Smr subfamilies were reported. In this paper, we review the biochemical characteristics and structures of the Smr domains as well as cellular functions of the Smr-containing proteins.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | |
Collapse
|
39
|
Mislocalization or low expression of mutated Shwachman–Bodian–Diamond syndrome protein. Int J Hematol 2011; 94:54-62. [DOI: 10.1007/s12185-011-0880-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/27/2022]
|
40
|
Bradley AS, Baharoglu Z, Niewiarowski A, Michel B, Tsaneva IR. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. J Biol Chem 2011; 286:22372-83. [PMID: 21531731 DOI: 10.1074/jbc.m111.233908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.
Collapse
Affiliation(s)
- Alison S Bradley
- Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Ishida H. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. J Comput Chem 2010; 31:2317-29. [PMID: 20575014 DOI: 10.1002/jcc.21525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Branch migration of the Holliday junction takes place at the center of the RuvA tetramer. To elucidate how branch migration occurs, umbrella sampling simulations were performed for complexes of the RuvA tetramer and Holliday junction DNA. Although conventional umbrella sampling simulations set sampling points a priori, the umbrella sampling simulation in this study set the sampling points one by one in order to search for a realistic path of the branch migration during the simulations. Starting from the X-ray structure of the complex, in which the hydrogen bonds between two base-pairs were unformed, the hydrogen bonds between the next base-pairs of the shrinking stems were observed to start to disconnect. At the intermediate stage, three or four of the eight unpaired bases interacted closely with the acidic pins from RuvA. During the final stage, these bases moved away from the pins and formed the hydrogen bonds of the new base-pairs of the growing stems. The free-energy profile along this reaction path showed that the intermediate stage was a meta-stable state between two free-energy barriers of about 10 to 15 kcal/mol. These results imply that the pins play an important role in stabilizing the interactions between the pins and the unpaired base-pairs.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
| |
Collapse
|
42
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
44
|
Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 2010; 18:177-87. [PMID: 20159463 DOI: 10.1016/j.str.2009.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
Abstract
The RecQ family of DNA helicases including WRN (Werner syndrome protein) and BLM (Bloom syndrome protein) protects the genome against deleterious changes. Here we report the cocrystal structure of the RecQ C-terminal (RQC) domain of human WRN bound to a DNA duplex. In the complex, the RQC domain specifically interacted with a blunt end of the duplex and, surprisingly, unpaired a Watson-Crick base pair in the absence of an ATPase domain. The beta wing, an extended hairpin motif that is characteristic of winged-helix motifs, was used as a "separating knife" to wedge between the first and second base pairs, whereas the recognition helix, a principal component of helix-turn-helix motifs that are usually embedded within DNA grooves, was unprecedentedly excluded from the interaction. Our results demonstrate a function of the winged-helix motif central to the helicase reaction, establishing the first structural paradigm concerning the DNA structure-specific activities of the RecQ helicases.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
45
|
Vindigni A, Marino F, Gileadi O. Probing the structural basis of RecQ helicase function. Biophys Chem 2010; 149:67-77. [PMID: 20392558 DOI: 10.1016/j.bpc.2010.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 01/10/2023]
Abstract
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.
Collapse
Affiliation(s)
- Alessandro Vindigni
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | | | |
Collapse
|
46
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
48
|
Hutton RD, Craggs TD, White MF, Penedo JC. PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Res 2009; 38:1664-75. [PMID: 20008103 PMCID: PMC2836553 DOI: 10.1093/nar/gkp1104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
XPF is a structure-specific endonuclease that preferentially cleaves 3′ DNA flaps during a variety of repair processes. The crystal structure of a crenarchaeal XPF protein bound to a DNA duplex yielded insights into how XPF might recognise branched DNA structures, and recent kinetic data have demonstrated that the sliding clamp PCNA acts as an essential cofactor, possibly by allowing XPF to distort the DNA structure into a proper conformation for efficient cleavage to occur. Here, we investigate the solution structure of the 3′-flap substrate bound to XPF in the presence and absence of PCNA using intramolecular Förster resonance energy transfer (FRET). We demonstrate that recognition of the flap substrate by XPF involves major conformational changes of the DNA, including a 90° kink of the DNA duplex and organization of the single-stranded flap. In the presence of PCNA, there is a further substantial reorganization of the flap substrate bound to XPF, providing a structural basis for the observation that PCNA has an essential catalytic role in this system. The wider implications of these observations for the plethora of PCNA-dependent enzymes are discussed.
Collapse
Affiliation(s)
- Richard D Hutton
- Centre for Biomolecular Sciences and School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | | | | | | |
Collapse
|
49
|
Hong J, Zhang J, Liu Z, Qin S, Wu J, Shi Y. Solution Structure of S. cerevisiae PDCD5-Like Protein and Its Promoting Role in H2O2-Induced Apoptosis in Yeast. Biochemistry 2009; 48:6824-34. [DOI: 10.1021/bi900488n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jingjun Hong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zhijun Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Su Qin
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| |
Collapse
|
50
|
Prabu JR, Thamotharan S, Khanduja JS, Chandra NR, Muniyappa K, Vijayan M. Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA Additional role of RuvB-binding domain and inter species variability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1001-9. [PMID: 19374958 DOI: 10.1016/j.bbapap.2009.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/28/2022]
Abstract
RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications.
Collapse
Affiliation(s)
- J Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|