1
|
Hu Q, Tang R, He X, Wang R. General relationship of local topologies, global dynamics, and bifurcation in cellular networks. NPJ Syst Biol Appl 2024; 10:135. [PMID: 39557967 PMCID: PMC11573990 DOI: 10.1038/s41540-024-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.
Collapse
Affiliation(s)
- Qing Hu
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
He X, Tang R, Lou J, Wang R. Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions. J Biol Phys 2024; 51:2. [PMID: 39541052 PMCID: PMC11564433 DOI: 10.1007/s10867-024-09665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cell fate decision is crucial in biological development and plays fundamental roles in normal development and functional maintenance of organisms. By identifying key regulatory interactions and molecules involved in these fate decisions, we can shed light on the intricate mechanisms underlying the cell fates. This understanding ultimately reveals the fundamental principles driving biological development and the origins of various diseases. In this study, we present an overarching framework which integrates pseudo-trajectory inference and differential analysis to determine critical regulatory interactions and molecules during cell fate transitions. To demonstrate feasibility and reliability of the approach, we employ the differentiation networks of hepatobiliary system and embryonic stem cells as representative model systems. By applying pseudo-trajectory inference to biological data, we aim to identify critical regulatory interactions and molecules during the cell fate transition processes. Consistent with experimental observations, the approach can allow us to infer dynamical cell fate decision processes and gain insights into the underlying mechanisms which govern cell state decisions.
Collapse
Affiliation(s)
- Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Jie Lou
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Chen Z, Lu J, Zhao X, Yu H, Li C. Energy Landscape Reveals the Underlying Mechanism of Cancer-Adipose Conversion in Gene Network Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404854. [PMID: 39258786 PMCID: PMC11538663 DOI: 10.1002/advs.202404854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 09/12/2024]
Abstract
Cancer is a systemic heterogeneous disease involving complex molecular networks. Tumor formation involves an epithelial-mesenchymal transition (EMT), which promotes both metastasis and plasticity of cancer cells. Recent experiments have proposed that cancer cells can be transformed into adipocytes via a combination of drugs. However, the underlying mechanisms for how these drugs work, from a molecular network perspective, remain elusive. To reveal the mechanism of cancer-adipose conversion (CAC), this study adopts a systems biology approach by combing mathematical modeling and molecular experiments, based on underlying molecular regulatory networks. Four types of attractors are identified, corresponding to epithelial (E), mesenchymal (M), adipose (A) and partial/intermediate EMT (P) cell states on the CAC landscape. Landscape and transition path results illustrate that intermediate states play critical roles in the cancer to adipose transition. Through a landscape control approach, two new therapeutic strategies for drug combinations are identified, that promote CAC. These predictions are verified by molecular experiments in different cell lines. The combined computational and experimental approach provides a powerful tool to explore molecular mechanisms for cell fate transitions in cancer networks. The results reveal underlying mechanisms of intermediate cell states that govern the CAC, and identified new potential drug combinations to induce cancer adipogenesis.
Collapse
Affiliation(s)
- Zihao Chen
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Jia Lu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Xing‐Ming Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Haiyang Yu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
- Haihe Laboratory of Traditional Chinese MedicineTianjin301617China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- School of Mathematical Sciences and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| |
Collapse
|
4
|
Sood A, Schuette G, Zhang B. Dynamical phase transition in models that couple chromatin folding with histone modifications. Phys Rev E 2024; 109:054411. [PMID: 38907407 DOI: 10.1103/physreve.109.054411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2024] [Indexed: 06/24/2024]
Abstract
Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper, we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes that occur along the one-dimensional DNA sequence.
Collapse
|
5
|
Huang R, Situ Q, Lei J. Dynamics of cell-type transition mediated by epigenetic modifications. J Theor Biol 2024; 577:111664. [PMID: 37977478 DOI: 10.1016/j.jtbi.2023.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Maintaining tissue homeostasis requires appropriate regulation of stem cell differentiation. The Waddington landscape posits that gene circuits in a cell form a potential landscape of different cell types, wherein cells follow attractors of the probability landscape to develop into distinct cell types. However, how adult stem cells achieve a delicate balance between self-renewal and differentiation remains unclear. We propose that random inheritance of epigenetic states plays a pivotal role in stem cell differentiation and present a hybrid model of stem cell differentiation induced by epigenetic modifications. Our comprehensive model integrates gene regulation networks, epigenetic state inheritance, and cell regeneration, encompassing multi-scale dynamics ranging from transcription regulation to cell population. Through model simulations, we demonstrate that random inheritance of epigenetic states during cell divisions can spontaneously induce cell differentiation, dedifferentiation, and transdifferentiation. Furthermore, we investigate the influences of interfering with epigenetic modifications and introducing additional transcription factors on the probabilities of dedifferentiation and transdifferentiation, revealing the underlying mechanism of cell reprogramming. This in silico model provides valuable insights into the intricate mechanism governing stem cell differentiation and cell reprogramming and offers a promising path to enhance the field of regenerative medicine.
Collapse
Affiliation(s)
- Rongsheng Huang
- School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
6
|
Pechmann S. Single-cell expression predicts neuron-specific protein homeostasis networks. Open Biol 2024; 14:230386. [PMID: 38262604 PMCID: PMC10805596 DOI: 10.1098/rsob.230386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024] Open
Abstract
The protein homeostasis network keeps proteins in their correct shapes and avoids unwanted aggregation. In turn, the accumulation of aberrantly misfolded proteins has been directly associated with the onset of ageing-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. However, a detailed and rational understanding of how protein homeostasis is achieved in health, and how it can be targeted for therapeutic intervention in diseases remains missing. Here, large-scale single-cell expression data from the Allen Brain Map are analysed to investigate the transcription regulation of the core protein homeostasis network across the human brain. Remarkably, distinct expression profiles suggest specialized protein homeostasis networks with systematic adaptations in excitatory neurons, inhibitory neurons and non-neuronal cells. Moreover, several chaperones and Ubiquitin ligases are found transcriptionally coregulated with genes important for synapse formation and maintenance, thus linking protein homeostasis to the regulation of neuronal function. Finally, evolutionary analyses highlight the conservation of an elevated interaction density in the chaperone network, suggesting that one of the most exciting aspects of chaperone action may yet be discovered in their collective action at the systems level. More generally, our work highlights the power of computational analyses for breaking down complexity and gaining complementary insights into fundamental biological problems.
Collapse
|
7
|
Wadkin LE, Makarenko I, Parker NG, Shukurov A, Figueiredo FC, Lako M. Human Stem Cells for Ophthalmology: Recent Advances in Diagnostic Image Analysis and Computational Modelling. CURRENT STEM CELL REPORTS 2023; 9:57-66. [PMID: 38145008 PMCID: PMC10739444 DOI: 10.1007/s40778-023-00229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Purpose of Review To explore the advances and future research directions in image analysis and computational modelling of human stem cells (hSCs) for ophthalmological applications. Recent Findings hSCs hold great potential in ocular regenerative medicine due to their application in cell-based therapies and in disease modelling and drug discovery using state-of-the-art 2D and 3D organoid models. However, a deeper characterisation of their complex, multi-scale properties is required to optimise their translation to clinical practice. Image analysis combined with computational modelling is a powerful tool to explore mechanisms of hSC behaviour and aid clinical diagnosis and therapy. Summary Many computational models draw on a variety of techniques, often blending continuum and discrete approaches, and have been used to describe cell differentiation and self-organisation. Machine learning tools are having a significant impact in model development and improving image classification processes for clinical diagnosis and treatment and will be the focus of much future research.
Collapse
Affiliation(s)
- L. E. Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - I. Makarenko
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - N. G. Parker
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - A. Shukurov
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - F. C. Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:10.1088/1361-6633/acec88. [PMID: 37531952 PMCID: PMC10521208 DOI: 10.1088/1361-6633/acec88] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
Affiliation(s)
- Federico Bocci
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - José Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Rumiantsau D, Lesne A, Hütt MT. Predicting attractors from spectral properties of stylized gene regulatory networks. Phys Rev E 2023; 108:014402. [PMID: 37583152 DOI: 10.1103/physreve.108.014402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/07/2023] [Indexed: 08/17/2023]
Abstract
How the architecture of gene regulatory networks shapes gene expression patterns is an open question, which has been approached from a multitude of angles. The dominant strategy has been to identify nonrandom features in these networks and then argue for the function of these features using mechanistic modeling. Here we establish the foundation of an alternative approach by studying the correlation of network eigenvectors with synthetic gene expression data simulated with a basic and popular model of gene expression dynamics: Boolean threshold dynamics in signed directed graphs. We show that eigenvectors of the network adjacency matrix can predict collective states (attractors). However, the overall predictive power depends on details of the network architecture, namely the fraction of positive 3-cycles, in a predictable fashion. Our results are a set of statistical observations, providing a systematic step towards a further theoretical understanding of the role of network eigenvectors in dynamics on graphs.
Collapse
Affiliation(s)
- Dzmitry Rumiantsau
- Department of Life Sciences and Chemistry, Constructor University, D-28759 Bremen, Germany
| | - Annick Lesne
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Constructor University, D-28759 Bremen, Germany
| |
Collapse
|
10
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. ARXIV 2023:arXiv:2302.07401v2. [PMID: 36824430 PMCID: PMC9949162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
|
11
|
Chen F, Li C. Inferring structural and dynamical properties of gene networks from data with deep learning. NAR Genom Bioinform 2022; 4:lqac068. [PMID: 36110897 PMCID: PMC9469930 DOI: 10.1093/nargab/lqac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
The reconstruction of gene regulatory networks (GRNs) from data is vital in systems biology. Although different approaches have been proposed to infer causality from data, some challenges remain, such as how to accurately infer the direction and type of interactions, how to deal with complex network involving multiple feedbacks, as well as how to infer causality between variables from real-world data, especially single cell data. Here, we tackle these problems by deep neural networks (DNNs). The underlying regulatory network for different systems (gene regulations, ecology, diseases, development) can be successfully reconstructed from trained DNN models. We show that DNN is superior to existing approaches including Boolean network, Random Forest and partial cross mapping for network inference. Further, by interrogating the ensemble DNN model trained from single cell data from dynamical system perspective, we are able to unravel complex cell fate dynamics during preimplantation development. We also propose a data-driven approach to quantify the energy landscape for gene regulatory systems, by combining DNN with the partial self-consistent mean field approximation (PSCA) approach. We anticipate the proposed method can be applied to other fields to decipher the underlying dynamical mechanisms of systems from data.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Ham L, Coomer M, Stumpf M. The chemical Langevin equation for biochemical systems in dynamic environments. J Chem Phys 2022; 157:094105. [DOI: 10.1063/5.0095840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modelling and simulation of complex biochemical reaction networks form cornerstones of modern biophysics. Many of the approaches developed so far capture temporal fluctuations due to the inherent stochasticity of the biophysical processes, referred to as intrinsic noise. Stochastic fluctuations, however, predominantly stem from the interplay of the network with many other - and mostly unknown - fluctuating processes, as well as with various random signals arising from the extracellular world; these sources contribute extrinsic noise. Here we provide a computational simulation method to probe the stochastic dynamics of biochemical systems subject to both intrinsic and extrinsic noise. We develop an extrinsic chemical Langevin equation-a physically motivated extension of the chemical Langevin equation- to model intrinsically noisy reaction networks embedded in a stochastically fluctuating environment. The extrinsic CLE is a continuous approximation to the Chemical Master Equation (CME) with time-varying propensities. In our approach, noise is incorporated at the level of the CME, and can account for the full dynamics of the exogenous noise process, irrespective of timescales and their mismatches. We show that our method accurately captures the first two moments of the stationary probability density when compared with exact stochastic simulation methods, while reducing the computational runtime by several orders of magnitude. Our approach provides a method that is practical, computationally efficient and physically accurate to study systems that are simultaneously subject to a variety of noise sources.
Collapse
Affiliation(s)
- Lucy Ham
- The University of Melbourne, University of Melbourne, Australia
| | | | | |
Collapse
|
13
|
Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems. J Biol Phys 2022; 48:1-36. [PMID: 34822073 PMCID: PMC8866630 DOI: 10.1007/s10867-021-09586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 10/19/2022] Open
Abstract
We give a review on the landscape theory of the equilibrium biological systems and landscape-flux theory of the nonequilibrium biological systems as the global driving force. The emergences of the behaviors, the associated thermodynamics in terms of the entropy and free energy and dynamics in terms of the rate and paths have been quantitatively demonstrated. The hierarchical organization structures have been discussed. The biological applications ranging from protein folding, biomolecular recognition, specificity, biomolecular evolution and design for equilibrium systems as well as cell cycle, differentiation and development, cancer, neural networks and brain function, and evolution for nonequilibrium systems, cross-scale studies of genome structural dynamics and experimental quantifications/verifications of the landscape and flux are illustrated. Together, this gives an overall global physical and quantitative picture in terms of the landscape and flux for the behaviors, dynamics and functions of biological systems.
Collapse
|
14
|
Lang J, Li C. Unraveling the stochastic transition mechanism between oscillation states by landscape and minimum action path theory. Phys Chem Chem Phys 2022; 24:20050-20063. [DOI: 10.1039/d2cp01385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell fate transitions have been studied from various perspectives, such as the transition between stable states, or the transition between stable states and oscillation states. However, there is a lack...
Collapse
|
15
|
Ye L, Li C. Energy Landscape Analysis of the Epithelial-Mesenchymal Transition Network. Methods Mol Biol 2022; 2488:145-157. [PMID: 35347688 DOI: 10.1007/978-1-0716-2277-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during the cancer invasion, metastasis, and drug resistance. However, it remains a critical question to elucidate the mechanisms of EMT. For example, how to quantify the global stability and stochastic transition dynamics of EMT under fluctuations is yet to be clarified. Here, we describe a framework and detailed steps for stochastic dynamics analysis of EMT. Starting from the underlying EMT gene regulatory network, we quantify the energy landscape of the EMT computationally. Multiple steady-state attractors are identified on the landscape surface, characterizing different cell phenotypes. The kinetic transition paths based on large deviation theory delineate the transition processes between different attractors quantitatively. The EMT or the reverse process, the mesenchymal-epithelial transition (MET), can be achieved by either a direct transition or a step-wise transition that goes through an intermediate state, depending on different extracellular environments. The landscape and transition paths presented in this chapter provide a new physical and quantitative picture to understand the underlying mechanisms of the EMT process. The approach for landscape and path analysis can be extended to other biological networks.
Collapse
Affiliation(s)
- Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.
- School of Mathematical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Li X, Li T, Li C, Li T. Uncovering the cell fate decision in lysis-lysogeny transition and stem cell development via Markov state modeling. J Chem Phys 2021; 155:245101. [PMID: 34972376 DOI: 10.1063/5.0070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Understanding the behavior of a complex gene regulatory network is a fundamental but challenging task in systems biology. How to reduce the large number of degrees of freedom of a specific network and identify its main biological pathway is the key issue. In this paper, we utilized the transition path theory (TPT) and Markov state modeling (MSM) framework to numerically study two typical cell fate decision processes: the lysis-lysogeny transition and stem cell development. The application of TPT to the lysis-lysogeny decision-making system reveals that the competitions of CI and Cro dimer binding play the major role in determining the cell fates. We also quantified the transition rates from the lysogeny to lysis state under different conditions. The overall computational results are consistent with biological intuitions but with more detailed information. For the stem cell developmental system, we applied the MSM to reduce the original dynamics to a moderate-size Markov chain. Further spectral analysis showed that the reduced system exhibits nine metastable states, which correspond to the refinement of the five known typical cell types in development. We further investigated the dominant transition pathways corresponding to the cell differentiation, reprogramming, and trans-differentiation. A similar approach can be applied to study other biological systems.
Collapse
Affiliation(s)
- Xiaoguang Li
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Tongkai Li
- LMAM and School of Mathematical Sciences, Peking University, Beijing, China
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Ye L, Li C. Quantifying the Landscape of Decision Making From Spiking Neural Networks. Front Comput Neurosci 2021; 15:740601. [PMID: 34776914 PMCID: PMC8581041 DOI: 10.3389/fncom.2021.740601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
The decision making function is governed by the complex coupled neural circuit in the brain. The underlying energy landscape provides a global picture for the dynamics of the neural decision making system and has been described extensively in the literature, but often as illustrations. In this work, we explicitly quantified the landscape for perceptual decision making based on biophysically-realistic cortical network with spiking neurons to mimic a two-alternative visual motion discrimination task. Under certain parameter regions, the underlying landscape displays bistable or tristable attractor states, which quantify the transition dynamics between different decision states. We identified two intermediate states: the spontaneous state which increases the plasticity and robustness of changes of minds and the "double-up" state which facilitates the state transitions. The irreversibility of the bistable and tristable switches due to the probabilistic curl flux demonstrates the inherent non-equilibrium characteristics of the neural decision system. The results of global stability of decision-making quantified by barrier height inferred from landscape topography and mean first passage time are in line with experimental observations. These results advance our understanding of the stochastic and dynamical transition mechanism of decision-making function, and the landscape and kinetic path approach can be applied to other cognitive function related problems (such as working memory) in brain networks.
Collapse
Affiliation(s)
- Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- School of Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lang J, Nie Q, Li C. Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition. Biophys J 2021; 120:4484-4500. [PMID: 34480928 PMCID: PMC8553640 DOI: 10.1016/j.bpj.2021.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a basic developmental process that might promote cancer metastasis, has been studied from various perspectives. Recently, the early warning theory has been used to anticipate critical transitions in EMT from mathematical modeling. However, the underlying mechanisms of EMT involving complex molecular networks remain to be clarified. Especially, how to quantify the global stability and stochastic transition dynamics of EMT and what the underlying mechanism for early warning theory in EMT is remain to be fully clarified. To address these issues, we constructed a comprehensive gene regulatory network model for EMT and quantified the corresponding potential landscape. The landscape for EMT displays multiple stable attractors, which correspond to E, M, and some other intermediate states. Based on the path-integral approach, we identified the most probable transition paths of EMT, which are supported by experimental data. Correspondingly, the results of transition actions demonstrated that intermediate states can accelerate EMT, consistent with recent studies. By integrating the landscape and path with early warning concept, we identified the potential barrier height from the landscape as a global and more accurate measure for early warning signals to predict critical transitions in EMT. The landscape results also provide an intuitive and quantitative explanation for the early warning theory. Overall, the landscape and path results advance our mechanistic understanding of dynamical transitions and roles of intermediate states in EMT, and the potential barrier height provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the early warning theory.
Collapse
Affiliation(s)
- Jintong Lang
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China; School of Mathematical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Bhattacharyya B, Wang J, Sasai M. Stochastic epigenetic dynamics of gene switching. Phys Rev E 2021; 102:042408. [PMID: 33212709 DOI: 10.1103/physreve.102.042408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Epigenetic modifications of histones crucially affect eukaryotic gene activity, while the epigenetic histone state is largely determined by the binding of specific factors such as the transcription factors (TFs) to DNA. Here, the way in which the TFs and the histone state are dynamically correlated is not obvious when the TF synthesis is regulated by the histone state. This type of feedback regulatory relation is ubiquitous in gene networks to determine cell fate in differentiation and other cell transformations. To gain insights into such dynamical feedback regulations, we theoretically analyze a model of epigenetic gene switching by extending the Doi-Peliti operator formalism of reaction kinetics to the problem of coupled molecular processes. Spin-1 and spin-1/2 coherent-state representations are introduced to describe stochastic reactions of histones and binding or unbinding of TFs in a unified way, which provides a concise view of the effects of timescale difference among these molecular processes; even in the case that binding or unbinding of TFs to or from DNA is adiabatically fast, the slow nonadiabatic histone dynamics gives rise to a distinct circular flow of the probability flux around basins in the landscape of the gene state distribution, which leads to hysteresis in gene switching. In contrast to the general belief that the change in the amount of TF precedes the histone state change, flux drives histones to be modified prior to the change in the amount of TF in self-regulating circuits. Flux-landscape analyses shed light on the nonlinear nonadiabatic mechanism of epigenetic cell fate decision making.
Collapse
Affiliation(s)
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
20
|
Ye L, Song Z, Li C. Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision. J Chem Phys 2021; 154:025101. [PMID: 33445890 DOI: 10.1063/5.0030558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The p53 transcription factor is a key mediator in cellular responses to various stress signals including DNA repair, cell cycle arrest, and apoptosis. In this work, we employ landscape and flux theory to investigate underlying mechanisms of p53-regulated cell fate decisions. Based on a p53 regulatory network, we quantified the potential landscape and probabilistic flux for the p53 system. The landscape topography unifies and quantifies three cell fate states, including the limit cycle oscillations (representing cell cycle arrest), high p53 state (characterizing apoptosis), and low p53 state (characterizing the normal proliferative state). Landscape and flux results provide a quantitative explanation for the biphasic dynamics of the p53 system. In the oscillatory phase (first phase), the landscape attracts the system into the ring valley and flux drives the system cyclically moving, leading to cell cycle arrest. In the fate decision-making phase (second phase), the ring valley shape of the landscape provides an efficient way for cells to return to the normal proliferative state once DNA damage is repaired. If the damage is unrepairable with larger flux, the system may cross the barrier between two states and switch to the apoptotic state with a high p53 level. By landscape-flux decomposition, we revealed a trade-off between stability (guaranteed by landscape) and function (driven by flux) in cellular systems. Cells need to keep a balance between appropriate speed to repair DNA damage and appropriate stability to survive. This is further supported by flux landscape analysis showing that flux may provide the dynamical origin of phase transition in a non-equilibrium system by changing landscape topography.
Collapse
Affiliation(s)
- Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhuoqing Song
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Kang X, Li C. A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003133. [PMID: 34026435 PMCID: PMC8132071 DOI: 10.1002/advs.202003133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Dimension reduction is a challenging problem in complex dynamical systems. Here, a dimension reduction approach of landscape (DRL) for complex dynamical systems is proposed, by mapping a high-dimensional system on a low-dimensional energy landscape. The DRL approach is applied to three biological networks, which validates that new reduced dimensions preserve the major information of stability and transition of original high-dimensional systems. The consistency of barrier heights calculated from the low-dimensional landscape and transition actions calculated from the high-dimensional system further shows that the landscape after dimension reduction can quantify the global stability of the system. The epithelial-mesenchymal transition (EMT) and abnormal metabolism are two hallmarks of cancer. With the DRL approach, a quadrastable landscape for metabolism-EMT network is identified, including epithelial (E), abnormal metabolic (A), hybrid E/M (H), and mesenchymal (M) cell states. The quantified energy landscape and kinetic transition paths suggest that for the EMT process, the cells at E state need to first change their metabolism, then enter the M state. The work proposes a general framework for the dimension reduction of a stochastic dynamical system, and advances the mechanistic understanding of the underlying relationship between EMT and cellular metabolism.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical SciencesFudan UniversityShanghai200433China
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| |
Collapse
|
22
|
Abstract
Bistable switches that produce all-or-none responses have been found to regulate a number of natural cellular decision making processes, and subsequently synthetic switches were designed to exploit their potential. However, an increasing number of studies, particularly in the context of cellular differentiation, highlight the existence of a mixed state that can be explained by tristable switches. The criterion for designing robust tristable switches still remains to be understood from the perspective of network topology. To address such a question, we calculated the robustness of several 2- and 3-component network motifs, connected via only two positive feedback loops, in generating tristable signal response curves. By calculating the effective potential landscape and following its modifications with the bifurcation parameter, we constructed one-parameter bifurcation diagrams of these models in a high-throughput manner for a large combinations of parameters. We report here that introduction of a self-activatory positive feedback loop, directly or indirectly, into a mutual inhibition loop leads to generating the most robust tristable response. The high-throughput approach of our method further allowed us to determine the robustness of four types of tristable responses that originate from the relative locations of four bifurcation points. Using the method, we also analyzed the role of additional mutual inhibition loops in stabilizing the mixed state.
Collapse
Affiliation(s)
- Anupam Dey
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad 500046, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad 500046, Telangana, India
| |
Collapse
|
23
|
Sood A, Zhang B. Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods. Front Genet 2021; 11:636724. [PMID: 33552146 PMCID: PMC7862759 DOI: 10.3389/fgene.2020.636724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023] Open
Abstract
The Waddington landscape provides an intuitive metaphor to view development as a ball rolling down the hill, with distinct phenotypes as basins and differentiation pathways as valleys. Since, at a molecular level, cell differentiation arises from interactions among the genes, a mathematical definition for the Waddington landscape can, in principle, be obtained by studying the gene regulatory networks. For eukaryotes, gene regulation is inextricably and intimately linked to histone modifications. However, the impact of such modifications on both landscape topography and stability of attractor states is not fully understood. In this work, we introduced a minimal kinetic model for gene regulation that combines the impact of both histone modifications and transcription factors. We further developed an approximation scheme based on variational principles to solve the corresponding master equation in a second quantized framework. By analyzing the steady-state solutions at various parameter regimes, we found that histone modification kinetics can significantly alter the behavior of a genetic network, resulting in qualitative changes in gene expression profiles. The emerging epigenetic landscape captures the delicate interplay between transcription factors and histone modifications in driving cell-fate decisions.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
24
|
Plant AL, Halter M, Stinson J. Probing pluripotency gene regulatory networks with quantitative live cell imaging. Comput Struct Biotechnol J 2020; 18:2733-2743. [PMID: 33101611 PMCID: PMC7560648 DOI: 10.1016/j.csbj.2020.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/12/2022] Open
Abstract
Live cell imaging uniquely enables the measurement of dynamic events in single cells, but it has not been used often in the study of gene regulatory networks. Network components can be examined in relation to one another by quantitative live cell imaging of fluorescent protein reporter cell lines that simultaneously report on more than one network component. A series of dual-reporter cell lines would allow different combinations of network components to be examined in individual cells. Dynamical information about interacting network components in individual cells is critical to predictive modeling of gene regulatory networks, and such information is not accessible through omics and other end point techniques. Achieving this requires that gene-edited cell lines are appropriately designed and adequately characterized to assure the validity of the biological conclusions derived from the expression of the reporters. In this brief review we discuss what is known about the importance of dynamics to network modeling and review some recent advances in optical microscopy methods and image analysis approaches that are making the use of quantitative live cell imaging for network analysis possible. We also discuss how strategies for genetic engineering of reporter cell lines can influence the biological relevance of the data.
Collapse
Affiliation(s)
- Anne L Plant
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Michael Halter
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Jeffrey Stinson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| |
Collapse
|
25
|
Chu X, Wang J. Conformational state switching and pathways of chromosome dynamics in cell cycle. APPLIED PHYSICS REVIEWS 2020; 7:031403. [PMID: 32884608 PMCID: PMC7376616 DOI: 10.1063/5.0007316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 05/02/2023]
Abstract
The cell cycle is a process and function of a cell with different phases essential for cell growth, proliferation, and replication. It depends on the structure and dynamics of the underlying DNA molecule, which underpins the genome function. A microscopic structural-level understanding of how a genome or its functional module chromosome performs the cell cycle in terms of large-scale conformational transformation between different phases, such as the interphase and the mitotic phase, is still challenging. Here, we develop a non-equilibrium, excitation-relaxation energy landscape-switching model to quantify the underlying chromosome conformational transitions through (de-)condensation for a complete microscopic understanding of the cell cycle. We show that the chromosome conformational transition mechanism from the interphase to the mitotic phase follows a two-stage scenario, in good agreement with the experiments. In contrast, the mitotic exit pathways show the existence of an over-expanded chromosome that recapitulates the chromosome in the experimentally identified intermediate state at the telophase. We find the conformational pathways are heterogeneous and irreversible as a result of the non-equilibrium dynamics of the cell cycle from both structural and kinetic perspectives. We suggest that the irreversibility is mainly due to the distinct participation of the ATP-dependent structural maintenance of chromosomal protein complexes during the cell cycle. Our findings provide crucial insights into the microscopic molecular structural and dynamical physical mechanism for the cell cycle beyond the previous more macroscopic descriptions. Our non-equilibrium landscape framework is general and applicable to study diverse non-equilibrium physical and biological processes such as active matter, differentiation/development, and cancer.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at
Stony Brook, Stony Brook, New York 11794, USA
| | - Jin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Quantifying the Landscape and Transition Paths for Proliferation-Quiescence Fate Decisions. J Clin Med 2020; 9:jcm9082582. [PMID: 32784979 PMCID: PMC7466041 DOI: 10.3390/jcm9082582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/01/2022] Open
Abstract
The cell cycle, essential for biological functions, experiences delicate spatiotemporal regulation. The transition between G1 and S phase, which is called the proliferation–quiescence decision, is critical to the cell cycle. However, the stability and underlying stochastic dynamical mechanisms of the proliferation–quiescence decision have not been fully understood. To quantify the process of the proliferation–quiescence decision, we constructed its underlying landscape based on the relevant gene regulatory network. We identified three attractors on the landscape corresponding to the G0, G1, and S phases, individually, which are supported by single-cell data. By calculating the transition path, which quantifies the potential barrier, we built expression profiles in temporal order for key regulators in different transitions. We propose that the two saddle points on the landscape characterize restriction point (RP) and G1/S checkpoint, respectively, which provides quantitative and physical explanations for the mechanisms of Rb governing the RP while p21 controlling the G1/S checkpoint. We found that Emi1 inhibits the transition from G0 to G1, while Emi1 in a suitable range facilitates the transition from G1 to S. These results are partially consistent with previous studies, which also suggested new roles of Emi1 in the cell cycle. By global sensitivity analysis, we identified some critical regulatory factors influencing the proliferation–quiescence decision. Our work provides a global view of the stochasticity and dynamics in the proliferation–quiescence decision of the cell cycle.
Collapse
|
27
|
Huang B, Lu M, Galbraith M, Levine H, Onuchic JN, Jia D. Decoding the mechanisms underlying cell-fate decision-making during stem cell differentiation by random circuit perturbation. J R Soc Interface 2020; 17:20200500. [PMID: 32781932 PMCID: PMC7482558 DOI: 10.1098/rsif.2020.0500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this question, we applied a recently developed computational method, random circuit perturbation (RACIPE), to a nine-component gene regulatory network (GRN) governing stemness, from which we identified robust gene states. Among them, four out of the five most probable gene states exhibit gene expression patterns observed in single mouse embryonic cells at 32-cell and 64-cell stages. These gene states can be robustly predicted by the stemness GRN but not by randomized versions of the stemness GRN. Strikingly, we found a hierarchical structure of the GRN with the Oct4/Cdx2 motif functioning as the first decision-making module followed by Gata6/Nanog. We propose that stem cell populations, instead of being viewed as all having a specific cellular state, can be regarded as a heterogeneous mixture including cells in various states. Upon perturbations by external signals, stem cells lose the capacity to access certain cellular states, thereby becoming differentiated. The new gene states and key parameters regulating transitions among gene states proposed by RACIPE can be used to guide experimental strategies to better understand differentiation and design reprogramming. The findings demonstrate that the functions of the stemness GRN is mainly determined by its well-evolved network topology rather than by detailed kinetic parameters.
Collapse
Affiliation(s)
- Bin Huang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | - Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
28
|
Kozdęba A, Tomski A. Application of the Goodwin model to autoregulatory feedback for stochastic gene expression. Math Biosci 2020; 327:108413. [PMID: 32628944 DOI: 10.1016/j.mbs.2020.108413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
Abstract
In this paper we analyse stochastic expression of a single gene with its dynamics given by the classical Goodwin model with mRNA and protein contribution. We compare the effect of the presence of positive and negative feedback on the transcription regulation. In such cases we observe two qualitatively different types of asymptotic behaviour. In the case of a negative feedback loop, under sufficient conditions, one can find a stationary density for mRNA and protein molecules. In the case of a positive feedback loop we observe extinction of both types of molecules with time.
Collapse
Affiliation(s)
- Agnieszka Kozdęba
- Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland.
| | - Andrzej Tomski
- Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland.
| |
Collapse
|
29
|
Sood A, Zhang B. Quantifying epigenetic stability with minimum action paths. Phys Rev E 2020; 101:062409. [PMID: 32688511 PMCID: PMC7412882 DOI: 10.1103/physreve.101.062409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Chromatin can adopt multiple stable, heritable states with distinct histone modifications and varying levels of gene expression. Insight on the stability and maintenance of such epigenetic states can be gained by mathematical modeling of stochastic reaction networks for histone modifications. Analytical results for the kinetic networks are particularly valuable. Compared to computationally demanding numerical simulations, they often are more convenient at evaluating the robustness of conclusions with respect to model parameters. In this communication, we developed a second-quantization-based approach that can be used to analyze discrete stochastic models with a fixed, finite number of particles using a representation of the SU(2) algebra. We applied the approach to a kinetic model of chromatin states that captures the feedback between nucleosomes and the enzymes conferring histone modifications. Using a path-integral expression for the transition probability, we computed the epigenetic landscape that helps to identify the emergence of bistability and the most probable path connecting the two steady states. We anticipate the generalizability of the approach will make it useful for studying more complicated models that couple epigenetic modifications with transcription factors and chromatin structure.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Eldred KC, Avelis C, Johnston RJ, Roberts E. Modeling binary and graded cone cell fate patterning in the mouse retina. PLoS Comput Biol 2020; 16:e1007691. [PMID: 32150546 PMCID: PMC7082072 DOI: 10.1371/journal.pcbi.1007691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/19/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Nervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin only, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ~250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data, we developed a quantitative, probabilistic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates. The development of a cell in a mammalian tissue is governed by a complex regulatory network that responds to many input signals to give the cell a distinct identity, a process referred to as cell-fate specification. Some of these cell fates have binary on-or-off gene expression patterns, while others have graded gene expression that changes across the tissue. Differentiation of the photoreceptor cells that sense light in the mouse retina provides a good example of this process. Here, we explore how complex patterns of cell fates are specified in the mouse retina by building a computational model based on analysis of a large number of photoreceptor cells from microscopy images of whole retinas. We use the data and the model to study what exactly it means for a cell to have a binary or graded cell fate and how these cell fates can be distinguished from each other. Our study shows how tens-of-thousands of individual photoreceptor cells can be patterned across a complex tissue by a regulatory network, creating a different outcome depending upon the received inputs.
Collapse
Affiliation(s)
- Kiara C. Eldred
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cameron Avelis
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RJJ); (ER)
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RJJ); (ER)
| |
Collapse
|
31
|
Kang X, Li C. Landscape inferred from gene expression data governs pluripotency in embryonic stem cells. Comput Struct Biotechnol J 2020; 18:366-374. [PMID: 32128066 PMCID: PMC7044515 DOI: 10.1016/j.csbj.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) can differentiate into diverse cell types and have the ability of self-renewal. Therefore, the study of cell fate decisions on embryonic stem cells has far-reaching significance for regenerative medicine and other biomedical fields. Mathematical models have been used to study emryonic stem cell differentiation. However, the underlying mechanisms of cell differentiation and lineage reprogramming remain to be elucidated. Especially, how to integrate the computational models with quantitative experimental data is still challenging. In this work, we developed a data-constrained modelling approach, and established a model of mouse embryonic stem cells. We used the truncated moment equations (TME) method to quantify the potential landscape of the ESC network. We identified two attractors on the landscape, which represent the embryonic stem cell (ESC) state and differentiated cell (DC) state, respectively, and quantified high dimensional biological paths for differentiation and reprogramming process. Through identifying the optimal combinations of gene targets based on a landscape control strategy, we offered some predictions about the key regulatory factors that govern the differentiation and reprogramming in ESCs.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical Sciences, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Gallivan CP, Ren H, Read EL. Analysis of Single-Cell Gene Pair Coexpression Landscapes by Stochastic Kinetic Modeling Reveals Gene-Pair Interactions in Development. Front Genet 2020; 10:1387. [PMID: 32082359 PMCID: PMC7005996 DOI: 10.3389/fgene.2019.01387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 12/04/2022] Open
Abstract
Single-cell transcriptomics is advancing discovery of the molecular determinants of cell identity, while spurring development of novel data analysis methods. Stochastic mathematical models of gene regulatory networks help unravel the dynamic, molecular mechanisms underlying cell-to-cell heterogeneity, and can thus aid interpretation of heterogeneous cell-states revealed by single-cell measurements. However, integrating stochastic gene network models with single cell data is challenging. Here, we present a method for analyzing single-cell gene-pair coexpression patterns, based on biophysical models of stochastic gene expression and interaction dynamics. We first developed a high-computational-throughput approach to stochastic modeling of gene-pair coexpression landscapes, based on numerical solution of gene network Master Equations. We then comprehensively catalogued coexpression patterns arising from tens of thousands of gene-gene interaction models with different biochemical kinetic parameters and regulatory interactions. From the computed landscapes, we obtain a low-dimensional "shape-space" describing distinct types of coexpression patterns. We applied the theoretical results to analysis of published single cell RNA sequencing data and uncovered complex dynamics of coexpression among gene pairs during embryonic development. Our approach provides a generalizable framework for inferring evolution of gene-gene interactions during critical cell-state transitions.
Collapse
Affiliation(s)
- Cameron P. Gallivan
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, United States
- Mathematical and Computational Systems Biology Graduate Program, University of California, Irvine, CA, United States
| | - Elizabeth L. Read
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, United States
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, United States
| |
Collapse
|
33
|
Klein MC, Roberts E. Automatic error control during forward flux sampling of rare events in master equation models. J Chem Phys 2020; 152:035102. [PMID: 31968949 DOI: 10.1063/1.5129461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enhanced sampling methods, such as forward flux sampling (FFS), have great capacity for accelerating stochastic simulations of nonequilibrium biochemical systems involving rare events. However, the description of the tradeoffs between simulation efficiency and error in FFS remains incomplete. We present a novel and mathematically rigorous analysis of the errors in FFS that, for the first time, covers the contribution of every phase of the simulation. We derive a closed form expression for the optimally efficient count of samples to take in each FFS phase in terms of a fixed constraint on sampling error. We introduce a new method, forward flux pilot sampling (FFPilot), that is designed to take full advantage of our optimizing equation without prior information or assumptions about the phase weights and costs along the transition path. In simulations of both single and multidimensional gene regulatory networks, FFPilot is able to completely control sampling error. We then discuss how memory effects can introduce additional error when relaxation along the transition path is slow. This extra error can be traced to correlations between the FFS phases and can be controlled by monitoring the covariance between them. Finally, we show that, in sets of simulations with matched error, FFPilot is on the order of tens-to-hundreds of times faster than direct sampling and noticeably more efficient than previous FFS methods.
Collapse
Affiliation(s)
- Max C Klein
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
34
|
Wang J, Yuan R, Zhu X, Ao P. Adaptive Landscape Shaped by Core Endogenous Network Coordinates Complex Early Progenitor Fate Commitments in Embryonic Pancreas. Sci Rep 2020; 10:1112. [PMID: 31980678 PMCID: PMC6981170 DOI: 10.1038/s41598-020-57903-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
The classical development hierarchy of pancreatic cell fate commitments describes that multipotent progenitors (MPs) first bifurcate into tip cells and trunk cells, and then these cells give rise to acinar cells and endocrine/ductal cells separately. However, lineage tracings reveal that pancreatic progenitors are highly heterogeneous in tip and trunk domains in embryonic pancreas. The progenitor fate commitments from multipotency to unipotency during early pancreas development is insufficiently characterized. In pursuing a mechanistic understanding of the complexity in progenitor fate commitments, we construct a core endogenous network for pancreatic lineage decisions based on genetic regulations and quantified its intrinsic dynamic properties using dynamic modeling. The dynamics reveal a developmental landscape with high complexity that has not been clarified. Not only well-characterized pancreatic cells are reproduced, but also previously unrecognized progenitors-tip progenitor (TiP), trunk progenitor (TrP), later endocrine progenitor (LEP), and acinar progenitors (AciP/AciP2) are predicted. Further analyses show that TrP and LEP mediate endocrine lineage maturation, while TiP, AciP, AciP2 and TrP mediate acinar and ductal lineage maturation. The predicted cell fate commitments are validated by analyzing single-cell RNA sequencing (scRNA-seq) data. Significantly, this is the first time that a redefined hierarchy with detailed early pancreatic progenitor fate commitment is obtained.
Collapse
Affiliation(s)
- Junqiang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoshi Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Li C, Ye L. Landscape and flux govern cellular mode-hopping between oscillations. J Chem Phys 2019; 151:175101. [PMID: 31703512 DOI: 10.1063/1.5125046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recently, a "mode-hopping" phenomenon has been observed in a NF-κB gene regulatory network with oscillatory tumor necrosis factor (TNF) inputs. It was suggested that noise facilitates the switch between different oscillation modes. However, the underlying mechanism of this noise-induced "cellular mode-hopping" behavior remains elusive. We employed a landscape and flux approach to study the stochastic dynamics and global stability of the NF-κB regulatory system. We used a truncated moment equation approach to calculate the probability distribution and potential landscape for gene regulatory systems. The potential landscape of the NF-κB system exhibits a "double ring valley" shape. Barrier heights from landscape topography provide quantitative measures of the global stability and transition feasibility of the double oscillation system. We found that the landscape and flux jointly govern the dynamical "mode-hopping" behavior of the NF-κB regulatory system. The landscape attracts the system into a "double ring valley," and the flux drives the system to move cyclically. As the external noise increases, relevant barrier heights decrease, and the flux increases. As the amplitude of the TNF input increases, the flux contribution, from the total driving force, increases and the system behavior changes from one to two cycles and ultimately to chaotic dynamics. Therefore, the probabilistic flux may provide an origin of chaotic behavior. We found that the height of the peak of the power spectrum of autocorrelation functions and phase coherence is correlated with barrier heights of the landscape and provides quantitative measures of global stability of the system under intrinsic fluctuations.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Kang X, Wang J, Li C. Exposing the Underlying Relationship of Cancer Metastasis to Metabolism and Epithelial-Mesenchymal Transitions. iScience 2019; 21:754-772. [PMID: 31739095 PMCID: PMC6864351 DOI: 10.1016/j.isci.2019.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease governed by the underlying gene regulatory networks. The hallmarks of cancer have been proposed to characterize the cancerization, e.g., abnormal metabolism, epithelial to mesenchymal transition (EMT), and cancer metastasis. We constructed a metabolism-EMT-metastasis regulatory network and quantified its underlying landscape. We identified four attractors, characterizing epithelial, abnormal metabolic, mesenchymal, and metastatic cell states, respectively. Importantly, we identified an abnormal metabolic state. Based on the transition path theory, we quantified the kinetic transition paths among these different cell states. Our results for landscape and paths indicate that metastasis is a sequential process: cells tend to first change their metabolism, then activate the EMT and eventually reach the metastatic state. This demonstrates the importance of the temporal order for different gene circuits switching on or off during metastatic progression of cancer cells and underlines the cascading regulation of metastasis through an abnormal metabolic intermediate state.
Collapse
Affiliation(s)
- Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China; School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.
| |
Collapse
|
37
|
Hamaneh MB, Yu YK. Exploring induced pluripotency in human fibroblasts via construction, validation, and application of a gene regulatory network. PLoS One 2019; 14:e0220742. [PMID: 31374103 PMCID: PMC6677386 DOI: 10.1371/journal.pone.0220742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022] Open
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells, by overexpressing certain factors referred to as the reprogramming factors, can revolutionize regenerative medicine. To provide a coherent description of induced pluripotency from the gene regulation perspective, we use 35 microarray datasets to construct a reprogramming gene regulatory network. Comprising 276 nodes and 4471 links, the resulting network is, to the best of our knowledge, the largest gene regulatory network constructed for human fibroblast reprogramming and it is the only one built using a large number of experimental datasets. To build the network, a model that relates the expression profiles of the initial (fibroblast) and final (induced pluripotent stem cell) states is proposed and the model parameters (link strengths) are fitted using the experimental data. Twenty nine additional experimental datasets are collectively used to test the model/network, and good agreement between experimental and predicted gene expression profiles is found. We show that the model in conjunction with the constructed network can make useful predictions. For example, we demonstrate that our approach can incorporate the effect of reprogramming factor stoichiometry and that its predictions are consistent with the experimentally observed trends in reprogramming efficiency when the stoichiometric ratios vary. Using our model/network, we also suggest new (not used in training of the model) candidate sets of reprogramming factors, many of which have already been experimentally verified. These results suggest our model/network can potentially be used in devising new recipes for induced pluripotency with higher efficiencies. Additionally, we classify the links of the network into three classes of different importance, prioritizing them for experimental verification. We show that many of the links in the top ranked class are experimentally known to be important in reprogramming. Finally, comparing with other methods, we show that using our model is advantageous.
Collapse
Affiliation(s)
- Mehdi B. Hamaneh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi-Kuo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Folguera-Blasco N, Pérez-Carrasco R, Cuyàs E, Menendez JA, Alarcón T. A multiscale model of epigenetic heterogeneity-driven cell fate decision-making. PLoS Comput Biol 2019; 15:e1006592. [PMID: 31039148 PMCID: PMC6510448 DOI: 10.1371/journal.pcbi.1006592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/10/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
The inherent capacity of somatic cells to switch their phenotypic status in response to damage stimuli in vivo might have a pivotal role in ageing and cancer. However, how the entry-exit mechanisms of phenotype reprogramming are established remains poorly understood. In an attempt to elucidate such mechanisms, we herein introduce a stochastic model of combined epigenetic regulation (ER)-gene regulatory network (GRN) to study the plastic phenotypic behaviours driven by ER heterogeneity. To deal with such complex system, we additionally formulate a multiscale asymptotic method for stochastic model reduction, from which we derive an efficient hybrid simulation scheme. Our analysis of the coupled system reveals a regime of tristability in which pluripotent stem-like and differentiated steady-states coexist with a third indecisive state, with ER driving transitions between these states. Crucially, ER heterogeneity of differentiation genes is for the most part responsible for conferring abnormal robustness to pluripotent stem-like states. We formulate epigenetic heterogeneity-based strategies capable of unlocking and facilitating the transit from differentiation-refractory (stem-like) to differentiation-primed epistates. The application of the hybrid numerical method validates the likelihood of such switching involving solely kinetic changes in epigenetic factors. Our results suggest that epigenetic heterogeneity regulates the mechanisms and kinetics of phenotypic robustness of cell fate reprogramming. The occurrence of tunable switches capable of modifying the nature of cell fate reprogramming might pave the way for new therapeutic strategies to regulate reparative reprogramming in ageing and cancer. Certain modifications of the structure and functioning of the protein/DNA complex called chromatin can allow adult, fully differentiated, cells to adopt a stem cell-like pluripotent state in a purely epigenetic manner, not involving changes in the underlying DNA sequence. Such reprogramming-like phenomena may constitute an innate reparative route through which human tissues respond to injury and could also serve as a novel regenerative strategy in human pathological situations in which tissue or organ repair is impaired. However, it should be noted that in vivo reprogramming would be capable of maintaining tissue homeostasis provided the acquisition of pluripotency features is strictly transient and accompanied by an accurate replenishment of the specific cell types being lost. Crucially, an excessive reprogramming in the absence of controlled re-differentiation would impair the repair or the replacement of damaged cells, thereby promoting pathological alterations of cell fate. A mechanistic understanding of how the degree of chromatin plasticity dictates the reparative versus pathological behaviour of in vivo reprogramming to rejuvenate aged tissues while preventing tumorigenesis is urgently needed, including especially the intrinsic epigenetic heterogeneity of the tissue resident cells being reprogrammed. We here introduce a novel method that mathematically captures how epigenetic heterogeneity is actually the driving force that governs the routes and kinetics to entry into and exit from a pathological stem-like state. Moreover, our approach computationally validates the likelihood of unlocking chronic, unrestrained plastic states and drive their differentiation down the correct path by solely manipulating the intensity and direction of few epigenetic control switches. Our approach could inspire new therapeutic approaches based on in vivo cell reprogramming for efficient tissue regeneration and rejuvenation and cancer treatment.
Collapse
Affiliation(s)
- Núria Folguera-Blasco
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- * E-mail:
| | - Rubén Pérez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Javier A. Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
39
|
Ye Y, Kang X, Bailey J, Li C, Hong T. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Comput Biol 2019; 15:e1006855. [PMID: 30845219 PMCID: PMC6424469 DOI: 10.1371/journal.pcbi.1006855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/19/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions. The functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes was unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Jordan Bailey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America
| |
Collapse
|
40
|
Abstract
Landscape approaches have been exploited to study the stochastic dynamics of gene networks. However, how to calculate the landscape with a wide range of parameter variations and how to investigate the influence of the network topology on the global properties of gene networks remain to be elucidated. Here, I developed an approach for the landscape of random parameter perturbation (LRPP) to address this issue. Based on a self-consistent approximation approach, by making perturbations to parameters in a given range, I obtained the landscape for gene network systems. I applied this approach to two biological models, one for the mutual repression model and the other for the embryonic stem (ES) cell differentiation network. For the mutual repression model, my results confirm quantitatively that positive feedback promotes the robustness of multistability. For the ES cell differentiation model, I identify three cell states, representing the ES cell, the differentiation cell, and the intermediate state cell, respectively. I propose that the intermediate states and the wide range of parameter values coming from inhomogeneous cellular environments provide possible explanations for the heterogeneity observed in single cell experiments. I also offer a counterintuitive result that noise could reduce heterogeneity and promote the stability of cell states. These results support that the network topology determines the operating principles of the genetic networks, reflected by the representative landscapes from LRPP. This work provides a new route to obtain the potential landscape for a gene network system given a wide range of parameter values and study the influences of the network topology on the global properties of the system.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Abdallah HM, Del Vecchio D. Computational Analysis of Altering Cell Fate. Methods Mol Biol 2019; 1975:363-405. [PMID: 31062319 PMCID: PMC7227774 DOI: 10.1007/978-1-4939-9224-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
Abstract
The notion of reprogramming cell fate is a direct challenge to the traditional view in developmental biology that a cell's phenotypic identity is sealed after undergoing differentiation. Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of the twentieth century and culminating in the more recent breakthroughs in transdifferentiation and induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for basic research in disease modeling, drug discovery, and clinical therapeutics. In many of these cell fate reprogramming experiments, there is often little known about the genetic and molecular changes accompanying the reprogramming process. However, gene regulatory networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a starting point for understanding the dynamic changes that accompany a given cell fate reprogramming process. In this chapter, we present a framework for computationally analyzing cell fate changes by mathematically modeling these GRNs. We provide a user guide with several tutorials of a set of techniques from dynamical systems theory that can be used to probe the intrinsic properties of GRNs as well as study their responses to external perturbations.
Collapse
Affiliation(s)
- Hussein M Abdallah
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
42
|
Brackston RD, Lakatos E, Stumpf MPH. Transition state characteristics during cell differentiation. PLoS Comput Biol 2018; 14:e1006405. [PMID: 30235202 PMCID: PMC6168170 DOI: 10.1371/journal.pcbi.1006405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/02/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Models describing the process of stem-cell differentiation are plentiful, and may offer insights into the underlying mechanisms and experimentally observed behaviour. Waddington's epigenetic landscape has been providing a conceptual framework for differentiation processes since its inception. It also allows, however, for detailed mathematical and quantitative analyses, as the landscape can, at least in principle, be related to mathematical models of dynamical systems. Here we focus on a set of dynamical systems features that are intimately linked to cell differentiation, by considering exemplar dynamical models that capture important aspects of stem cell differentiation dynamics. These models allow us to map the paths that cells take through gene expression space as they move from one fate to another, e.g. from a stem-cell to a more specialized cell type. Our analysis highlights the role of the transition state (TS) that separates distinct cell fates, and how the nature of the TS changes as the underlying landscape changes-change that can be induced by e.g. cellular signaling. We demonstrate that models for stem cell differentiation may be interpreted in terms of either a static or transitory landscape. For the static case the TS represents a particular transcriptional profile that all cells approach during differentiation. Alternatively, the TS may refer to the commonly observed period of heterogeneity as cells undergo stochastic transitions.
Collapse
Affiliation(s)
- Rowan D. Brackston
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Eszter Lakatos
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michael P. H. Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
- School of BioScience and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
43
|
Li C, Balazsi G. A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl 2018; 4:34. [PMID: 30155271 PMCID: PMC6107626 DOI: 10.1038/s41540-018-0068-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a basic developmental process that converts epithelial cells to mesenchymal cells. Although EMT might promote cancer metastasis, the molecular mechanisms for it remain to be fully clarified. To address this issue, we constructed an EMT-metastasis gene regulatory network model and quantified the potential landscape of cancer metastasis-promoting system computationally. We identified four steady-state attractors on the landscape, which separately characterize anti-metastatic (A), metastatic (M), and two other intermediate (I1 and I2) cell states. The tetrastable landscape and the existence of intermediate states are consistent with recent single-cell measurements. We identified one of the two intermediate states I1 as the EMT state. From a MAP approach, we found that for metastatic progression cells need to first undergo EMT (enter the I1 state), and then become metastatic (switch from the I1 state to the M state). Specifically, for metastatic progression, EMT genes (such as ZEB) should be activated before metastasis genes (such as BACH1). This suggests that temporal order is important for the activation of cellular programs in biological systems, and provides a possible mechanism of EMT-promoting cancer metastasis. To identify possible therapeutic targets from this landscape view, we performed sensitivity analysis for individual molecular factors, and identified optimal interventions for landscape control. We found that minimizing transition actions more effectively identifies optimal combinations of targets that induce transitions between attractors than single-factor sensitivity analysis. Overall, the landscape view not only suggests that intermediate states increase plasticity during cell fate decisions, providing a possible source for tumor heterogeneity that is critically important in metastatic progress, but also provides a way to identify therapeutic targets for preventing cancer progression.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Gabor Balazsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
44
|
Tse MJ, Chu BK, Gallivan CP, Read EL. Rare-event sampling of epigenetic landscapes and phenotype transitions. PLoS Comput Biol 2018; 14:e1006336. [PMID: 30074987 PMCID: PMC6093701 DOI: 10.1371/journal.pcbi.1006336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Stochastic simulation has been a powerful tool for studying the dynamics of gene regulatory networks, particularly in terms of understanding how cell-phenotype stability and fate-transitions are impacted by noisy gene expression. However, gene networks often have dynamics characterized by multiple attractors. Stochastic simulation is often inefficient for such systems, because most of the simulation time is spent waiting for rare, barrier-crossing events to occur. We present a rare-event simulation-based method for computing epigenetic landscapes and phenotype-transitions in metastable gene networks. Our computational pipeline was inspired by studies of metastability and barrier-crossing in protein folding, and provides an automated means of computing and visualizing essential stationary and dynamic information that is generally inaccessible to conventional simulation. Applied to a network model of pluripotency in Embryonic Stem Cells, our simulations revealed rare phenotypes and approximately Markovian transitions among phenotype-states, occurring with a broad range of timescales. The relative probabilities of phenotypes and the transition paths linking pluripotency and differentiation are sensitive to global kinetic parameters governing transcription factor-DNA binding kinetics. Our approach significantly expands the capability of stochastic simulation to investigate gene regulatory network dynamics, which may help guide rational cell reprogramming strategies. Our approach is also generalizable to other types of molecular networks and stochastic dynamics frameworks.
Collapse
Affiliation(s)
- Margaret J. Tse
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Brian K. Chu
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Cameron P. Gallivan
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Read
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Li C, Zhang L, Nie Q. Landscape reveals critical network structures for sharpening gene expression boundaries. BMC SYSTEMS BIOLOGY 2018; 12:67. [PMID: 29898720 PMCID: PMC6001026 DOI: 10.1186/s12918-018-0595-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/31/2018] [Indexed: 01/17/2023]
Abstract
Background Spatial pattern formation is a critical issue in developmental biology. Gene expression boundary sharpening has been observed from both experiments and modeling simulations. However, the mechanism to determine the sharpness of the boundary is not fully elucidated. Results We investigated the boundary sharpening resulted by three biological motifs, interacting with morphogens, and uncovered their probabilistic landscapes. The landscape view, along with calculated average switching time between attractors, provides a natural explanation for the boundary sharpening behavior relying on the noise induced gene state switchings. To possess boundary sharpening potential, a gene network needs to generate an asymmetric bistable state, i.e. one of the two stable states is less stable than the other. We found that the mutual repressed self-activation model displays more robust boundary sharpening ability against parameter perturbation, compared to the mutual repression or the self-activation model. This is supported by the results of switching time calculated from the landscape, which indicate that the mutual repressed self-activation model has shortest switching time, among three models. Additionally, introducing cross gradients of morphogens provides a more stable mechanism for the boundary sharpening of gene expression, due to a two-way switching mechanism. Conclusions Our results reveal the underlying principle for the gene expression boundary sharpening, and pave the way for the mechanistic understanding of cell fate decisions in the pattern formation processes of development. Electronic supplementary material The online version of this article (10.1186/s12918-018-0595-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China. .,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, 92697, USA. .,Center for Complex Biological Systems, University of California, Irvine, 92697, USA.
| |
Collapse
|
46
|
Wenbo L, Wang J. Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J R Soc Interface 2018; 14:rsif.2017.0105. [PMID: 28659412 DOI: 10.1098/rsif.2017.0105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
The study of the cancer-immune system is important for understanding tumorigenesis and the development of cancer and immunotherapy. In this work, we build a comprehensive cancer-immune model including both cells and cytokines to uncover the underlying mechanism of cancer immunity based on landscape topography. We quantify three steady-state attractors, normal state, low cancer state and high cancer state, for the innate immunity and adaptive immunity of cancer. We also illustrate the cardinal inhibiting cancer immunity interactions and promoting cancer immunity interactions through global sensitivity analysis. We simulate tumorigenesis and the development of cancer and classify these into six stages. The characteristics of the six stages can be classified further into three groups. These correspond to the escape, elimination and equilibrium phases in immunoediting, respectively. Under specific cell-cell interactions strength oscillations emerge. We found that tumorigenesis and cancer recovery processes may need to go through cancer-immune oscillation, which consumes more energy. Based on the cancer-immune landscape, we predict three types of cells and two types of cytokines for cancer immunotherapy as well as combination immunotherapy. This landscape framework provides a quantitative way to understand the underlying mechanisms of the interplay between cancer and the immune system for cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Li Wenbo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China .,Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, USA.,Department of Physics, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
47
|
Li C. Identifying the optimal anticancer targets from the landscape of a cancer-immunity interaction network. Phys Chem Chem Phys 2018; 19:7642-7651. [PMID: 28256642 DOI: 10.1039/c6cp07767f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer immunotherapy, an approach of targeting immune cells to attack tumor cells, has been suggested to be a promising way for cancer treatment recently. However, the successful application of this approach warrants a deeper understanding of the intricate interplay between cancer cells and the immune system. Especially, the mechanisms of immunotherapy remain elusive. In this work, we constructed a cancer-immunity interplay network by incorporating interactions among cancer cells and some representative immune cells, and uncovered the potential landscape of the cancer-immunity network. Three attractors emerge on the landscape, representing the cancer state, the immune state, and the hybrid state, which can correspond to escape, elimination, and equilibrium phases in the immunoediting theory, respectively. We quantified the transition processes between the cancer state and the immune state by calculating transition actions and identifying the corresponding minimum action paths (MAPs) between these two attractors. The transition actions, directly calculated from the high dimensional system, are correlated with the barrier heights from the landscape, but provide a more precise description of the dynamics of a system. By optimizing the transition actions from the cancer state to the immune state, we identified some optimal combinations of anticancer targets. Our combined approach of the landscape and optimization of transition actions offers a framework to study the stochastic dynamics and identify the optimal combination of targets for the cancer-immunity interplay, and can be applied to other cell communication networks or gene regulatory networks.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China. and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Lin YT, Hufton PG, Lee EJ, Potoyan DA. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells. PLoS Comput Biol 2018; 14:e1006000. [PMID: 29451874 PMCID: PMC5833290 DOI: 10.1371/journal.pcbi.1006000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/01/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Peter G. Hufton
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Esther J. Lee
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
49
|
Pusuluri ST, Lang AH, Mehta P, Castillo HE. Cellular reprogramming dynamics follow a simple 1D reaction coordinate. Phys Biol 2017; 15:016001. [PMID: 29211687 DOI: 10.1088/1478-3975/aa90e0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a 'barrier-crossing' process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an 'optimal path' in gene expression space for reprogramming.
Collapse
Affiliation(s)
- Sai Teja Pusuluri
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH, 45701, United States of America. These authors contributed equally to this work
| | | | | | | |
Collapse
|
50
|
Herbach U, Bonnaffoux A, Espinasse T, Gandrillon O. Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC SYSTEMS BIOLOGY 2017; 11:105. [PMID: 29157246 PMCID: PMC5697158 DOI: 10.1186/s12918-017-0487-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023]
Abstract
Background The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells instead of being population-averaged. Despite this considerable precision improvement, inferring regulatory networks remains challenging because stochasticity now proves to play a fundamental role in gene expression. In particular, mRNA synthesis is now acknowledged to occur in a highly bursty manner. Results We propose to view the inference problem as a fitting procedure for a mechanistic gene network model that is inherently stochastic and takes not only protein, but also mRNA levels into account. We first explain how to build and simulate this network model based upon the coupling of genes that are described as piecewise-deterministic Markov processes. Our model is modular and can be used to implement various biochemical hypotheses including causal interactions between genes. However, a naive fitting procedure would be intractable. By performing a relevant approximation of the stationary distribution, we derive a tractable procedure that corresponds to a statistical hidden Markov model with interpretable parameters. This approximation turns out to be extremely close to the theoretical distribution in the case of a simple toggle-switch, and we show that it can indeed fit real single-cell data. As a first step toward inference, our approach was applied to a number of simple two-gene networks simulated in silico from the mechanistic model and satisfactorily recovered the original networks. Conclusions Our results demonstrate that functional interactions between genes can be inferred from the distribution of a mechanistic, dynamical stochastic model that is able to describe gene expression in individual cells. This approach seems promising in relation to the current explosion of single-cell expression data. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0487-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulysse Herbach
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, Villeurbanne Cedex, F-6962, France
| | - Arnaud Bonnaffoux
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France.,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.,The CoSMo company, 5 passage du Vercors, Lyon, 69007, France
| | - Thibault Espinasse
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, Villeurbanne Cedex, F-6962, France
| | - Olivier Gandrillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, Lyon, F-69007, France. .,Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.
| |
Collapse
|