1
|
de Haan S, He J, Corbat AA, Belicova L, Ratz M, Vinsland E, Frisén J, Kelley MW, Andersson ER. Ectoderm barcoding reveals neural and cochlear compartmentalization. Science 2025; 388:60-68. [PMID: 40179197 DOI: 10.1126/science.adq9248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Placodes and the neural crest are defining features of vertebrates. In this study, we investigate their lineages in mice using in utero approaches. We demonstrated that nanoinjection at embryonic day 7.5 targeted the ectoderm, including the future nervous system, placodes, and neural crest, allowing highly efficient manipulation of the future nervous system and inner ear. By using heritable DNA barcodes and high-throughput next-generation single-cell lineage tracing, we elucidated convergent differentiation pathways and identified distinct nervous system-, neural crest-, and otic placode-derived lineages. Clonal analyses identified early neural and cochlear compartmentalization, linking differentiated cell types to their progenitors or cellular siblings. This provides foundational insights for neuroscience and developmental biology.
Collapse
Affiliation(s)
- Sandra de Haan
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Agustin A Corbat
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Lenka Belicova
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Elin Vinsland
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
3
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development 2024; 151:dev202944. [PMID: 39045613 PMCID: PMC11361639 DOI: 10.1242/dev.202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates, including zebrafish, can robustly regenerate hair cells after severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here, we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and we observed gradual regeneration with correct spatial patterning over a 2-week period following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Eric D. Thomas
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588777. [PMID: 38645220 PMCID: PMC11030336 DOI: 10.1101/2024.04.09.588777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells uncoupled from progenitor division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
| | - Eric D. Thomas
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| |
Collapse
|
5
|
Kalmanson O, Takeda H, Anderson SR, Dondzillo A, Gubbels S. Nestin-expressing cells are mitotically active in the mammalian inner ear. Hear Res 2024; 443:108962. [PMID: 38295585 PMCID: PMC10922748 DOI: 10.1016/j.heares.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.
Collapse
Affiliation(s)
- Olivia Kalmanson
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hiroki Takeda
- Kumamoto University Graduate School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, Kumamoto University Graduate School of Medicine, Kumamoto City, Japan
| | - Sean R Anderson
- University of Colorado School of Medicine, Dept of Biophysics & Physiology, Aurora, CO 80045, USA
| | - Anna Dondzillo
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA
| | - Samuel Gubbels
- University of Colorado School of Medicine, Dept of Otolaryngology - Head and Neck Surgery, 12631 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
7
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
9
|
Kaur C, Van Orden M, O'Malley JT, Wu PZ, Liberman MC. Supporting-cell vs. hair-cell survival in the human cochlea: Implications for regenerative therapies. Hear Res 2023; 435:108815. [PMID: 37263113 PMCID: PMC10426718 DOI: 10.1016/j.heares.2023.108815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Animal studies have shown that the supporting-cells surviving in the organ of Corti after cochlear insult can be transdifferentiated into hair cells as a treatment for sensorineural hearing loss. Clinical trials of small-molecule therapeutics have been undertaken, but little is known about how to predict the pattern and degree of supporting-cell survival based on audiogram, hearing loss etiology or any other metric obtainable pre-mortem. To address this, we systematically assessed supporting-cell and hair cell survival, as a function of cochlear location in 274 temporal bone cases from the archives at the Massachusetts Eye and Ear and compared the histopathology with the audiograms and hearing-loss etiologies. Results showed that supporting-cell survival was always significantly greater in the apical half than the basal half of the cochlea, that inner pillars were more robust than outer pillars or Deiters' cells, and that total replacement of all supporting cells with a flat epithelium was rare outside of the extreme basal 20% of the cochlea. Supporting cell survival in the basal half of the cochlea was better correlated with the slope of the audiogram than with the mean high-frequency threshold per se: i.e. survival was better with flatter audiograms than with steeply down-sloping audiograms. Cochlear regions with extensive hair cell loss and exceptional supporting cell survival were most common in cases with hearing loss due to ototoxic drugs. Such cases also tended to have less pathology in other functionally critical structures, i.e. spiral ganglion neurons and the stria vascularis.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | | - Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Kaur C, Van Orden M, O’Malley JT, Wu PZ, Liberman MC. Supporting-cell vs. hair-cell survival in the human cochlea: Implications for regenerative therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538119. [PMID: 37163013 PMCID: PMC10168255 DOI: 10.1101/2023.04.24.538119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Animal studies have shown that the supporting-cells surviving in the organ of Corti after cochlear insult can be transdifferentiated into hair cells as a treatment for sensorineural hearing loss. Clinical trials of small-molecule therapeutics have been undertaken, but little is known about how to predict the pattern and degree of supporting-cell survival based on audiogram, hearing loss etiology or any other metric obtainable pre-mortem. To address this, we systematically assessed supporting-cell and hair cell survival, as a function of cochlear location in 274 temporal bone cases from the archives at the Massachusetts Eye and Ear and compared the histopathology with the audiograms and hearing-loss etiologies. Results showed that supporting-cell survival was always significantly greater in the apical half than the basal half of the cochlea, that inner pillars were more robust than outer pillars or Deiters' cells, and that total replacement of all supporting cells with a flat epithelium was rare outside of the extreme basal 20% of the cochlea. Supporting cell survival in the basal half of the cochlea was better correlated with the slope of the audiogram than with the mean high-frequency threshold per se: i.e. survival was better with flatter audiograms than with steeply down-sloping audiograms. Cochlear regions with extensive hair cell loss and exceptional supporting cell survival were most common in cases with hearing loss due to ototoxic drugs. Such cases also tended to have less pathology in other functionally critical structures, i.e. spiral ganglion neurons and the stria vascularis. Highlights Supporting cell survival was systematically assessed in 274 human cochleasSupporting cell survival was better with flat than with down-sloping audiogramsSupporting cell survival was most robust when hearing loss was from ototoxic drugsOtotoxic cases also showed less pathology in other critical cochlear structuresThe data can inform clinical trials for regeneration via supporting cell conversion.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| | | | - Jennifer T. O’Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114
| | - Pei-zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| | - M. Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, Sun S, He X, Wang Q, Ji Z, Cheng F, Yan K, Liu Z, Belmonte JCI, Qu J, Wang S, Chai R, Liu GH. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 2023; 14:180-201. [PMID: 36933008 PMCID: PMC10098046 DOI: 10.1093/procel/pwac058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Collapse
Affiliation(s)
- Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ziyi Liu
- Shandong Provincial Hospital and School of Laboratory Animal Science, Shandong First Medical University, Jinan 250000, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
12
|
Zhang M, Qu T, Liu S, Yu F, Fan L, Lin D, Zhang Q, Song F, Zhang M, Cui B, Zhang S. Ethylbenzene induces hearing loss by triggering mitochondrial impairments and excess apoptosis in cochlear progenitor cells via suppressing the Wnt/β-catenin signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114721. [PMID: 36950984 DOI: 10.1016/j.ecoenv.2023.114721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Ethylbenzene (EB) is widely distributed at low levels in the environment from vehicle emissions, industrial discharge, cigarette smoke, and in some food and consumer products. Evidence shows that EB exposure is associated with hearing loss, yet the mechanisms are unclear. This study aimed to explore the role of the Wnt/β-catenin signaling pathway, which plays a key role during cochlear development, in EB-induced hearing loss. In vitro, we found that EB treatment decreased the viability of cochlear progenitor cells (CPCs), isolated from the cochleae of neonatal rats and crucial for cochlear hair cells generation and hearing construction, via inducing mitochondrial impairments and excessive apoptosis. These were accompanied by the inactivation of the Wnt/β-catenin signaling cascade, as manifested by the decreased levels of related molecules β-catenin, LEF-1 and Lgr5. These findings were further confirmed by knocking down β-catenin and immunofluorescence analysis. Interestingly, adenovirus-mediated β-catenin overexpression activated the Wnt/β-catenin signaling network, alleviated mitochondrial impairments, reduced cell apoptosis, therefore promoting CPCs survival under EB treatment conditions. Finally, using adult Sprague-Dawley rats as an in vivo model with EB inhalation for 13 weeks, we found that exposure to EB decreased body weight gain, increased the hearing thresholds at different exposure stages, along with Wnt/β-catenin signaling pathway suppression in cochlear tissue. More importantly, cochlear microinjection of recombinant lentivirus expressing β-catenin significantly reversed EB-elicited these deleterious effects. Collectively, our results indicate that EB induces hearing loss by triggering mitochondrial impairments and excess apoptosis in CPCs via suppressing the Wnt/β-catenin signaling, and provide clues for the possible therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Occupational Health Comprehensive Management, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Tengjiao Qu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyu Liu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Fangjin Yu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Fan
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dafeng Lin
- Department of Occupational Health Comprehensive Management, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Qiang Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, Tianjin Key Laboratory of Cancer Prevention and Therapy, MOE Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meibian Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Davenport CM, Teubner BJW, Han SB, Patton MH, Eom TY, Garic D, Lansdell BJ, Shirinifard A, Chang TC, Klein J, Pruett-Miller SM, Blundon JA, Zakharenko SS. Innate frequency-discrimination hyperacuity in Williams-Beuren syndrome mice. Cell 2022; 185:3877-3895.e21. [PMID: 36152627 PMCID: PMC9588278 DOI: 10.1016/j.cell.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Collapse
Affiliation(s)
- Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dusan Garic
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin J Lansdell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Ontogeny of cellular organization and LGR5 expression in porcine cochlea revealed using tissue clearing and 3D imaging. iScience 2022; 25:104695. [PMID: 35865132 PMCID: PMC9294204 DOI: 10.1016/j.isci.2022.104695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Over 11% of the world's population experience hearing loss. Although there are promising studies to restore hearing in rodent models, the size, ontogeny, genetics, and frequency range of hearing of most rodents' cochlea do not match that of humans. The porcine cochlea can bridge this gap as it shares many anatomical, physiological, and genetic similarities with its human counterpart. Here, we provide a detailed methodology to process and image the porcine cochlea in 3D using tissue clearing and light-sheet microscopy. The resulting 3D images can be employed to compare cochleae across different ages and conditions, investigate the ontogeny of cochlear cytoarchitecture, and produce quantitative expression maps of LGR5, a marker of cochlear progenitors in mice. These data reveal that hair cell organization, inner ear morphology, cellular cartography in the organ of Corti, and spatiotemporal expression of LGR5 are dynamic over developmental stages in a pattern not previously documented.
Collapse
|
15
|
Bi Z, Li X, Ren M, Gu Y, Zhu T, Li S, Wang G, Sun S, Sun Y, Liu Z. Development and transdifferentiation into inner hair cells require Tbx2. Natl Sci Rev 2022; 9:nwac156. [PMID: 36687561 PMCID: PMC9844247 DOI: 10.1093/nsr/nwac156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
Atoh1 is essential for the development of both outer hair cells (OHCs) and inner hair cells (IHCs) in the mammalian cochlea. Whereas Ikzf2 is necessary for OHC development, the key gene required for IHC development remains unknown. We found that deletion of Tbx2 in neonatal IHCs led to their transdifferentiation into OHCs by repressing 26.7% of IHC genes and inducing 56.3% of OHC genes, including Ikzf2. More importantly, persistent expression of Tbx2 coupled with transient Atoh1 expression effectively reprogrammed non-sensory supporting cells into new IHCs expressing the functional IHC marker vGlut3. The differentiation status of these new IHCs was considerably more advanced than that previously reported. Thus, Tbx2 is essential for IHC development and co-upregulation of Tbx2 with Atoh1 in supporting cells represents a new approach for treating deafness related to IHC degeneration.
Collapse
Affiliation(s)
| | | | | | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
16
|
Lukashkina VA, Levic S, Simões P, Xu Z, DiGuiseppi JA, Zuo J, Lukashin AN, Russell IJ. In Vivo Optogenetics Reveals Control of Cochlear Electromechanical Responses by Supporting Cells. J Neurosci 2022; 42:5660-5671. [PMID: 35732495 PMCID: PMC9302466 DOI: 10.1523/jneurosci.2127-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023] Open
Abstract
Cochlear sensitivity, essential for communication and exploiting the acoustic environment, results from sensory-motor outer hair cells (OHCs) operating in a structural scaffold of supporting cells and extracellular cortilymph within the organ of Corti (OoC). Cochlear sensitivity control is hypothesized to involve interaction between the OHCs and OoC supporting cells (e.g., Deiters' cells [DCs] and outer pillar cells [OPCs]), but this has never been established in vivo Here, we conditionally expressed channelrhodopsins (ChR2) specifically in male and female mouse DCs and OPCs. Illumination of the OoC activated the nonselective ChR2 cation conductance and depolarized DCs when measured in vivo and in isolated OoC. Measurements of sound-induced cochlear mechanical and electrical responses revealed that OoC illumination suppressed the normal functions of OoC supporting cells transiently and reversibly. OoC illumination blocked normally occurring continuous minor adjustments of tone-evoked basilar membrane displacements over their entire dynamic range and OHC voltage responses to tones at levels and frequencies subject to cochlear amplification. OoC illumination altered the OHC mechanoelectrical transduction conductance operating point, which reversed the asymmetry of OHC voltage responses to high level tones. OoC illumination accelerated recovery from temporary loud sound-induced acoustic desensitization. We concluded that DCs and OPCs are involved in both the control of cochlear responses (which are essential for normal hearing) and the recovery from temporary acoustic desensitization. This is the first direct in vivo evidence for the interdependency of the structural, mechanical, and electrochemical arrangements of OHCs and OoC supporting cells that together provide fine control of cochlear responses.SIGNIFICANCE STATEMENT A striking feature of the mammalian cochlear sensory epithelium, the organ of Corti, is the cellular architecture and supporting cell arrangement that provides a structural scaffold for the sensory-motor outer hair cells. The role of the supporting cell scaffold, however, has never been elucidated in vivo, although in vitro and modeling studies indicate the scaffold is involved in exchange of forces between the outer hair cells and the organ of Corti. We used in vivo techniques, including optogenetics, that do not disrupt arrangements between the outer hair cells and supporting cells, but selectively, transiently, and reversibly interfere with supporting cell normal function. We revealed the supporting cells provide continuous adjustment of cochlear sensitivity, which is instrumental in normal hearing.
Collapse
Affiliation(s)
- Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Snezana Levic
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, United Kingdom
| | - Patrício Simões
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Zhenhang Xu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Joseph A DiGuiseppi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Andrei N Lukashin
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
17
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
18
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
19
|
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 2021; 19:e3001445. [PMID: 34758021 PMCID: PMC8608324 DOI: 10.1371/journal.pbio.3001445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
He Z, Ding Y, Mu Y, Xu X, Kong W, Chai R, Chen X. Stem Cell-Based Therapies in Hearing Loss. Front Cell Dev Biol 2021; 9:730042. [PMID: 34746126 PMCID: PMC8567027 DOI: 10.3389/fcell.2021.730042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, neural stem cell transplantation has received widespread attention as a new treatment method for supplementing specific cells damaged by disease, such as neurodegenerative diseases. A number of studies have proved that the transplantation of neural stem cells in multiple organs has an important therapeutic effect on activation and regeneration of cells, and restore damaged neurons. This article describes the methods for inducing the differentiation of endogenous and exogenous stem cells, the implantation operation and regulation of exogenous stem cells after implanted into the inner ear, and it elaborates the relevant signal pathways of stem cells in the inner ear, as well as the clinical application of various new materials. At present, stem cell therapy still has limitations, but the role of this technology in the treatment of hearing diseases has been widely recognized. With the development of related research, stem cell therapy will play a greater role in the treatment of diseases related to the inner ear.
Collapse
Affiliation(s)
- Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Liu Q, Zhang L, Zhu MS, Wan G. High-throughput screening on cochlear organoids identifies VEGFR-MEK-TGFB1 signaling promoting hair cell reprogramming. Stem Cell Reports 2021; 16:2257-2273. [PMID: 34525385 PMCID: PMC8452601 DOI: 10.1016/j.stemcr.2021.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Hair cell degeneration is a major cause of sensorineural hearing loss. Hair cells in mammalian cochlea do not spontaneously regenerate, posing a great challenge for restoration of hearing. Here, we establish a robust, high-throughput cochlear organoid platform that facilitates 3D expansion of cochlear progenitor cells and differentiation of hair cells in a temporally regulated manner. High-throughput screening of the FDA-approved drug library identified regorafenib, a VEGFR inhibitor, as a potent small molecule for hair cell differentiation. Regorafenib also promotes reprogramming and maturation of hair cells in both normal and neomycin-damaged cochlear explants. Mechanistically, inhibition of VEGFR suppresses TGFB1 expression via the MEK pathway and TGFB1 downregulation directly mediates the effect of regorafenib on hair cell reprogramming. Our study not only demonstrates the power of a cochlear organoid platform in high-throughput analyses of hair cell physiology but also highlights VEGFR-MEK-TGFB1 signaling crosstalk as a potential target for hair cell regeneration and hearing restoration. Cochlear organoids can be derived from both LGR5+ and LGR5– supporting cells HTS using cochlear organoids identifies regorafenib for hair cell differentiation Regorafenib promotes hair cell reprogramming and maturation in cochlear explants Regorafenib acts via a NOTCH-independent and VEGFR-MEK-TGFB1-dependent mechanism
Collapse
Affiliation(s)
- Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Min-Sheng Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing 210032, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, 210008 Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China.
| |
Collapse
|
22
|
Sun S, Li S, Luo Z, Ren M, He S, Wang G, Liu Z. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. eLife 2021; 10:66547. [PMID: 34477109 PMCID: PMC8439656 DOI: 10.7554/elife.66547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.
Collapse
Affiliation(s)
- Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengnan Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
23
|
A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc Natl Acad Sci U S A 2021; 118:2019681118. [PMID: 34050020 PMCID: PMC8179140 DOI: 10.1073/pnas.2019681118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.
Collapse
|
24
|
Kastan N, Gnedeva K, Alisch T, Petelski AA, Huggins DJ, Chiaravalli J, Aharanov A, Shakked A, Tzahor E, Nagiel A, Segil N, Hudspeth AJ. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat Commun 2021; 12:3100. [PMID: 34035288 PMCID: PMC8149661 DOI: 10.1038/s41467-021-23395-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Ependymoglial Cells/cytology
- Ependymoglial Cells/drug effects
- Ependymoglial Cells/metabolism
- HEK293 Cells
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Small Molecule Libraries/pharmacology
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/metabolism
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Nathaniel Kastan
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Ksenia Gnedeva
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA.
| | - Theresa Alisch
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jeanne Chiaravalli
- High-Throughput Screening Resource Center, The Rockefeller University, New York, NY, USA
- Institut Pasteur, Paris, France
| | - Alla Aharanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Nagiel
- Department of Surgery Children's Hospital Los Angeles, Vision Center, Los Angeles, CA, USA
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Segil
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angles, CA, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| |
Collapse
|
25
|
Chen Y, Gu Y, Li Y, Li GL, Chai R, Li W, Li H. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep 2021; 35:109016. [PMID: 33882317 DOI: 10.1016/j.celrep.2021.109016] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.
Collapse
Affiliation(s)
- Yan Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yuyan Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yige Li
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Geng-Lin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| | - Wenyan Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Kubota M, Scheibinger M, Jan TA, Heller S. Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Rep 2021; 34:108646. [PMID: 33472062 PMCID: PMC7847202 DOI: 10.1016/j.celrep.2020.108646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, hearing loss is irreversible due to the lack of regenerative potential of non-sensory cochlear cells. Neonatal cochlear cells, however, can grow into organoids that harbor sensory epithelial cells, including hair cells and supporting cells. Here, we purify different cochlear cell types from neonatal mice, validate the composition of the different groups with single-cell RNA sequencing (RNA-seq), and assess the various groups' potential to grow into inner ear organoids. We find that the greater epithelial ridge (GER), a transient cell population that disappears during post-natal cochlear maturation, harbors the most potent organoid-forming cells. We identified three distinct GER cell groups that correlate with a specific spatial distribution of marker genes. Organoid formation was synergistically enhanced when the cells were cultured at increasing density. This effect is not due to diffusible signals but requires direct cell-to-cell contact. Our findings improve the development of cell-based assays to study culture-generated inner ear cell types.
Collapse
Affiliation(s)
- Marie Kubota
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Lee S, Song JJ, Beyer LA, Swiderski DL, Prieskorn DM, Acar M, Jen HI, Groves AK, Raphael Y. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 2020; 10:21397. [PMID: 33293609 PMCID: PMC7722738 DOI: 10.1038/s41598-020-78167-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mature mammalian cochlear hair cells (HCs) do not spontaneously regenerate once lost, leading to life-long hearing deficits. Attempts to induce HC regeneration in adult mammals have used over-expression of the HC-specific transcription factor Atoh1, but to date this approach has yielded low and variable efficiency of HC production. Gfi1 is a transcription factor important for HC development and survival. We evaluated the combinatorial effects of Atoh1 and Gfi1 over-expression on HC regeneration using gene transfer methods in neonatal cochlear explants, and in vivo in adult mice. Adenoviral over-expression of Atoh1 and Gfi1 in cultured neonatal cochlear explants resulted in numerous ectopic HC-like cells (HCLCs), with significantly more cells in Atoh1 + Gfi1 cultures than Atoh1 alone. In vitro, ectopic HCLCs emerged in regions medial to inner HCs as well as in the stria vascularis. In vivo experiments were performed in mature Pou4f3DTR mice in which HCs were completely and specifically ablated by administration of diphtheria toxin. Adenoviral expression of Atoh1 or Atoh1 + Gfi1 in cochlear supporting cells induced appearance of HCLCs, with Atoh1 + Gfi1 expression leading to 6.2-fold increase of new HCLCs after 4 weeks compared to Atoh1 alone. New HCLCs were detected throughout the cochlea, exhibited immature stereocilia and survived for at least 8 weeks. Combinatorial Atoh1 and Gfi1 induction is thus a promising strategy to promote HC regeneration in the mature mammalian cochlea.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology - Head and Neck Surgery, Chonnam National University Hospital, Gwangju, South Korea
| | - Jae-Jun Song
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Hsin-I Jen
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Shibata SB, West MB, Du X, Iwasa Y, Raphael Y, Kopke RD. Gene therapy for hair cell regeneration: Review and new data. Hear Res 2020; 394:107981. [DOI: 10.1016/j.heares.2020.107981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
30
|
Wu J, Dong X, Li W, Zhao L, Zhou L, Sun S, Li H. Dibenzazepine promotes cochlear supporting cell proliferation and hair cell regeneration in neonatal mice. Cell Prolif 2020; 53:e12872. [PMID: 32677724 PMCID: PMC7507434 DOI: 10.1111/cpr.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the role of dibenzazepine (DBZ) in promoting supporting cell (SC) proliferation and hair cell (HC) regeneration in the inner ear. Materials and Methods Postnatal day 1 wild‐type or neomycin‐damaged mouse cochleae were cultured with DBZ. Immunohistochemistry and scanning electron microscopy were used to examine the morphology of cochlear cells, and high‐throughput RNA‐sequencing was used to measure gene expression levels. Results We found that DBZ promoted SC proliferation and HC regeneration in a dose‐dependent manner in both normal and damaged cochleae. In addition, most of the newly regenerated HCs induced by DBZ had visible and relatively mature stereocilia bundle structures. Finally, RNA sequencing detected the differentially expressed genes between DBZ treatment and controls, and interaction networks were constructed for the most highly differentially expressed genes. Conclusions Our study demonstrates that DBZ can significantly promote SC proliferation and increase the number of mitotically regenerated HCs with relatively mature stereocilia bundles in the neonatal mouse cochlea by inhibiting Notch signalling and activating Wnt signalling, suggesting the DBZ might be a new therapeutic target for stimulating HC regeneration.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Liping Zhao
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Li Zhou
- Shanghai High School, Shanghai, China
| | - Shan Sun
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Huawei Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Durán-Alonso MB. Stem cell-based approaches: Possible route to hearing restoration? World J Stem Cells 2020; 12:422-437. [PMID: 32742560 PMCID: PMC7360988 DOI: 10.4252/wjsc.v12.i6.422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
Collapse
|
32
|
Abstract
The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Sadler E, Ryals MM, May LA, Martin D, Welsh N, Boger ET, Morell RJ, Hertzano R, Cunningham LL. Cell-Specific Transcriptional Responses to Heat Shock in the Mouse Utricle Epithelium. Front Cell Neurosci 2020; 14:123. [PMID: 32528249 PMCID: PMC7247426 DOI: 10.3389/fncel.2020.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Sensory epithelia of the inner ear contain mechanosensory hair cells (HCs) and glia-like supporting cells (SCs), both of which are required for hearing and balance functions. Each of these cell types has unique responses to ototoxic and cytoprotective stimuli. Non-lethal heat stress in the mammalian utricle induces heat shock proteins (HSPs) and protects against ototoxic drug-induced hair cell death. Induction of HSPs in the utricle demonstrates cell-type specificity at the protein level, with HSP70 induction occurring primarily in SCs, while HSP32 (also known as heme oxygenase 1, HMOX1) is induced primarily in resident macrophages. Neither of these HSPs are robustly induced in HCs, suggesting that HCs may have little capacity for induction of stress-induced protective responses. To determine the transcriptional responses to heat shock of these different cell types, we performed cell-type-specific transcriptional profiling using the RiboTag method, which allows for immunoprecipitation (IP) of actively translating mRNAs from specific cell types. RNA-Seq differential gene expression analyses demonstrated that the RiboTag method identified known cell type-specific markers as well as new markers for HCs and SCs. Gene expression differences suggest that HCs and SCs exhibit differential transcriptional heat shock responses. The chaperonin family member Cct8 was significantly enriched only in heat-shocked HCs, while Hspa1l (HSP70 family), and Hspb1 and Cryab (HSP27 and HSP20 families, respectively) were enriched only in SCs. Together our data indicate that HCs exhibit a limited but unique heat shock response, and SCs exhibit a broader and more robust transcriptional response to protective heat stress.
Collapse
Affiliation(s)
- Erica Sadler
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Matthew M Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lindsey A May
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Nora Welsh
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Liu LM, Zhao LP, Wu LJ, Guo L, Li WY, Chen Y. Characterization of the transcriptomes of Atoh1-induced hair cells in the mouse cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:1-15. [PMID: 32211215 PMCID: PMC7076321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of Atoh1 overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs. As expected, we found Atoh1-induced new HCs had obvious HC characteristics as demonstrated by the expression of HC markers such as Pou4f3 and Myosin VIIA (Myo7a). However, Atoh1-induced new HCs had significantly lower expression of genes that are related to HC function such as Slc26a5 (Prestin), Slc17a8 and Otof. We found that genes related to HC cell differentiation and maturation (Kcnma1, Myo6, Myo7a, Grxcr1, Gfi1, Wnt5a, Fgfr1, Gfi1, Fgf8 etc.) had significantly lower expression levels in new HCs compared to native HCs. In conclusion, we found a set of genes that might regulate the differentiation and maturation of new HCs, and these genes might serve as potential new therapeutic targets for functional HC regeneration and hearing recovery.
Collapse
Affiliation(s)
- Li-Man Liu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
| | - Li-Ping Zhao
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Ling-Jie Wu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Wen-Yan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| |
Collapse
|
35
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
36
|
Saragovi HU, Galan A, Levin LA. Neuroprotection: Pro-survival and Anti-neurotoxic Mechanisms as Therapeutic Strategies in Neurodegeneration. Front Cell Neurosci 2019; 13:231. [PMID: 31244606 PMCID: PMC6563757 DOI: 10.3389/fncel.2019.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins (NTs) are a subset of the neurotrophic factor family. These growth factors were originally named based on the nerve growth functional assays used to identify them. NTs act as paracrine or autocrine factors for cells expressing NT receptors. The receptors and their function have been studied primarily in cells of the nervous system, but are also present in the cardiovascular, endocrine, and immune systems, as well as in many neoplastic cells. The signals activated by NTs can be varied, depending on cellular stage and context, healthy or disease states, and depending on whether the specific NTs and their receptors are expressed in the relevant cells. In the healthy central and peripheral adult nervous systems, NTs drive neuronal survival, phenotype, synaptic maintenance, and function. Deficiencies of the NT/NT receptor axis are causally associated with disease onset or disease progression. Paradoxically, NTs can also drive synaptic loss and neuronal death. In the embryonic stage this activity is essential for proper developmental pruning of the nervous system, but in the adult it can be associated with neurodegenerative disease. Given their key role in neuronal survival and death, NTs and NT receptors have long been considered therapeutic targets to achieve neuroprotection. The first neuroprotective approaches consisted of enhancing neuronal survival signals using NTs. Later strategies selectively targeted receptors to induce survival signals specifically, while avoiding activation of death signals. Recently, the concept of selectively targeting receptors to reduce neuronal death signals has emerged. Here, we review the rationale of each neuroprotective strategy with respect to the complex cell biology and pharmacology of each target receptor.
Collapse
Affiliation(s)
- Horacio Uri Saragovi
- Lady Davis Institute, Montreal, QC, Canada.,Jewish General Hospital, Montreal, QC, Canada.,Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| | - Alba Galan
- Lady Davis Institute, Montreal, QC, Canada.,Jewish General Hospital, Montreal, QC, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada.,McGill University Health Centre, Montreal, QC, Canada.,Montreal Neurological Institute, Mcgill University, Montreal, QC, Canada
| |
Collapse
|
37
|
OHC-TRECK: A Novel System Using a Mouse Model for Investigation of the Molecular Mechanisms Associated with Outer Hair Cell Death in the Inner Ear. Sci Rep 2019; 9:5285. [PMID: 30918314 PMCID: PMC6437180 DOI: 10.1038/s41598-019-41711-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Outer hair cells (OHCs) are responsible for the amplification of sound, and the death of these cells leads to hearing loss. Although the mechanisms for sound amplification and OHC death have been well investigated, the effects on the cochlea after OHC death are poorly understood. To study the consequences of OHC death, we established an OHC knockout system using a novel mouse model, Prestin-hDTR, which uses the prestin promoter to express the human diphtheria toxin (DT) receptor gene (hDTR). Administration of DT to adult Prestin-hDTR mice results in the depletion of almost all OHCs without significant damage to other cochlear and vestibular cells, suggesting that this system is an effective tool for the analysis of how other cells in the cochlea and vestibula are affected after OHC death. To evaluate the changes in the cochlea after OHC death, we performed differential gene expression analysis between the untreated and DT-treated groups of wild-type and Prestin-hDTR mice. This analysis revealed that genes associated with inflammatory/immune responses were significantly upregulated. Moreover, we found that several genes linked to hearing loss were strongly downregulated by OHC death. Together, these results suggest that this OHC knockout system is a useful tool to identify biomarkers associated with OHC death.
Collapse
|
38
|
Thomas ED, Raible DW. Distinct progenitor populations mediate regeneration in the zebrafish lateral line. eLife 2019; 8:e43736. [PMID: 30834891 PMCID: PMC6433462 DOI: 10.7554/elife.43736] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
Mechanosensory hair cells of the zebrafish lateral line regenerate rapidly following damage. These renewed hair cells arise from the proliferation of surrounding support cells, which undergo symmetric division to produce two hair cell daughters. Given the continued regenerative capacity of the lateral line, support cells presumably have the ability to replenish themselves. Utilizing novel transgenic lines, we identified support cell populations with distinct progenitor identities. These populations show differences in their ability to generate new hair cells during homeostasis and regeneration. Targeted ablation of support cells reduced the number of regenerated hair cells. Furthermore, progenitors regenerated after targeted support cell ablation in the absence of hair cell damage. We also determined that distinct support cell populations are independently regulated by Notch signaling. The existence of independent progenitor populations could provide flexibility for the continued generation of new hair cells under a variety of conditions throughout the life of the animal.
Collapse
Affiliation(s)
- Eric D Thomas
- Department of Biological Structure, University of Washington, Seattle, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| |
Collapse
|
39
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
40
|
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151:109-118. [PMID: 30721767 DOI: 10.1016/j.brainresbull.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Purinergic signaling is deeply involved in the development, functions and protective mechanisms of the cochlea. Release of ATP and activation of purinergic receptors on sensory and supporting/epithelial cells play a substantial role in cochlear (patho)physiology. Both the ionotropic P2X and the metabotropic P2Y receptors are widely distributed on the inner and outer hair cells as well as on the different supporting cells in the organ of Corti and on other epithelial cells in the scala media. Among others, they are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics acting on outer hair cells and supporting cells. Cochlear blood flow is also regulated by purines. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy. Decreasing hearing sensitivity and increasing cochlear blood supply by pharmacological targeting of purinergic signaling in the cochlea are potential new therapeutic approaches in these hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
41
|
Atkinson PJ, Kim GS, Cheng AG. Direct cellular reprogramming and inner ear regeneration. Expert Opin Biol Ther 2019; 19:129-139. [PMID: 30584811 DOI: 10.1080/14712598.2019.1564035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sound is integral to communication and connects us to the world through speech and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, these cells are highly susceptible to damage from an array of factors, resulting in degeneration and ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in birds, there have been tremendous efforts to identify therapies that could promote hair cell regeneration in mammals. AREAS COVERED Here, we will review recent studies describing spontaneous hair cell regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair cell regeneration. EXPERT OPINION Numerous combinatorial approaches have successfully reprogrammed non-sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery of more promising reprogramming regimens.
Collapse
Affiliation(s)
- Patrick J Atkinson
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Grace S Kim
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Alan G Cheng
- a Department of Otolaryngology-Head and Neck Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
42
|
Intracochlear drug delivery: Fluorescent tracer evaluation for quantification of distribution in the cochlear partition. Eur J Pharm Sci 2019; 126:49-58. [PMID: 30195649 DOI: 10.1016/j.ejps.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022]
Abstract
Measurement of drug distribution in the inner ear has important roles in the design of local delivery methods, such as direct, intracochlear delivery, and in assessment of emerging drug candidates in preclinical animal models. Sampling methods have been used in the past to measure drug concentrations in the cochlear fluids, but these methods provide no direct information about drug distribution in the cochlear tissues. In this work, we evaluated four fluorescent markers that simulate drug distribution in the organ of Corti after intracochlear delivery to the cochlea's scala tympani compartment. Our hypothesis is that ultimately, a cocktail comprising several fluorescent drug surrogates or fluorescently-tagged drugs, each with differing distribution, spreading, and clearance behavior, can be used to evaluate both transient and cumulative drug distributions associated with different delivery techniques. In this study, FITC-dextran, Qtracker™ 655, gentamicin Texas-Red, and FM 1-43 FX were each evaluated as candidate markers by direct intracochlear infusion into guinea-pig cochleae. Distribution of the markers was measured using fluorescence confocal microscopy imaging of cochlear whole mount dissections from animals sacrificed 3 h after the tracer-infusion. For all four tracers, strong fluorescence was observed in the tissue sections near the base, but only Qtracker™-655, gentamicin Texas-Red (GTTR) and FM 1-43 FX exhibited any specificity in labelling of the sensory hair cells. Therefore, these substances represent leading candidates for the quantification drug distribution achieved by different delivery approaches to the scala tympani.
Collapse
|
43
|
High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor. PLoS Genet 2018; 14:e1007552. [PMID: 30063705 PMCID: PMC6086484 DOI: 10.1371/journal.pgen.1007552] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion. The ongoing ATOH1 gene therapy clinical trial offers promise for hearing restoration in humans. However, in animal models, Atoh1-mediated sensory regeneration is inefficient and incomplete. Here we performed high-resolution gene expression profiling of single cochlear cells at multiple time points in a mouse model whereby we discovered a continuous regeneration process that leads to the formation of immature sensory cells. We identified 51 key reprogramming transcription factors that may increase the efficiency and completion of the regeneration process and confirmed that Isl1 in transgenic mice promotes Atoh1-mediated sensory regeneration as a co-reprogramming factor. Our studies identify molecular mechanisms and novel co-reprogramming factors for sensory restoration in humans with irreversible hearing loss.
Collapse
|
44
|
McGovern MM, Zhou L, Randle MR, Cox BC. Spontaneous Hair Cell Regeneration Is Prevented by Increased Notch Signaling in Supporting Cells. Front Cell Neurosci 2018; 12:120. [PMID: 29780306 PMCID: PMC5945818 DOI: 10.3389/fncel.2018.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, differentiation of cochlear progenitor cells into hair cells (HCs) or supporting cells (SCs) is partially controlled through Notch signaling. Many studies have shown that inhibition of Notch signaling allows SCs to convert into HCs in both normal and drug damaged neonatal mouse cochleae. This mechanism is also implicated during HC regeneration in non-mammalian vertebrates; however, the mechanism of spontaneous HC regeneration in the neonatal mouse cochlea is less understood. While inhibition of Notch signaling can force SCs to convert into HCs and increase the number of regenerated HCs, it is currently unknown whether this pathway is involved in spontaneous HC regeneration observed in vivo. Therefore, we investigated the role of Notch signaling during the spontaneous HC regeneration process using Atoh1-CreERTM::Rosa26loxP-stop-loxP-DTA/+ mice injected with tamoxifen at postnatal day (P) 0 and P1 to ablate HCs and stimulate spontaneous HC regeneration. Expression changes of genes in the Notch pathway were measured using immunostaining and in situ hybridization, with most changes observed in the apical one-third of the cochlea where the majority of HC regeneration occurs. Expression of the Notch target genes Hes1, Hes5, Hey1, HeyL, and Jagged1 were decreased. To investigate whether reduction of Notch signaling is involved in the spontaneous HC regeneration process, we overexpressed the Notch1 intracellular fragment (N1ICD) in cochlear SCs and other non-sensory epithelial cells in the context of HC damage. Specifically, Atoh1-CreERTM::Rosa26loxP-stop-loxP-DTA/+::Sox10rtTA::TetO-LacZ::TetO-N1ICD mice were injected with tamoxifen at P0/P1 to stimulate spontaneous HC regeneration and given doxycycline from P0-P7 to induce expression of N1ICD as well as LacZ for fate-mapping. We observed a 92% reduction in the number of fate-mapped regenerated HCs in mice with N1ICD overexpression compared to controls with HC damage but no manipulation of Notch signaling. Therefore, we conclude that increased Notch signaling prevents spontaneous HC regeneration from occurring in the neonatal mouse cochlea. Understanding which components of the Notch pathway regulates regenerative plasticity in the neonatal mouse cochlea will inform investigations focused on stimulating HC regeneration in mature cochlea and eventually in humans to treat hearing loss.
Collapse
Affiliation(s)
- Melissa M. McGovern
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Luyi Zhou
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Michelle R. Randle
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Brandon C. Cox
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
- Department of Surgery, Division of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| |
Collapse
|
45
|
Ni W, Zeng S, Li W, Chen Y, Zhang S, Tang M, Sun S, Chai R, Li H. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 2018; 7:66754-66768. [PMID: 27564256 PMCID: PMC5341835 DOI: 10.18632/oncotarget.11479] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022] Open
Abstract
Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells.
Collapse
Affiliation(s)
- Wenli Ni
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Shan Zeng
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Yan Chen
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shan Sun
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
46
|
Jadali A, Ying YLM, Kwan KY. Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival. Front Cell Neurosci 2017; 11:137. [PMID: 28572758 PMCID: PMC5435747 DOI: 10.3389/fncel.2017.00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K) signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS) Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN) activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1) levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell survival after cisplatin damage.
Collapse
Affiliation(s)
- Azadeh Jadali
- Department of Cell Biology and Neuroscience, Rutgers UniversityPiscataway, NJ, USA.,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers UniversityPiscataway, NJ, USA.,3D BiotekBridgewater, NJ, USA
| | - Yu-Lan M Ying
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical SchoolNewark, NJ, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers UniversityPiscataway, NJ, USA.,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers UniversityPiscataway, NJ, USA
| |
Collapse
|
47
|
In Vivo Interplay between p27 Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. Cell Rep 2017; 19:307-320. [PMID: 28402854 DOI: 10.1016/j.celrep.2017.03.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/28/2016] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Hearing loss is widespread and persistent because mature mammalian auditory hair cells (HCs) are nonregenerative. In mice, the ability to regenerate HCs from surrounding supporting cells (SCs) declines abruptly after postnatal maturation. We find that combining p27Kip1 deletion with ectopic ATOH1 expression surmounts this age-related decline, leading to conversion of SCs to HCs in mature mouse cochleae and after noise damage. p27Kip1 deletion, independent of canonical effects on Rb-family proteins, upregulated GATA3, a co-factor for ATOH1 that is lost from SCs with age. Co-activation of GATA3 or POU4F3 and ATOH1 promoted conversion of SCs to HCs in adult mice. Activation of POU4F3 alone also converted mature SCs to HCs in vivo. These data illuminate a genetic pathway that initiates auditory HC regeneration and suggest p27Kip1, GATA3, and POU4F3 as additional therapeutic targets for ATOH1-mediated HC regeneration.
Collapse
|
48
|
Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 2017; 8:14487. [PMID: 28211470 PMCID: PMC5321746 DOI: 10.1038/ncomms14487] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hidden hearing loss (HHL) is a recently described auditory neuropathy believed to contribute to speech discrimination and intelligibility deficits in people with normal audiological tests. Animals and humans with HHL have normal auditory thresholds but defective cochlear neurotransmission, that is, reduced suprathreshold amplitude of the sound-evoked auditory nerve compound action potential. Currently, the only cellular mechanism known for HHL is loss of inner hair cell synapses (synaptopathy). Here we report that transient loss of cochlear Schwann cells results in permanent auditory deficits characteristic of HHL. This auditory neuropathy is not associated with synaptic loss, but rather with disruption of the first heminodes at the auditory nerve peripheral terminal. Thus, this study identifies a new mechanism for HHL, highlights the long-term consequences of transient Schwann cell loss on hearing and might provide insights into the causes of the auditory deficits reported in patients that recover from acute demyelinating diseases such as Guillain–Barré syndrome. Hidden hearing loss (HHL) is an auditory neuropathy that impairs one's ability to hear, particularly in a noisy environment. Here the authors show that in mice, transient loss of cochlear Schwann cells results in permanent disruption of the cochlear heminodal structure, leading to auditory deficits characteristic of HHL.
Collapse
Affiliation(s)
- Guoqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA.,MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, China
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
49
|
A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 2017; 35:280-284. [PMID: 28165475 PMCID: PMC5340646 DOI: 10.1038/nbt.3781] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023]
Abstract
Efforts to develop gene therapies for hearing loss have been hampered by the lack of safe, efficient, and clinically relevant delivery modalities1, 2. Here we demonstrate the safety and efficiency of Anc80L65, a rationally designed synthetic vector3, for transgene delivery to the mouse cochlea. Cochlear explants incubated with Anc80L65 encoding eGFP demonstrated high level transduction of inner and outer hair cells (60–100%). Injection of Anc80L65 through the round window membrane resulted in highly efficient transduction of inner and outer hair cells, a substantial improvement over conventional adeno-associated virus (AAV) vectors. Anc80L65 round window injection was well tolerated, as indicated by sensory cell function, hearing and vestibular function, and immunologic parameters. The ability of Anc80L65 to target outer hair cells at high rates, a requirement for restoration of complex auditory function, may enable future gene therapies for hearing and balance disorders.
Collapse
|
50
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|