1
|
Xi X, Ruffieux H. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. Biostatistics 2024; 26:kxae021. [PMID: 38916966 PMCID: PMC11823055 DOI: 10.1093/biostatistics/kxae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/11/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.
Collapse
Affiliation(s)
- Xiaoyue Xi
- MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SR, United Kingdom
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
2
|
Zhang Y, Miao X, Liu F, Shi H, Chen D, Chen Y, Ma Y, Shi H. ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury. Cell Biol Toxicol 2024; 40:102. [PMID: 39576443 PMCID: PMC11584427 DOI: 10.1007/s10565-024-09925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 11/24/2024]
Abstract
The initial stage of alcoholic liver disease (ALD) is hepatic steatosis. Recent studies have highlighted a possible role for Apoptosis-stimulating protein 2 of p53 (ASPP2) in regulating hepatic lipid metabolism in nonalcoholic fatty liver (NAFLD). However, whether ASPP2 regulates alcohol-induced lipid accumulation and its mechanisms remain unclear. To explore that, we establish an alcoholic liver injury model in vivo and in vitro. The clinical specimens were collected from liver tissues of patients with alcoholic liver disease. Lipid metabolism was detected by HE staining, oil red O staining and qPCR; and ASPP2-peroxisome proliferator-activated receptor γ (PPARγ) signaling pathways were detected by western blot and immunohistochemical staining. We found that both ASPP2 and PPARγ expression increased in patients and mouse models with ALD. We also discovered the reduction of ASPP2 significantly inhibited the expression of PPARγ and alleviated alcohol-induced hepatic lipid accumulation and liver injury in vivo and in vitro. Mechanistically, the PPARγ agonist reversed the protective effect of ASPP2 downregulation on hepatic steatosis and liver injury, while the opposite results were observed using PPARγ inhibitor. In conclusion, ASPP2 exacerbates ethanol-induced lipid accumulation and hepatic injury by upregulating the PPARγ signaling pathway, thus promoting the occurrence and development of ALD.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xingzhong Miao
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Hongbo Shi
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhang X, Xu L, Fan Z, Gao Y, Tian Y, Cao Y, Chen D, Ren F. Enhancing ASPP2 promotes acute liver injury via an inflammatory immunoregulatory mechanism. Front Immunol 2024; 15:1381735. [PMID: 38840923 PMCID: PMC11150554 DOI: 10.3389/fimmu.2024.1381735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Acute liver injury (ALI), which is a type of inflammation-mediated hepatocellular injury, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis. Apoptosis stimulating protein of p53-2 (ASPP2) is a proapoptotic member of the p53 binding protein family. However, the role of ASPP2 in the pathogenesis of ALI and its regulatory mechanisms remain unclear. Methods The expression of ASPP2 were compared between liver biopsies derived from patients with CHB, patients with ALI, and normal controls. Acute liver injury was modelled in mice by administration of D-GalN/LPS. Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. ASPP2-knockdown mice (ASPP2+/-) were used to determine its role in acute liver injury. Mouse bone marrow macrophages (BMMs) were isolated from wildtype and ASPP2+/- mice and stimulated with LPS, and the supernatant was collected to incubate with the primary hepatocytes. Quantitative real-time PCR and western blot were used to analyze the expression level of target. Results The expression of ASPP2 was significantly upregulated in the liver tissue of ALI patients and acute liver injury mice. ASPP2+/- mice significantly relieved liver injury through reducing liver inflammation and decreasing hepatocyte apoptosis. Moreover, the conditioned medium (CM) of ASPP2+/- bone marrow-derived macrophages (BMMs) protected hepatocytes against apoptosis. Mechanistically, we revealed that ASPP2 deficiency in BMMs specifically upregulated IL-6 through autophagy activation, which decreased the level of TNF-α to reduce hepatocytes apoptosis. Furthermore, up-regulation of ASPP2 sensitizes hepatocytes to TNF-α-induced apoptosis. Conclusion Our novel findings show the critical role of ASPP2 in inflammatory immunoregulatory mechanism of ALI and provide a rationale to target ASPP2 as a refined therapeutic strategy to ameliorate acute liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dexi Chen
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Guan G, Zhang T, Ning J, Tao C, Gao N, Zeng Z, Guo H, Chen CC, Yang J, Zhang J, Gu W, Yang E, Liu R, Guo X, Ren S, Wang L, Wei G, Zheng S, Gao Z, Chen X, Lu F, Chen X. Higher TP53BP2 expression is associated with HBsAg loss in peginterferon-α-treated patients with chronic hepatitis B. J Hepatol 2024; 80:41-52. [PMID: 37858684 DOI: 10.1016/j.jhep.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND & AIMS HBsAg loss is only observed in a small proportion of patients with chronic hepatitis B (CHB) who undergo interferon treatment. Investigating the host factors crucial for functional cure of CHB can aid in identifying individuals who would benefit from peginterferon-α (Peg-IFNα) therapy. METHODS We conducted a genome-wide association study (GWAS) by enrolling 48 patients with CHB who achieved HBsAg loss after Peg-IFNα treatment and 47 patients who didn't. In the validation stage, we included 224 patients, of whom 90 had achieved HBsAg loss, to validate the identified significant single nucleotide polymorphisms. To verify the functional involvement of the candidate genes identified, we performed a series of in vitro and in vivo experiments. RESULTS GWAS results indicated a significant association between the rs7519753 C allele and serum HBsAg loss in patients with CHB after Peg-IFNα treatment (p = 4.85 × 10-8, odds ratio = 14.47). This association was also observed in two independent validation cohorts. Expression quantitative trait locus analysis revealed higher hepatic TP53BP2 expression in individuals carrying the rs7519753 C allele (p = 2.90 × 10-6). RNA-sequencing of liver biopsies from patients with CHB after Peg-IFNα treatment revealed that hepatic TP53BP2 levels were significantly higher in the HBsAg loss group compared to the HBsAg persistence group (p = 0.035). In vitro and in vivo experiments demonstrated that loss of TP53BP2 decreased interferon-stimulated gene levels and the anti-HBV effect of IFN-α. Mechanistically, TP53BP2 was found to downregulate SOCS2, thereby facilitating JAK/STAT signaling. CONCLUSION The rs7519753 C allele is associated with elevated hepatic TP53BP2 expression and an increased probability of serum HBsAg loss post-Peg-IFNα treatment in patients with CHB. TP53BP2 enhances the response of the hepatocyte to IFN-α by suppressing SOCS2 expression. IMPACT AND IMPLICATIONS Chronic hepatitis B (CHB) remains a global public health issue. Although current antiviral therapies are more effective in halting disease progression, only a few patients achieve functional cure for hepatitis B with HBsAg loss, highlighting the urgent need for a cure for CHB. This study revealed that the rs7519753 C allele, which is associated with high expression of hepatic TP53BP2, significantly increases the likelihood of serum HBsAg loss in patients with CHB undergoing Peg-IFNα treatment. This finding not only provides a promising predictor for HBsAg loss but identifies a potential therapeutic target for Peg-IFNα treatment. We believe our results are of great interest to a wide range of stakeholders based on their potential clinical implications.
Collapse
Affiliation(s)
- Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Changyu Tao
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huili Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chia-Chen Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; National Heart and Lung Institute Faculty of Medicine (NHLI), Imperial College London, Hammersmith campus, W12 0NN, London, UK
| | - Jing Yang
- School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weilin Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ren Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaosen Guo
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen 518083, China
| | - Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guochao Wei
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
6
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
7
|
Smirnov A, Magri A, Lotz R, Han X, Yin C, Harris M, Osterburg C, Dötsch V, McKeating JA, Lu X. ASPP2 binds to hepatitis C virus NS5A protein via an SH3 domain/PxxP motif-mediated interaction and potentiates infection. J Gen Virol 2023; 104:10.1099/jgv.0.001895. [PMID: 37750869 PMCID: PMC7615710 DOI: 10.1099/jgv.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.
Collapse
Affiliation(s)
- Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Rome 00133, Italy
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xiaoyue Han
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
8
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
9
|
Tanagala KKK, Morin-Baxter J, Carvajal R, Cheema M, Dubey S, Nakagawa H, Yoon A, Cheng YSL, Taylor A, Nickerson J, Mintz A, Momen-Heravi F. SP140 inhibits STAT1 signaling, induces IFN-γ in tumor-associated macrophages, and is a predictive biomarker of immunotherapy response. J Immunother Cancer 2022; 10:e005088. [PMID: 36600652 PMCID: PMC9748993 DOI: 10.1136/jitc-2022-005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the role and potential therapeutic targeting of tumor-associated macrophages (TAMs) is crucial to developing new biomarkers and therapeutic strategies for cancer immunotherapies. The epigenetic reader SP140 has emerged as a master regulator of macrophage transcriptional programs; however, its role in the signaling of TAMs and response to immunotherapy has not been investigated. METHODS We evaluated the correlation between SP140 expression in head and neck squamous cell carcinoma (HNSCC) TAMs and clinical outcomes. We also used complementary bioinformatics and experimental approaches to study the association of SP140 expression with tumor mutation burden, patient survival, immunogenic signature of tumors, and signaling of TAMs. SP140 overexpression or knockdown was implemented to identify the role of SP140 in downstream signaling and production of inflammatory cytokine and chemokines. Chromatin immunoprecipitation and analysis of assay of transposase accessible chromatin sequencing data were used to demonstrate the direct binding of SP140 on the promoters of STAT1. Finally, correlation of SP140 with immune cell infiltrates and response to immune-checkpoint blockade in independent cohorts of HNSCC, metastatic melanoma, and melanoma was assessed. RESULTS We found that SP140 is highly expressed in TAMs across many cancer types, including HNSCCs. Interestingly, higher expression of SP140 in the tumors was associated with higher tumor mutation burden, improved survival, and a favorable response to immunotherapy. Tumors with high SP140 expression showed enrichment of inflammatory response and interferon-gamma (IFN-γ) pathways in both pan-cancer analysis and HNSCC-specific analysis. Mechanistically, SP140 negatively regulates transcription and phosphorylation of STAT1 and induces IFN-γ signaling. Activating SP140 in macrophages and TAMs induced the proinflammatory macrophage phenotype, increased the antitumor activity of macrophages, and increased the production of IFN-γ and antitumor cytokines and chemokines including interleukin-12 and CXCL10. SP140 expression provided higher sensitivity and specificity to predict antiprogrammed cell death protein 1 immunotherapy response compared with programmed death-ligand 1 in HNSCCs and lung cancer. In metastatic melanoma, higher levels of SP140 were associated with a durable response to immunotherapy, higher immune score estimates, high infiltrations of CD8+ T cells, and inflammatory TAMs. CONCLUSIONS Our findings suggest that SP140 could serve as both a therapeutic target and a biomarker to identify immunotherapy responders.
Collapse
Affiliation(s)
- Kranthi Kiran Kishore Tanagala
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Joshua Morin-Baxter
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard Carvajal
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York, USA
| | - Maryum Cheema
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sunil Dubey
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Angela Yoon
- Department of Stomatology, Division of Diagnostic science and Services, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yi-Shing L Cheng
- Department of Diagnostic Sciences, Texas A&M University System, Dallas, Texas, USA
| | - Alison Taylor
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jeffrey Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Akiva Mintz
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Huo Y, Cao K, Kou B, Chai M, Dou S, Chen D, Shi Y, Liu X. TP53BP2: Roles in suppressing tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492707 PMCID: PMC10363587 DOI: 10.1016/j.gendis.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Malignant tumor is still a major problem worldwide. During tumorigenesis or tumor development, tumor suppressor p53-binding protein 2 (TP53BP2), also known as apoptosis stimulating protein 2 of p53 (ASPP2), plays a critical role in p53 dependent and independent manner. Expression of TP53BP2 is highly correlated with the prognosis and survival rate of malignant tumor patients. TP53BP2 can interact with p53, NF-κB p65, Bcl-2, HCV core protein, PP1, YAP, CagA, RAS, PAR3, and other proteins to regulate cell function. Moreover, TP53BP2 can also regulate the proliferation, apoptosis, autophagy, migration, EMT and drug resistance of tumor cells through downstream signaling pathways, such as NF-κB, RAS/MAPK, mevalonate, TGF-β1, PI3K/AKT, aPKC-ι/GLI1 and autophagy pathways. As a potential therapeutic target, TP53BP2 has been attracted more attention. We review the role of TP53BP2 in tumorigenesis or tumor development and the signal pathway involved in TP53BP2, which may provide more deep insight and strategies for tumor treatment.
Collapse
|
11
|
ASPP2 reduction attenuates HBV induced chronic liver damage: A hybrid mouse model study. Biochem Biophys Res Commun 2022; 610:61-69. [DOI: 10.1016/j.bbrc.2022.03.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
12
|
Yao J, Yang H, Wang H, Shi H, Jiao Y, Zhang Y, Chen D, Shi H. ASPP2 Coordinates ERS-Mediated Autophagy and Apoptosis Through mTORC1 Pathway in Hepatocyte Injury Induced by TNF-α. Front Pharmacol 2022; 13:865389. [PMID: 35418864 PMCID: PMC8996113 DOI: 10.3389/fphar.2022.865389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Though ASPP2 plays an important role in regulating cell apoptosis and autophagy in case of liver injury, there remains a lack of clarity on the molecular mechanism of ASPP2 regulating autophagy and apoptosis. Methods: A hepatocyte injury model was constructed using HL7702 cell line and TNF-α. The cells were treated by ASPP2 overexpression adenovirus or short hairpin RNA lentivirus and endoplasmic reticulum stress (ERS) or the mammalian target of rapamycin (mTOR) inhibitor or agonist, respectively. The autophagy was detected by means of western blot and Green fluorescent protein-labeled- Microtubule-associated protein light chain 3 (GFP-LC3) plasmid transfection, while the apoptosis was detected through western blot, flow cytometry and TUNEL assay. Besides, the proteins related to ERS and mTOR were detected by western blot. Results: The low level of ASPP2 expression was accompanied by high-level autophagy and low-level apoptosis and vice versa in case of hepatocyte injury induce by TNF-α. By upregulating the proteins related to mTORC1 and ERS, ASPP2 induced apoptosis but inhibited autophagy. However, the effect of ASPP2 on autophagy and apoptosis can be reversed by the use of mTORC1 and ERS interfering agent, which indicates that ASPP2 regulated autophagy and apoptosis through mTORC1and ERS pathway. ERS treatment made no difference to the expression of ASPP2 and mTOR-related proteins, which suggests the possibility that the regulation of ERS on apoptosis and autophagy could occur in the downstream of ASPP2 and mTOR. Conclusion: ASPP2 could inhibit autophagy and induce apoptosis through mTORC1-ERS pathway in case of the hepatocyte injury induce by TNF-α. The role of ASPP2-mTORC1-ERS axis was verified in hepatocyte injury, which suggests the possibility that ASPP2 is an important regulatory molecule for the survival and death of hepatocyte.
Collapse
Affiliation(s)
- Jia Yao
- Gastroenterology Department, General Surgery Department and Gastroenterology Department, ShanxiBethuneHospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Nephrology, Army Medical Center, Army Medical University, Chongqing, China
| | - Han Wang
- Gastroenterology Department, General Surgery Department and Gastroenterology Department, ShanxiBethuneHospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Yan Jiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Ying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
13
|
Knockout of ASPP2 promotes DEN-induced hepatocarcinogenesis via the NF-κB pathway in mice. Cancer Gene Ther 2021; 29:202-214. [PMID: 33558702 PMCID: PMC8850195 DOI: 10.1038/s41417-021-00300-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Apoptosis-stimulating protein p53 2 (ASPP2) is a member of the p53-binding protein family, which is closely related to tumor development. However, the precise mechanism of ASPP2 in liver inflammation and tumorigenesis remains largely unclear. We aimed to characterize the mechanistic significance and clinical implication of ASPP2 in hepatitis and hepatocellular carcinoma (HCC). In this study, ASPP2 knockout (APKO) mice were generated to confirm the role of ASPP2 in the development of hepatitis and HCC. Liver tissues from mice were analyzed by immunohistochemistry, Western blotting, proteomic analysis, ChIP-Seq, and qRT-PCR to evaluate the role of ASPP2 in DEN-induced hepatitis and HCC. We found that APKO promoted the formation of hepatitis/hepatocarcinoma and the increased expression of proinflammatory factors. The proteomics and Western blotting results showed that APKO activated the NF-κB signaling pathway. Further, ChIP-Seq results revealed that NF-κB target genes were dramatically increased in APKO mice. In contrast, blockade of the NF-κB pathway by QNZ reduced the expression of proinflammatory factors and the susceptibility of APKO mice to DEN-induced hepatocarcinogenesis. These results suggested that the absence of ASPP2 activates the NF-κB pathway to promote the occurrence of DEN-induced hepatocarcinogenesis, indicating that ASPP2 may be a potential target for the treatment of hepatocarcinoma.
Collapse
|
14
|
Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
The choroid plexus (CP) is located in the ventricular system of the brain (one in each ventricle), and the CP epithelial cells form an important barrier between the blood and the cerebrospinal fluid (CSF). Their main function comprises CSF secretion, maintenance of brain homeostasis, signalling, and forming a neuroprotective barrier against harmful external and internal compounds. The CPs mature early and demonstrate expressional changes of barrier-specific genes and proteins related to location and developmental stage of the CP. Important proteins for the barrier function include tight junction proteins, numerous transporters and enzymes. Natural senescence leads to structural changes in the CP cells and reduced or loss of function, while further loss of CP function and changes in immune status may be relevant in neurodegenerative diseases such as Alzheimer's disease and Multiple Sclerosis. Neuroprotective genes expressed at CPs may be unexplored targets for new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Kratzer
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CNRS UMR 5292, University Claude Bernard Lyon 1, 69008 Lyon, France; Friedensgasse 3, 8010 Graz, Austria.
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 40530 Göteborg, Sweden.
| | - Helen Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW0 1TU, UK.
| |
Collapse
|
15
|
CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci U S A 2020; 117:2645-2655. [PMID: 31964836 DOI: 10.1073/pnas.1908787117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.
Collapse
|
16
|
Kaplan N, Dong Y, Wang S, Yang W, Park JK, Wang J, Fiolek E, Perez White B, Chandel NS, Peng H, Lavker RM. FIH-1 engages novel binding partners to positively influence epithelial proliferation via p63. FASEB J 2019; 34:525-539. [PMID: 31914679 DOI: 10.1096/fj.201901512r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Whereas much is known about the genes regulated by ΔNp63α in keratinocytes, how ΔNp63α is regulated is less clear. During studies with the hydroxylase, factor inhibiting hypoxia-inducible factor 1 (FIH-1), we observed increases in epidermal ΔNp63α expression along with proliferative capacity in a conditional FIH-1 transgenic mouse. Conversely, loss of FIH-1 in vivo and in vitro attenuated ΔNp63α expression. To elucidate the FIH-1/p63 relationship, BioID proteomics assays identified FIH-1 binding partners that had the potential to regulate p63 expression. FIH-1 interacts with two previously unknown partners, Plectin1 and signal transducer and activator of transcription 1 (STAT1) leading to the regulation of ΔNp63α expression. Two known interactors of FIH-1, apoptosis-stimulating of P53 protein 2 (ASPP2) and histone deacetylase 1 (HDAC1), were also identified. Knockdown of ASPP2 upregulated ΔNp63α and reversed the decrease in ΔNp63α by FIH-1 depletion. Additionally, FIH-1 regulates growth arrest and DNA damage-45 alpha (GADD45α), a negative regulator of ΔNp63α by interacting with HDAC1. GADD45α knockdown rescued reduction in ΔNp63α by FIH-1 depletion. Collectively, our data reveal that FIH-1 positively regulates ΔNp63α in keratinocytes via variety of signaling partners: (a) Plectin1/STAT1, (b) ASPP2, and (c) HDAC1/GADD45α signaling pathways.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Sijia Wang
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Jong Kook Park
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Biomedical Science, College of Natural Sciences #8403, Hallym University, Chuncheon, Republic of Korea
| | - Junyi Wang
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Elaina Fiolek
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | | | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma. Cell Death Dis 2019; 10:830. [PMID: 31685796 PMCID: PMC6828733 DOI: 10.1038/s41419-019-2054-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Cancer is, fundamentally, a disorder of cell growth and proliferation, which requires adequate supplies of energy and nutrients. In this study, we report that the haplo-insufficient tumor suppressor ASPP2, a p53 activator, negatively regulates the mevalonate pathway to mediate its inhibitory effect on tumor growth in hepatocellular carcinoma (HCC). Gene expression profile analysis revealed that the expression of key enzymes in the mevalonate pathway were increased when ASPP2 was downregulated. HCC cells gained higher cholesterol levels and enhanced tumor-initiating capability in response to the depletion of ASPP2. Simvastatin, a mevalonate pathway inhibitor, efficiently abrogated ASPP2 depletion-induced anchorage-independent cell proliferation, resistance to chemotherapy drugs in vitro, and tumor growth in xenografted nude mice. Mechanistically, ASPP2 interacts with SREBP-2 in the nucleus and restricts the transcriptional activity of SREBP-2 on its target genes, which include key enzymes involved in the mevalonate pathway. Moreover, clinical data revealed better prognosis in patients with high levels of ASPP2 and low levels of the mevalonate pathway enzyme HMGCR. Our findings provide functional and mechanistic insights into the critical role of ASPP2 in the regulation of the mevalonate pathway and the importance of this pathway in tumor initiation and tumor growth, which may provide a new therapeutic opportunity for HCC.
Collapse
|
18
|
Pang Y, Pan L, Zhang Y, Liu G. TP53BP2 decreases cell proliferation and induces autophagy in neuroblastoma cell lines. Oncol Lett 2019; 17:4976-4984. [PMID: 31186708 PMCID: PMC6507348 DOI: 10.3892/ol.2019.10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor protein p53-binding protein 2 (TP53BP2), a member of the apoptosis-stimulating protein of p53 (ASPP) family, has previously been reported to be associated with tumor development. However, to the best of our knowledge, the role of TP53BP2 in neuroblastoma has not been elucidated. The aim of the present study was to investigate the function of TP53BP2 in the proliferation and autophagy of neuroblastoma. An expression vector that expresses TP53BP2-specific short hairpin RNA (shTP53BP2) was used for the experimental group and green fluorescent protein short hairpin RNA was used as a control. Cell proliferation was measured using MTT assays, self-renewal was evaluated using soft agar assays, light chain 3 (LC3) II expression level was examined by western blot and immunofluorescence analysis, and the autophagy-related 3 homolog (ATG3), autophagy-related 5 homolog (ATG5) and autophagy-related 9 homolog (ATG7) expression levels were examined using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A genomics analysis revealed that TP53BP2 expression was associated with the survival of patients with neuroblastoma. Western blot and RT-qPCR assays indicated that TP53BP2 could be implicated in neuroblastoma, as the proliferative ability of the experimental group decreased compared with that of the control group (P<0.001) and the expression levels of genes associated with autophagy, including LC3 II. ATG3, ATG5 and ATG7, increased in the experimental group. In conclusion, an increased expression of TP53BP2 in patients with neuroblastoma may be associated with poor survival and shTP53BP2 may decrease the proliferative abilities of neuroblastoma cells, including BE(2)C and SK-N-DZ cell lines. In addition, the LC3 II, ATG3, ATG5 and ATG7 expression levels increased and were associated with increased rates of autophagy following upregulation of TP53BP2.
Collapse
Affiliation(s)
- Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| | - Lianhong Pan
- National Innovation and Attracting Talents '111' Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400030, P.R. China
| | - Yonghui Zhang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| | - Guiyuan Liu
- General Surgery Department, The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing 404110, P.R. China
| |
Collapse
|
19
|
Ji J, Zhou X, Xu P, Li Y, Shi H, Chen D, Li R, Shi H. Deficiency of apoptosis-stimulating protein two of p53 ameliorates acute kidney injury induced by ischemia reperfusion in mice through upregulation of autophagy. J Cell Mol Med 2019; 23:2457-2467. [PMID: 30675758 PMCID: PMC6433670 DOI: 10.1111/jcmm.14094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/04/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) has become a common disorder with a high risk of morbidity and mortality, which remains major medical problem without reliable and effective therapeutic intervention. Apoptosis-stimulating protein two of p53 (ASPP2) is a proapoptotic member that belongs to p53 binding protein family, which plays a key role in regulating apoptosis and cell growth. However, the role of ASPP2 in AKI has not been reported. To explore the role of ASPP2 in the progression of AKI, we prepared an AKI mouse model induced by ischaemia reperfusion (I/R) in wild-type (ASPP2+/+ ) mice and ASPP2 haploinsufficient (ASPP2+/- ) mice. The expression profile of ASPP2 were examined in wild-type mice. The renal injury, inflammation response, cellular apoptosis and autophagic pathway was assessed in ASPP2+/+ and ASPP2+/- mice. The renal injury, inflammation response and cellular apoptosis was analysed in ASPP2+/+ and ASPP2+/- mice treated with 3-methyladenine or vehicle. The expression profile of ASPP2 showed an increase at the early stage while a decrease at the late stage during renal injury. Compared with ASPP2+/+ mice, ASPP2 deficiency protected mice against renal injury induced by I/R, which mainly exhibited in slighter histologic changes, lower levels of blood urea nitrogen and serum creatinine, and less apoptosis as well as inflammatory response. Furthermore, ASPP2 deficiency enhanced autophagic activity reflecting in the light chain 3-II conversion and p62 degradation, while the inhibition of autophagy reversed the protective effect of ASPP2 deficiency on AKI. These data suggest that downregulation of ASPP2 can ameliorate AKI induced by I/R through activating autophagy, which may provide a novel therapeutic strage for AKI.
Collapse
Affiliation(s)
- Jing Ji
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Capital Medical University, Beijing, China.,Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoshuang Zhou
- Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Ping Xu
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Capital Medical University, Beijing, China
| | - Yafeng Li
- Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Honglin Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Capital Medical University, Beijing, China
| | - Rongshan Li
- Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hongbo Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Lin FL, Yen JL, Kuo YC, Kang JJ, Cheng YW, Huang WJ, Hsiao G. HADC8 Inhibitor WK2-16 Therapeutically Targets Lipopolysaccharide-Induced Mouse Model of Neuroinflammation and Microglial Activation. Int J Mol Sci 2019; 20:ijms20020410. [PMID: 30669368 PMCID: PMC6359084 DOI: 10.3390/ijms20020410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Glial activation and neuroinflammatory processes play important roles in the pathogenesis of brain abscess and neurodegenerative diseases. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which contribute to the exacerbation of neuronal cell death. The inhibition of glial activation has been shown to alleviate neurodegenerative conditions. The present study was to investigate the specific HDAC8 inhibitor WK2-16, especially its effects on the neuroinflammatory responses through glial inactivation. WK2-16 significantly reduced the gelatinolytic activity of MMP-9, and expression of COX-2/iNOS proteins in striatal lipopolysaccharide (LPS)-induced neuroinflammation in C57BL/6 mice. The treatment of WK2-16 markedly improved neurobehavioral deficits. Immunofluorescent staining revealed that WK2-16 reduced LPS-stimulated astrogliosis and microglial activation in situ. Consistently, cellular studies revealed that WK2-16 significantly suppressed LPS-induced mouse microglia BV-2 cell proliferation. WK2-16 was proven to concentration-dependently induce the levels of acetylated SMC3 in microglial BV-2 cells. It also reduced the expression of COX-2/iNOS proteins and TNF-α production in LPS-activated microglial BV-2 cells. The signaling studies demonstrated that WK2-16 markedly inhibited LPS-activated STAT-1/-3 and Akt activation, but not NF-κB or MAPK signaling. In summary, the HDAC8 inhibitor WK2-16 exhibited neuroprotective effects through its anti-neuroinflammation and glial inactivation properties, especially in microglia in vitro and in vivo.
Collapse
Affiliation(s)
- Fan-Li Lin
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Yu-Cheng Kuo
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jaw-Jou Kang
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| |
Collapse
|
21
|
Shi H, Zhang Y, Ji J, Xu P, Shi H, Yue X, Ren F, Chen Y, Duan Z, Chen D. Deficiency of apoptosis-stimulating protein two of p53 promotes liver regeneration in mice by activating mammalian target of rapamycin. Sci Rep 2018; 8:17927. [PMID: 30560875 PMCID: PMC6298958 DOI: 10.1038/s41598-018-36208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Although liver regeneration has been intensively studied in various ways, the mechanisms underlying liver regeneration remain elusive. Apoptosis-stimulating protein two of p53 (ASPP2) was discovered as a binding partner of p53 and plays an important role in regulating cell apoptosis and growth. However, the role of ASPP2 in hepatocyte proliferation and liver regeneration has not been reported. The expression profile of ASPP2 was measured in a mouse model with 70% partial hepatectomy (PHX). Liver regeneration and hepatocyte proliferation were detected in wild-type (ASPP2+/+) and ASPP2 haploinsufficient (ASPP2+/-) mice with PHX. The mammalian target of rapamycin (mTOR) and autophagy pathways were analyzed in the ASPP2+/+ and ASPP2+/- mice with PHX. After rapamycin or 3-methyladenine (3-MA) treatment, hepatocyte proliferation and liver regeneration were analyzed in the ASPP2+/+ and ASPP2+/- mice with PHX. ASPP2 expression was shown to be upregulated at the early stage and downregulated at the late stage. Compared to the ASPP2+/+ mice, liver regeneration was enhanced in ASPP2+/- mice with 70% PHX. In addition, compared to the ASPP2+/+ mice, the mTORC1 pathway was significantly upregulated and the autophagic pathway was downregulated in ASPP2+/-mice with 70% PHX. Inhibition of the mTORC1 pathway significantly suppressed liver regeneration in ASPP2+/- mice with 70% PHX. In contrast, disruption of the autophagic pathway further enhanced liver regeneration in ASPP2+/- mice with 70% PHX. ASPP2 deficiency can promote liver regeneration through activating the mTORC1 pathway, which further regulates downstream molecules, such as those related to autophagy and p70S6K expression in mouse model post-PHX.
Collapse
Affiliation(s)
- Hongbo Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China.
| | - Yizhi Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Ji
- Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Ping Xu
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Honglin Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Xiujuan Yue
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Feng Ren
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Yu Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Dexi Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China.
| |
Collapse
|
22
|
Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG. The role of inflammation in subventricular zone cancer. Prog Neurobiol 2018; 170:37-52. [PMID: 29654835 DOI: 10.1016/j.pneurobio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.
Collapse
Affiliation(s)
- Chiara Bardella
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Abeer R Al-Shammari
- Research and Development, Qatar Research Leadership Program, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luana Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti‑neuroinflammatory mechanisms by inhibiting lipopolysaccharide‑induced microglial inflammation. Int J Mol Med 2018; 41:3033-3040. [PMID: 29436598 DOI: 10.3892/ijmm.2018.3479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kenny Gah Leong Voon
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
24
|
Liu B, Yang L, Li XJ, Li R, Sun W, Chen XY, Liu JC. Expression and significance of ASPP2 in squamous carcinoma of esophagus. Kaohsiung J Med Sci 2018; 34:321-329. [PMID: 29747775 DOI: 10.1016/j.kjms.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
To study the significance of apoptosis stimulating protein of P53 2 (ASPP2) expression in esophageal squamous cell carcinoma (ESCC), immunohistochemistry S-P method was used to examine the expression of ASPP2 in 136 cases of ESCC, 35 cases of high grade intraepithelial neoplasia (HGIN), 29 cases of low grade intraepithelial neoplasia (LGIN) and 37 cases of normal esophageal epithelium (NEE). The associations of ASPP2 expression with clinicopathological data and overall survival (OS) were also analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate ASPP2 expression in a total of 20 matched human ESCC tumor tissues and normal adjacent tissues (NAT). In addition, EC109 cells were treated with cisplatin (CDDP) in vitro for 24 h (the intervention group) and the control group was set up at the same time. Western blot was used to examine the expression of ASPP2 protein between the two groups. The expression of ASPP2 decreased progressively from NEE to LGIN, to HGIN, and to ESCC, and it was related to TNM stage, histological differentiation and lymph node metastasis in ESCC (P < 0.05). ASPP2 was a protective factor of patients with ESCC (P = 0.008). The relative expression of ASPP2 mRNA was markedly downregulated in ESCC compared with the paired NAT (P < 0.01). Western blot results showed that cells in the intervention group could express ASPP2 while there was no expression of ASPP2 in the control group. Taken together, these results indicate that the abnormal expression of ASPP2 may play an important role for development and metastasis in ESCC.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
| | - Lv Yang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Xiu-Juan Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Rou Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Wei Sun
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Xiao-Yi Chen
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
25
|
Zhang Y, Cheng Z, Yan WZ, Liu SF, Hu CH, Zhang GS. Molecular characterization and therapeutic reaction to dasatinib in a CML patient harboring a novel e8a2 BCR-ABL1 transcript with a somatic mutation in TP53BP2 and cadherin-10 genes. Leuk Lymphoma 2017; 59:233-236. [PMID: 28554234 DOI: 10.1080/10428194.2017.1323269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yang Zhang
- a Department of Oncology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Zhao Cheng
- b Department of Hematology, Institute of Molecular Hematology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Wen-Zhe Yan
- b Department of Hematology, Institute of Molecular Hematology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Su-Fang Liu
- b Department of Hematology, Institute of Molecular Hematology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Chun-Hong Hu
- a Department of Oncology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| | - Guang-Sen Zhang
- b Department of Hematology, Institute of Molecular Hematology , The Second Xiang-Ya Hospital, Central South University , Changsha , PR China
| |
Collapse
|
26
|
Gen Y, Yasui K, Kitaichi T, Iwai N, Terasaki K, Dohi O, Hashimoto H, Fukui H, Inada Y, Fukui A, Jo M, Moriguchi M, Nishikawa T, Umemura A, Yamaguchi K, Konishi H, Naito Y, Itoh Y. ASPP2 suppresses invasion and TGF-β1-induced epithelial-mesenchymal transition by inhibiting Smad7 degradation mediated by E3 ubiquitin ligase ITCH in gastric cancer. Cancer Lett 2017; 398:52-61. [PMID: 28400336 DOI: 10.1016/j.canlet.2017.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
ASPP2 regulates cell polarity and cell-cell adhesion by binding to, and co-localizing with PAR3 at tight junctions. Here we show a novel role of ASPP2 in suppressing gastric cancer (GC) invasiveness. Immunoprecipitation and immunofluorescence analyses showed that ASPP2 promoted the recruitment of PAR3 to cell-cell junctions in GC cells. Diminished expression of ASPP2 and loss of junctional PAR3 localization were significantly associated with diffuse-type histology, deeper invasion depth, positive peritoneal dissemination and worse prognosis in primary GC. ASPP2 suppressed migration and invasion of GC cells in vitro and peritoneal dissemination of GC cells in vivo in a mouse model. ASPP2 suppressed epithelial-mesenchymal transition (EMT) induced by TGF-β1-Smad2/3 signaling in GC cells through suppression of the degradation of Smad7, a negative regulator of TGF-β1-Smad2/3 signaling, by interacting with the E3 ubiquitin ligase ITCH. In conclusion, ASPP2 suppresses invasion, peritoneal dissemination and TGF-β1-induced EMT by inhibiting Smad7 degradation mediated by ITCH.
Collapse
Affiliation(s)
- Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hikaru Hashimoto
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Fukui
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Inada
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akifumi Fukui
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masayasu Jo
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
27
|
Van Hook K, Wang Z, Chen D, Nold C, Zhu Z, Anur P, Lee HJ, Yu Z, Sheppard B, Dai MS, Sears R, Spellman P, Lopez CD. ΔN-ASPP2, a novel isoform of the ASPP2 tumor suppressor, promotes cellular survival. Biochem Biophys Res Commun 2016; 482:1271-1277. [PMID: 27939881 DOI: 10.1016/j.bbrc.2016.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.
Collapse
Affiliation(s)
- Kathryn Van Hook
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiping Wang
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dexi Chen
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Casey Nold
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyi Zhu
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Pavana Anur
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hun-Joo Lee
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyong Yu
- Shandong Tumor Hospital and Institute, Jinan, 250117, China
| | - Brett Sheppard
- Department of Surgery and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie Sears
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Song Q, Song J, Wang Q, Ma Y, Sun N, Ma J, Chen Q, Xia G, Huo Y, Yang L, Li B. miR-548d-3p/TP53BP2 axis regulates the proliferation and apoptosis of breast cancer cells. Cancer Med 2015; 5:315-24. [PMID: 26663100 PMCID: PMC4735782 DOI: 10.1002/cam4.567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Fast growth and hardly any apoptosis are important characteristics of breast cancer, which assure the spread via invasion and metastasis of breast cancer cells. Inhibition of fast proliferation and induction of apoptosis are critical way to cure this cancer. microRNAs (miRNAs) had been increasingly reported to be the critical regulator of tumorigenesis. In our study, we found that increasing copy number of miR-548d-2-3p is critically involved poor prognosis. We overexpressed miR-548d-3p in MDA-MB-231cells and found that the proliferation was promoted significantly, whereas the inhibition of miR-548d-3p repressed the proliferation of MDA-MB-231 cells and also induced the increase in apoptosis. Additionally, we found that miR-548d-3p downregulated the expression of TP53BP2 by directly targeting the 3'UTR. We also found that knockdown of TP53BP2 significantly resorted the proliferation and apoptosis regulated by miR-548d-3p inhibitor. Our study showed that miR-548d-3p/TP53BP2 pathway is critically involved in the proliferation and apoptosis of breast cancer cells and may be new therapeutic target of breast cancer cells.
Collapse
Affiliation(s)
- Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Jiangqiang Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Qimin Wang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Yanling Ma
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Nai Sun
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Jieyu Ma
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Qiu Chen
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Guishan Xia
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Yanping Huo
- Department of Galactophore, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospita, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, China
| | - Baolin Li
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China
| |
Collapse
|
29
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|