1
|
Luo Y, Zhong X, Sun X, Fan J. The RNA-binding protein ELAVL1 promotes Beclin1-mediated cellular autophagy and thus endometrial cancer development by affecting LncRNA-neat stability. Cancer Biol Ther 2025; 26:2469927. [PMID: 40018990 PMCID: PMC11875488 DOI: 10.1080/15384047.2025.2469927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Our study aims to investigate the roles of embryonic lethal abnormal vision-like 1 (ELAVL1) and long non-coding RNA (LncRNA) NEAT1 in endometrial cancer (EC), focusing on their underlying molecular mechanisms.We obtained EC cell lines (HEC-1A, Ishikawa, RL95-2, HEC-1B, and AN3CA) from ATCC. We used siRNAs (si-ELAVL1#1 and si-ELAVL1#2) and overexpression RNAs (OE ELAVL1 and OE-NEAT1) for knockdown or overexpression of ELAVL1 and LncRNA NEAT1. We also employed 3-MA (5mM) or rapamycin (100µM) to inhibit or promote autophagy. Moreover, we conducted RNA immunoprecipitation (RIP) assays to confirm the interaction between LncRNA NEAT1 and ELAVL1. Cell Counting Kit-8 (CCK-8) and transwell assays were utilized to assess cell proliferation and migration. Additionally, we measured the expression of ELAVL1 and Beclin1 through Western blotting and RT-qPCR.ELAVL1 was found to be highly expressed in EC. Furthermore, ELAVL1 promoted the proliferation, invasion, and migration of EC cells through the regulation of Beclin1-related pathways. RIP assays revealed a direct interaction between LncRNA NEAT1 and ELAVL1, with ELAVL1 stabilizing LncRNA NEAT1 mRNA in EC cells. Additionally, we observed that ELAVL1 influenced EC cell proliferation, invasion, and migration through the regulation of LncRNA NEAT1-mediated regulation of Beclin1 expression. Moreover, in an animal study, we determined that ELAVL1 influenced endometrial cancer tumor growth through its interaction with LncRNA NEAT1, which mediated Beclin1 expression in vivo.In summary, our study showed that ELAVL1 regulated the malignant behavior of endometrial cancer cells through the modulation of LncRNA NEAT1-mediated regulation of Beclin1 expression.
Collapse
Affiliation(s)
- Yanlu Luo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xueyan Zhong
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xinzhao Sun
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jiangtao Fan
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
2
|
Bao B, Tian M, Wang X, Yang C, Qu J, Zhou S, Cheng Y, Tong Q, Zheng L. SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing. J Exp Clin Cancer Res 2025; 44:15. [PMID: 39815331 PMCID: PMC11737211 DOI: 10.1186/s13046-025-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive. METHODS High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events. Biotin-labeled RNA pull-down, mass spectrometry, cross-linking RNA immunoprecipitation, and in vitro binding assays were applied to explore interaction of snoRNAs with protein partners. Alternative splicing and gene expression was observed by real-time quantitative RT-PCR and western blot assays. In vitro and in vivo studies were performed to investigate biological effects of snoRNAs and their protein partners in gastric cancer. Survival analysis was undertaken by using Kaplan-Meier method and log-rank test. RESULTS SNORA37 was identified as an up-regulated snoRNA essential for tumorigenesis and aggressiveness of gastric cancer. Gain- and loss-of-function studies indicated that SNORA37 promoted the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, as an ELAV like RNA binding protein 1 (ELAVL1)-generated snoRNA, SNORA37 directly bound to cap methyltransferase 1 (CMTR1) to facilitate its interaction with ELAVL1, resulting in nuclear retention and activity of ELAVL1 in regulating alternative splicing of CD44. Rescue studies revealed that SNORA37 exerted oncogenic roles in gastric cancer progression via facilitating CMTR1-ELAVL1 interaction. In clinical gastric cancer cases, high levels of SNORA37, CMTR1, ELAVL1, or CD44 were associated with shorter survival and poor outcomes of patients. CONCLUSIONS These results indicated that SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.
Collapse
Affiliation(s)
- Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
4
|
Adamoski D, M Dos Reis L, Mafra ACP, Corrêa-da-Silva F, Moraes-Vieira PMMD, Berindan-Neagoe I, Calin GA, Dias SMG. HuR controls glutaminase RNA metabolism. Nat Commun 2024; 15:5620. [PMID: 38965208 PMCID: PMC11224379 DOI: 10.1038/s41467-024-49874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Larissa M Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Paschoalini Mafra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Radiation Oncology, Washington University School of Medicine, S. Louis, MO, USA
| | - Felipe Corrêa-da-Silva
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Cluj-Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Bak M, van Nimwegen E, Kouzel IU, Gur T, Schmidt R, Zavolan M, Gruber AJ. MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer. Nat Commun 2024; 15:4110. [PMID: 38750024 PMCID: PMC11096328 DOI: 10.1038/s41467-024-48046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3' end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.
Collapse
Affiliation(s)
- Maciej Bak
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Erik van Nimwegen
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Ian U Kouzel
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany
| | - Tamer Gur
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany
| | - Ralf Schmidt
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Mihaela Zavolan
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany.
| |
Collapse
|
7
|
Lin P, Cao W, Chen X, Zhang N, Xing Y, Yang N. Role of mRNA-binding proteins in retinal neovascularization. Exp Eye Res 2024; 242:109870. [PMID: 38514023 DOI: 10.1016/j.exer.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.
Collapse
Affiliation(s)
- Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China; Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Yang N, Zhang N, Lu G, Zeng S, Xing Y, Du L. RNA-binding proteins potentially regulate the alternative splicing of cell cycle-associated genes in proliferative diabetic retinopathy. Sci Rep 2024; 14:6731. [PMID: 38509306 PMCID: PMC10954754 DOI: 10.1038/s41598-024-57516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP-AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP-AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness.
Collapse
Affiliation(s)
- Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guojing Lu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Du
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
10
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
11
|
Dery KJ, Kojima H, Kageyama S, Kadono K, Hirao H, Cheng B, Zhai Y, Farmer DG, Kaldas FM, Yuan X, Eltzschiasg HK, Kupiec-Weglinski JW. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans. Sci Transl Med 2023; 15:eadf2059. [PMID: 37531413 PMCID: PMC11164245 DOI: 10.1126/scitranslmed.adf2059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Although alternative splicing (AS) drives transcriptional responses and cellular adaptation to environmental stresses, its contributions in organ transplantation have not been appreciated. We have shown that carcinoembryonic antigen-related cell adhesion molecule (Ceacam1; CD66a), a transmembrane biliary glycoprotein expressed in epithelial, endothelial, and immune cells, determines donor liver transplant quality. Here, we studied how AS of Ceacam1 affects ischemia-reperfusion injury (IRI) in mouse and human livers. We found that the short cytoplasmic isoform Ceacam1-S increased during early acute and late resolution phases of warm IRI injury in mice. Transfection of Ceacam1-deficient mouse hepatocytes with adenoviral Ceacam1-S mitigated hypoxia-induced loss of cellular adhesion by repressing the Ask1/p-p38 cell death pathway. Nucleic acid-blocking morpholinos, designed to selectively induce Ceacam1-S, protected hepatocyte cultures against temperature-induced stress in vitro. Luciferase and chromatin immunoprecipitation assays identified direct binding of hypoxia-inducible factor-1α (Hif-1α) to the mouse polypyrimidine tract binding protein 1 (Ptbp1) promoter region. Dimethyloxalylglycine protected mouse livers from warm IR stress and hepatocellular damage by inhibiting prolyl hydroxylase domain-containing protein 1 and promoting AS of Ceacam1-S. Last, analysis of 46 human donor liver grafts revealed that CEACAM1-S positively correlated with pretransplant HIF1A expression. This also correlated with better transplant outcomes, including reduced TIMP1, total bilirubin, proinflammatory MCP1, CXCL10 cytokines, immune activation markers IL17A, and incidence of delayed complications from biliary anastomosis. This translational study identified mouse Hif-1α-controlled AS of Ceacam1, through transcriptional regulation of Ptbp1 promoter region, as a functional underpinning of hepatoprotection against IR stress and tissue damage in liver transplantation.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hidenobu Kojima
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Shoichi Kageyama
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Kentaro Kadono
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hirofumi Hirao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Yuan Zhai
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Fady M. Kaldas
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Holger K. Eltzschiasg
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| |
Collapse
|
12
|
Merat R. The human antigen R as an actionable super-hub within the network of cancer cell persistency and plasticity. Transl Oncol 2023; 35:101722. [PMID: 37352624 DOI: 10.1016/j.tranon.2023.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
In this perspective article, a clinically inspired phenotype-driven experimental approach is put forward to address the challenge of the adaptive response of solid cancers to small-molecule targeted therapies. A list of conditions is derived, including an experimental quantitative assessment of cell plasticity and an information theory-based detection of in vivo dependencies, for the discovery of post-transcriptional druggable mechanisms capable of preventing at multiple levels the emergence of plastic dedifferentiated slow-proliferating cells. The approach is illustrated by the author's own work in the example case of the adaptive response of BRAFV600-melanoma to BRAF inhibition. A bench-to-bedside and back to bench effort leads to a therapeutic strategy in which the inhibition of the baseline activity of the interferon-γ-activated inhibitor of translation (GAIT) complex, incriminated in the expression insufficiency of the RNA-binding protein HuR in a minority of cells, results in the suppression of the plastic, intermittently slow-proliferating cells involved in the adaptive response. A similar approach is recommended for the validation of other classes of mechanisms that we seek to modulate to overcome this complex challenge of modern cancer therapy.
Collapse
Affiliation(s)
- Rastine Merat
- Dermato-Oncology Unit, Division of Dermatology, Geneva University Hospitals, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
13
|
Vujovic A, de Rooij L, Chahi AK, Chen HT, Yee BA, Loganathan SK, Liu L, Chan DC, Tajik A, Tsao E, Moreira S, Joshi P, Xu J, Wong N, Balde Z, Jahangiri S, Zandi S, Aigner S, Dick JE, Minden MD, Schramek D, Yeo GW, Hope KJ. In Vivo Screening Unveils Pervasive RNA-Binding Protein Dependencies in Leukemic Stem Cells and Identifies ELAVL1 as a Therapeutic Target. Blood Cancer Discov 2023; 4:180-207. [PMID: 36763002 PMCID: PMC10150294 DOI: 10.1158/2643-3230.bcd-22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML. SIGNIFICANCE LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Ana Vujovic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Laura de Rooij
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - He Tian Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Sampath K. Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Derek C.H. Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Amanda Tajik
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Emily Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Steven Moreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Pratik Joshi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Nicholas Wong
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zaldy Balde
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sasan Zandi
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - John E. Dick
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark D. Minden
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Kristin J. Hope
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
14
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
15
|
Low expression of PEBP1P2 promotes metastasis of clear cell renal cell carcinoma by post-transcriptional regulation of PEBP1 and KLF13 mRNA. Exp Hematol Oncol 2022; 11:87. [DOI: 10.1186/s40164-022-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Pseudogenes play an essential role in tumor occurrence and progression. However, the functions and mechanisms of pseudogenes in clear cell renal cell carcinoma (ccRCC) remain largely elusive.
Methods
We quantified PEBP1P2 expression in ccRCC tissues and cells using fluorescence in situ hybridization and real-time PCR. Besides, we evaluated the role of PEBP1P2 in ccRCC using a lung metastasis model and a transwell assay. Finally, we documented the interactions between PEBP1P2, PEBP1, and KLF13 by performing luciferase, RNA immunoprecipitation, RNA pulldown, and targeted RNA demethylation assays.
Results
Low PEBP1P2 expression correlates significantly with advanced stages and poor prognosis in ccRCC patients. Besides, PEBP1P2 overexpression inhibits ccRCC metastasis formation in vivo and in vitro. Interestingly, PEBP1P2 directly interacted with 5-methylcytosine (m5C)-containing PEBP1 mRNA and recruited the YBX1/ELAVL1 complex, stabilizing PEBP1 mRNA. In addition, PEBP1P2 increased KLF13 mRNA levels by acting as a sponge for miR-296, miR-616, and miR-3194.
Conclusions
PEBP1P2 inhibits ccRCC metastasis formation and regulates both PEBP1 and KLF13. Therefore, molecular therapies targeting PEBP1P2 might be an effective treatment strategy against ccRCC and other cancers with low PEBP1P2 levels.
Collapse
|
16
|
David G, Reboutier D, Deschamps S, Méreau A, Taylor W, Padilla-Parra S, Tramier M, Audic Y, Paillard L. The RNA-binding proteins CELF1 and ELAVL1 cooperatively control the alternative splicing of CD44. Biochem Biophys Res Commun 2022; 626:79-84. [DOI: 10.1016/j.bbrc.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
|
17
|
Xiao KW, Yang ZQ, Yan X, Liu ZB, Yang M, Guo LY, Cai L. Molecular Characteristics of m6A Regulators and Tumor Microenvironment Infiltration in Soft Tissue Sarcoma: A Gene-Based Study. Front Bioeng Biotechnol 2022; 10:846812. [PMID: 35519620 PMCID: PMC9062003 DOI: 10.3389/fbioe.2022.846812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: N6-methyladenosine (m6A) methylation played a key role in tumor growth. However, the relationship between m6A and soft tissue sarcoma (STS) was still unclear. Methods: The characterization and patterns of m6A modification in STS (TCGA-SARC and GSE17674) were analyzed comprehensively through bioinformatics and real-time polymerase chain reaction (RT-PCR). The effects of different m6A modification patterns on prognosis and immune infiltration of STS were further explored. Differentially expressed gene (DEG) analysis was performed. Moreover, an m6Ascore was constructed by principal component analysis (PCA). In addition, two immunotherapy datasets (IMvigor210 and GSE78220) and a sarcoma dataset (GSE17618) were used to evaluate the m6Ascore. Results: Huge differences were found in somatic mutation, CNV, and expression of 25 m6A regulators in STS. Two modification patterns (A and B) in STS were further identified and the m6A cluster A showed a better clinical outcome with a lower immune/stromal score compared with the m6A cluster B (p < 0.050).In addition to , most STS samples from m6A cluster A showed a high m6Ascore, which was related to mismatch repair and a better prognosis of STS (p < 0.001). In contrast, the m6A cluster B, characterized by a low m6Ascore, was related to the MYC signaling pathway, which led to a poor prognosis of STS. A high m6Ascore also contributed to a better outcome of PD-1/PD-L1 blockade immunotherapy. Conclusion: The modification patterns of 25 m6A regulators in the STS microenvironment were explored comprehensively. The novel m6Ascore effectively predicted the characteristics of the tumor microenvironment (TME) and outcome in STS and provided novel insights for future immunotherapy.
Collapse
Affiliation(s)
- Kang-Wen Xiao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Bo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang-Yu Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Lin Cai,
| |
Collapse
|
18
|
Wei L, Lai EC. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Front Genet 2022; 13:848626. [PMID: 35281806 PMCID: PMC8904962 DOI: 10.3389/fgene.2022.848626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The process of alternative polyadenylation (APA) generates multiple 3' UTR isoforms for a given locus, which can alter regulatory capacity and on occasion change coding potential. APA was initially characterized for a few genes, but in the past decade, has been found to be the rule for metazoan genes. While numerous differences in APA profiles have been catalogued across genetic conditions, perturbations, and diseases, our knowledge of APA mechanisms and biology is far from complete. In this review, we highlight recent findings regarding the role of the conserved ELAV/Hu family of RNA binding proteins (RBPs) in generating the broad landscape of lengthened 3' UTRs that is characteristic of neurons. We relate this to their established roles in alternative splicing, and summarize ongoing directions that will further elucidate the molecular strategies for neural APA, the in vivo functions of ELAV/Hu RBPs, and the phenotypic consequences of these regulatory paradigms in neurons.
Collapse
Affiliation(s)
- Lu Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| |
Collapse
|
19
|
Assoni G, La Pietra V, Digilio R, Ciani C, Licata NV, Micaelli M, Facen E, Tomaszewska W, Cerofolini L, Pérez-Ràfols A, Varela Rey M, Fragai M, Woodhoo A, Marinelli L, Arosio D, Bonomo I, Provenzani A, Seneci P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv Drug Deliv Rev 2022; 181:114088. [PMID: 34942276 DOI: 10.1016/j.addr.2021.114088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).
Collapse
Affiliation(s)
- Giulia Assoni
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosangela Digilio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Caterina Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nausicaa Valentina Licata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elisa Facen
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pérez-Ràfols
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Varela Rey
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Functional Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain; Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Luciana Marinelli
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), National Research Council (CNR), Via C. Golgi 19, I-20133 Milan, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
20
|
Kovarik P, Bestehorn A, Fesselet J. Conceptual Advances in Control of Inflammation by the RNA-Binding Protein Tristetraprolin. Front Immunol 2021; 12:751313. [PMID: 34603339 PMCID: PMC8484758 DOI: 10.3389/fimmu.2021.751313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Regulated changes in mRNA stability are critical drivers of gene expression adaptations to immunological cues. mRNA stability is controlled mainly by RNA-binding proteins (RBPs) which can directly cleave mRNA but more often act as adaptors for the recruitment of the RNA-degradation machinery. One of the most prominent RBPs with regulatory roles in the immune system is tristetraprolin (TTP). TTP targets mainly inflammation-associated mRNAs for degradation and is indispensable for the resolution of inflammation as well as the maintenance of immune homeostasis. Recent advances in the transcriptome-wide knowledge of mRNA expression and decay rates together with TTP binding sites in the target mRNAs revealed important limitations in our understanding of molecular mechanisms of TTP action. Such orthogonal analyses lead to the discovery that TTP binding destabilizes some bound mRNAs but not others in the same cell. Moreover, comparisons of various immune cells indicated that an mRNA can be destabilized by TTP in one cell type while it remains stable in a different cell linage despite the presence of TTP. The action of TTP extends from mRNA destabilization to inhibition of translation in a subset of targets. This article will discuss these unexpected context-dependent functions and their implications for the regulation of immune responses. Attention will be also payed to new insights into the role of TTP in physiology and tissue homeostasis.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
21
|
Shan M, Ji X, Janssen K, Silverman IM, Humenik J, Garcia BA, Liebhaber SA, Gregory BD. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis. Life Sci Alliance 2021; 4:4/9/e202000659. [PMID: 34315813 PMCID: PMC8321672 DOI: 10.26508/lsa.202000659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Two features of eukaryotic RNA molecules that regulate their post-transcriptional fates are RNA secondary structure and RNA-binding protein (RBP) interaction sites. However, a comprehensive global overview of the dynamic nature of these sequence features during erythropoiesis has never been obtained. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approach to reveal the global landscape of RNA secondary structure and RBP-RNA interaction sites and the dynamics of these features during this important developmental process. We identify dynamic patterns of RNA secondary structure and RBP binding throughout the process and determine a set of corresponding protein-bound sequence motifs along with their dynamic structural and RBP-binding contexts. Finally, using these dynamically bound sequences, we identify a number of RBPs that have known and putative key functions in post-transcriptional regulation during mammalian erythropoiesis. In total, this global analysis reveals new post-transcriptional regulators of mammalian blood cell development.
Collapse
Affiliation(s)
- Mengge Shan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Kevin Janssen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ben A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA .,Department of Medicine, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA .,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| |
Collapse
|
22
|
Chen HY, Xiao ZZ, Ling X, Xu RN, Zhu P, Zheng SY. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med 2021; 27:14. [PMID: 33568052 PMCID: PMC7874472 DOI: 10.1186/s10020-021-00271-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Aims Myocardial ischemia is the most common form of cardiovascular disease and the leading cause of morbidity and mortality. Understanding the mechanisms is very crucial for the development of effective therapy. Therefore, this study aimed to investigate the functional roles and mechanisms by which ELAVL1 regulates myocardial ischemia and reperfusion (I/R) injury. Methods Mouse myocardial I/R model and cultured myocardial cells exposed to hypoxia/reperfusion (H/R) were used in this study. Features of ferroptosis were evidenced by LDH activity, GPx4 activity, cellular iron, ROS, LPO, and GSH levels. The expression levels of autophagy markers (Beclin-1, p62, LC3), ELAVL1 and FOXC1 were measured by qRT-PCR, immunostaining and western blot. RIP assay, biotin-pull down, ChIP and dual luciferase activity assay were employed to examine the interactions of ELAVL1/Beclin-1 mRNA and FOXC1/ELAVL1 promoter. CCK-8 assay was used to examine viability of cells. TTC staining was performed to assess the myocardial I/R injury. Results Myocardial I/R surgery induced ferroptosis and up-regulated ELAVL1 level. Knockdown of ELAVL1 decreased ferroptosis and ameliorated I/R injury. Si-ELAVL1 repressed autophagy and inhibition of autophagy by inhibitor suppressed ferroptosis and I/R injury in myocardial cells. Increase of autophagy could reverse the effects of ELAVL1 knockdown on ferroptosis and I/R injury. ELAVL1 directly bound with and stabilized Beclin-1 mRNA. Furthermore, FOXC1 bound to ELAVL1 promoter region and activated its transcription upon H/R exposure. Conclusion FOXC1 transcriptionally activated ELAVL1 may promote ferroptosis during myocardial I/R by modulating autophagy, leading to myocardial injury. Inhibition of ELAVL1-mediated autophagic ferroptosis would be a new viewpoint in the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, 512026, Guangdong, People's Republic of China
| | - Ze-Zhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Rong-Ning Xu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Louis JM, Agarwal A, Aduri R, Talukdar I. Global analysis of RNA-protein interactions in TNF-α induced alternative splicing in metabolic disorders. FEBS Lett 2021; 595:476-490. [PMID: 33417721 DOI: 10.1002/1873-3468.14029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
In this report, using the database of RNA-binding protein specificities (RBPDB) and our previously published RNA-seq data, we analyzed the interactions between RNA and RNA-binding proteins to decipher the role of alternative splicing in metabolic disorders induced by TNF-α. We identified 13 395 unique RNA-RBP interactions, including 385 unique RNA motifs and 35 RBPs, some of which (including MBNL-1 and 3, ZFP36, ZRANB2, and SNRPA) are transcriptionally regulated by TNF-α. In addition to some previously reported RBPs, such as RBMX and HuR/ELAVL1, we found a few novel RBPs, such as ZRANB2 and SNRPA, to be involved in the regulation of metabolic syndrome-associated genes that contain an enrichment of tetrameric RNA sequences (AUUU). Taken together, this study paves the way for novel RNA-protein interaction-based therapeutics for treating metabolic syndromes.
Collapse
Affiliation(s)
- Jiss Maria Louis
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| | - Arjun Agarwal
- Department of Computer Science, BITS Pilani, Zuarinagar, India
| | - Raviprasad Aduri
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani, Zuarinagar, India
| |
Collapse
|
24
|
Epidermal progenitors suppress GRHL3-mediated differentiation through intronic polyadenylation promoted by CPSF-HNRNPA3 collaboration. Nat Commun 2021; 12:448. [PMID: 33469008 PMCID: PMC7815847 DOI: 10.1038/s41467-020-20674-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
In self-renewing somatic tissue such as skin epidermis, terminal differentiation genes must be suppressed in progenitors to sustain regenerative capacity. Here we show that hundreds of intronic polyadenylation (IpA) sites are differentially used during keratinocyte differentiation, which is accompanied by downregulation of the Cleavage and Polyadenylation Specificity Factor (CPSF) complex. Sustained CPSF expression in undifferentiated keratinocytes requires the contribution from the transcription factor MYC. In keratinocytes cultured in undifferentiation condition, CSPF knockdown induces premature differentiation and partially affects dynamically used IpA sites. These sites include an IpA site located in the first intron of the differentiation activator GRHL3. CRISPR knockout of GRHL3 IpA increased full-length GRHL3 mRNA expression. Using a targeted genetic screen, we identify that HNRNPA3 interacts with CPSF and enhances GRHL3 IpA. Our data suggest a model where the interaction between CPSF and RNA-binding proteins, such as HNRNPA3, promotes site-specific IpA and suppresses premature differentiation in progenitors.
Collapse
|
25
|
Duan P, Huang Y, Chen K, Cheng C, Wu Z, Wu Y. 15,16-dihydrotanshinone I inhibits EOMA cells proliferation by interfering in posttranscriptional processing of hypoxia-inducible factor 1. Int J Med Sci 2021; 18:3214-3223. [PMID: 34400891 PMCID: PMC8364454 DOI: 10.7150/ijms.60774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infantile hemangioma (IH), which threatens the physical and mental health of patients, is the most common benign tumor in infants. Previously, we found that 15,16-dihydrotanshinone I (DHTS) was significantly more effective at inhibiting hemangioma proliferation in vitro and in vivo than the first-line treatment propranolol. To investigate the underlying mechanism of DHTS, we used EOMA cells as a model to study the effect of DHTS. We compared the transcriptomes of control and DHTS-treated EOMA cells. In total, 2462 differentially expressed genes were detected between the groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulated activity of the hypoxia-inducible factor 1 alpha (HIF-1α) signaling pathway in EOMA cells following treatment with DHTS. Thus, we investigated HIF-1α expression at protein and mRNA levels. Our results revealed that DHTS downregulated HIF-1α expression by interfering in its posttranscriptional processing, and the RNA-binding protein HuR participated in this mechanism. Our findings provide a basis for clinical transformation of DHTS and insight into pathogenic mechanisms involved in IH.
Collapse
Affiliation(s)
- Peiwen Duan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yingying Huang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Reconstructive Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
26
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
27
|
Weiße J, Rosemann J, Krauspe V, Kappler M, Eckert AW, Haemmerle M, Gutschner T. RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6835. [PMID: 32957697 PMCID: PMC7555251 DOI: 10.3390/ijms21186835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.
Collapse
Affiliation(s)
- Jonas Weiße
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Julia Rosemann
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Vanessa Krauspe
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| |
Collapse
|
28
|
Krismer K, Bird MA, Varmeh S, Handly ED, Gattinger A, Bernwinkler T, Anderson DA, Heinzel A, Joughin BA, Kong YW, Cannell IG, Yaffe MB. Transite: A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression. Cell Rep 2020; 32:108064. [PMID: 32846122 PMCID: PMC8204639 DOI: 10.1016/j.celrep.2020.108064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/28/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating splicing, RNA stability, and protein translation. Stimulus-induced alterations in RBP function contribute to global changes in gene expression, but identifying which RBPs are responsible for the observed changes remains an unmet need. Here, we present Transite, a computational approach that systematically infers RBPs influencing gene expression through changes in RNA stability and degradation. As a proof of principle, we apply Transite to RNA expression data from human patients with non-small-cell lung cancer whose tumors were sampled at diagnosis or after recurrence following treatment with platinum-based chemotherapy. Transite implicates known RBP regulators of the DNA damage response and identifies hnRNPC as a new modulator of chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a framework for the identification of RBPs that drive cell-state transitions and adds additional value to the vast collection of publicly available gene expression datasets.
Collapse
Affiliation(s)
- Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Molly A Bird
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anna Gattinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Thomas Bernwinkler
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Daniel A Anderson
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andreas Heinzel
- Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Brian A Joughin
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA.
| | - Ian G Cannell
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Divisions of Acute Care Surgery, Trauma and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Nilsson K, Abdurahman S, Schwartz S. Influenza virus natural sequence heterogeneity in segment 8 affects interactions with cellular RNA-binding proteins and splicing efficiency. Virology 2020; 549:39-50. [PMID: 32829114 DOI: 10.1016/j.virol.2020.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Segment 8 mRNAs of influenza virus A/Brevig Misson/1918/1 (H1N1) are poorly spliced compared to segment 8 mRNAs of influenza virus A/Netherlands/178/95 (H3N2). Using oligonucleotide-mediated protein pull down with oligos spanning the entire length of segment 8 of either influenza virus H1N1 or influenza virus H3N2 we identified cellular RNA binding proteins that interacted with oligonucleotides derived from either H1N1 or H3N2 sequences. When the identified hot spots for RNA binding proteins in H1N1 segment 8 mRNAs were replaced by H3N2 sequences, splicing efficiency increased significantly. Replacing as few as three nucleotides of the H1N1 mRNA with sequences from H3N2 mRNA, enhanced splicing of the H1N1 mRNAs. Cellular proteins U2AF65 and HuR interacted preferentially with the 3'-splice site of H3N2 and overexpression of HuR reduced the levels of unspliced H1N1 mRNAs, suggesting that U2AF65 and HuR contribute to control of influenza virus mRNA splicing.
Collapse
MESH Headings
- A549 Cells
- Alternative Splicing
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Genetic Variation
- HeLa Cells
- Host-Pathogen Interactions/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Transfection
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden
| | - Samir Abdurahman
- Department of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
30
|
Ke Y, Lv X, Fu X, Zhang J, Bohio AA, Zeng X, Hao W, Wang R, Boldogh I, Ba X. Poly(ADP-ribosyl)ation enhances HuR oligomerization and contributes to pro-inflammatory gene mRNA stabilization. Cell Mol Life Sci 2020; 78:1817-1835. [PMID: 32789690 PMCID: PMC7904744 DOI: 10.1007/s00018-020-03618-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification mainly catalyzed by poly-ADP-ribose polymerase 1 (PARP1). In addition to having important roles in DNA damage detection and repair, it functions in gene expression regulation, especially at the posttranscriptional level. Embryonic lethal abnormal vision-like 1/human antigen R (ELAVL/HuR), a canonical 3′ untranslated region AU-rich element-binding protein, is a crucial mRNA-stabilizing protein that protects target mRNAs from RNA-destabilizing protein- or microRNA-induced silencing complex (miRISC)-mediated degradation. Additionally, in some cases, HuR itself either promotes or suppresses translation. Here, we demonstrated that in response to inflammatory stimuli, the PARylation of HuR, mostly at the conserved D226 site, by PARP1 increased the formation of the HuR oligomer/multimer, and HuR oligomerization promoted the disassociation of miRISC and stabilized the pro-inflammatory gene mRNAs. The prevention of PARP1 activation or HuR oligomerization attenuated lipopolysaccharide-induced inflammatory gene expression and the airway recruitment of neutrophils in mouse lungs. The present study verified a novel mechanism of PARP1 and HuR PARylation in the RNA stability regulation, increasing our understanding of how PARP1 regulates gene expression.
Collapse
Affiliation(s)
- Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueping Lv
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xingyue Fu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jing Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Ameer Ali Bohio
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
31
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
32
|
Hu W, Li H, Wang S. LncRNA SNHG7 promotes the proliferation of nasopharyngeal carcinoma by miR-514a-5p/ELAVL1 axis. BMC Cancer 2020; 20:376. [PMID: 32370736 PMCID: PMC7202000 DOI: 10.1186/s12885-020-06775-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), with distinct geographical distribution, has gathered public attention. Despite that radiotherapy and chemotherapy are applied to treat NPC, cell metastasis still cannot be avoided. Numerous works have elucidated that lncRNAs are essential players in the development of multiple cancers. LncRNA SNHG7 has been reported as a contributing factor in the occurrence of certain cancers, but its mechanism in NPC deserves further investigation. The purpose of the study is to figure out the role and molecular regulation mechanism of SNHG7 in NPC. Methods The role of SNHG7 in NPC was verified by CCK-8, colony formation, EdU staining, western blot and capase-3 assays. The interactions between SNHG7/ELAVL1 and miR-514a-5p were confirmed by RNA pull down, RT-qPCR, RIP and luciferase reporter assays. Results SNHG7 was upregulated in NPC cells, and absence of SNHG7 suppressed cell proliferation as well as promoted cell apoptosis in NPC. Furthermore, SNHG7 was confirmed to bind with miR-514a-5p and negatively modulate miR-514a-5p expression. Besides, miR-514a-5p was found to be able to bind with ELAVL1 and negatively regulate ELAVL1 mRNA and protein expressions. In the end, rescue assays demonstrated that the miR-514a-5p deficiency restored the NPC progression inhibited by SNHG7 silence, and ELAVL1 partly counteracted the restoration caused by miR-514a-5p inhibitor in HNE1 cells. Conclusions LncRNA SNHG7 promotes the proliferation and migration of nasopharyngeal carcinoma by miR-514a-5p/ ELAVL1 axis.
Collapse
Affiliation(s)
- Weiqun Hu
- Department of Otolaryngology, Putian University Affiliated Hospital, Putian, 351100, Fujian, China
| | - Haolin Li
- Department of Otolaryngology, Xinxiang First People's Hospital, Xinxiang, 453000, Henan, China
| | - Shaozhong Wang
- Otolaryngngology of Qinghai Provincial People's Hospital, Gonghe Road No.2, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
33
|
Sun T, Yang Q. Chemoresistance-associated alternative splicing signatures in serous ovarian cancer. Oncol Lett 2020; 20:420-430. [PMID: 32565967 DOI: 10.3892/ol.2020.11562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Primary platinum-based chemoresistance occurs in ~30% of patients with serous ovarian cancer. Chemoresistance is the main cause of disease recurrence, and accurate predictors to identify these patients with chemoresistance are required. Alternative splicing (AS) is a post-transcriptional modification process that is altered in cancer. A possible association between AS and chemoresistance is unclear and needs to be studied comprehensively in ovarian cancer. In the present study, RNA-sequencing data and clinical information for 320 patients with ovarian serous cystadenocarcinoma (OV) were downloaded from The Cancer Genome Atlas (TCGA) database. Splicing events were determined using the TCGA SpliceSeq tool. Seven types of AS events were identified. Univariate and multivariate logistic analyses were performed, and predictive models for OV chemoresistance were established, as well as a splicing network. A total of 22,036 AS events were identified in 7,404 genes, with 915 AS events detected in 677 genes that were significantly associated with chemoresistance in patients with OV. A receiver operating characteristic (ROC) curve was constructed for resistance predictive models composed of the most significant AS events. The area under the ROC curve was 0.931, indicating strong and efficient prediction of chemoresistance. Additionally, the high-risk score was associated with shorter overall survival. The splicing correlation network suggested a potential role of splicing factors in chemoresistance. In summary, the present study created a powerful predictor for primary platinum-based chemoresistance in patients with OV, identified splicing networks that could be involved in potential mechanisms of chemoresistance and provided potential targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
34
|
An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. ACTA ACUST UNITED AC 2020; 1:410-422. [PMID: 34109316 DOI: 10.1038/s43018-020-0054-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggressive myeloid leukemias such as blast crisis chronic myeloid leukemia and acute myeloid leukemia remain highly lethal. Here we report a genome-wide in vivo CRISPR screen to identify new dependencies in this disease. Among these, RNA-binding proteins (RBPs) in general, and the double-stranded RBP Staufen2 (Stau2) in particular, emerged as critical regulators of myeloid leukemia. In a newly developed knockout mouse, loss of Stau2 led to a profound decrease in leukemia growth and improved survival in mouse models of the disease. Further, Stau2 was required for growth of primary human blast crisis chronic myeloid leukemia and acute myeloid leukemia. Finally, integrated analysis of CRISPR, eCLIP and RNA-sequencing identified Stau2 as a regulator of chromatin-binding factors, driving global alterations in histone methylation. Collectively, these data show that in vivo CRISPR screening is an effective tool for defining new regulators of myeloid leukemia progression and identify the double-stranded RBP Stau2 as a critical dependency of myeloid malignancies.
Collapse
|
35
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Liu S, Jiang X, Lu H, Xing M, Qiao Y, Zhang C, Zhang W. HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure. Arterioscler Thromb Vasc Biol 2020; 40:943-957. [PMID: 32075416 DOI: 10.1161/atvbaha.119.313897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HuR (human antigen R)-an RNA-binding protein-is involved in regulating mRNA stability by binding adenylate-uridylate-rich elements. This study explores the role of HuR in the regulation of smooth muscle contraction and blood pressure. Approach and Results: Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. CONCLUSIONS Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.
Collapse
Affiliation(s)
- Shanshan Liu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery (X.J.), Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Mengdan Xing
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Yanning Qiao
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Cheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1581. [PMID: 31970930 DOI: 10.1002/wrna.1581] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Altered gene expression is a characteristic feature of many disease states such as tumorigenesis, and in most cancers, it facilitates cancer cell survival and adaptation. Alterations in global gene expression are strongly impacted by post-transcriptional gene regulation. The RNA binding protein (RBP) HuR (ELAVL1) is an established regulator of post-transcriptional gene regulation and is overexpressed in most human cancers. In many cancerous settings, HuR is not only overexpressed, but it is "overactive" as denoted by increased subcellular localization within the cytoplasm. This dysregulation of HuR expression and cytoplasmic localization allows HuR to stabilize and increase the translation of various prosurvival messenger RNA (mRNAs) involved in the pathogenesis of numerous cancers and various diseases. Based on almost 20 years of work, HuR is now recognized as a therapeutic target. Herein, we will review the role HuR plays in the pathophysiology of different diseases and ongoing therapeutic strategies to target HuR. We will focus on three ongoing-targeted strategies: (1) inhibiting HuR's translocation from the nucleus to the cytoplasm; (2) inhibiting the ability of HuR to bind target RNA; and (3) silencing HuR expression levels. In an oncologic setting, HuR has been demonstrated to be critical for a cancer cell's ability to survive a variety of cancer relevant stressors (including drugs and elements of the tumor microenvironment) and targeting this protein has been shown to sensitize cancer cells further to insult. We strongly believe that targeting HuR could be a powerful therapeutic target to treat different diseases, particularly cancer, in the near future. This article is categorized under: RNA in Disease and Development > RNA in Disease NRA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation.
Collapse
Affiliation(s)
- Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Poganik JR, Long MJC, Disare MT, Liu X, Chang SH, Hla T, Aye Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J 2019; 33:14636-14652. [PMID: 31665914 DOI: 10.1096/fj.201901930r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis is a target of covalent drugs and bioactive native electrophiles. However, much of our understanding of Nrf2 regulation has been focused at the protein level. Here we report a post-transcriptional modality to directly regulate Nrf2-mRNA. Our initial studies focused on the effects of the key mRNA-binding protein (mRBP) HuR on global transcriptomic changes incurred upon oxidant or electrophile stimulation. These RNA-sequencing data and subsequent mechanistic analyses led us to discover a novel role of HuR in regulating Nrf2 activity, and in the process, we further identified the related mRBP AUF1 as an additional novel Nrf2 regulator. Both mRBPs regulate Nrf2 activity by direct interaction with the Nrf2 transcript. Our data showed that HuR enhances Nrf2-mRNA maturation and promotes its nuclear export, whereas AUF1 stabilizes Nrf2-mRNA. Both mRBPs target the 3'-UTR of Nrf2-mRNA. Using a Nrf2 activity-reporter zebrafish strain, we document that this post-transcriptional control of Nrf2 activity is conserved at the whole-vertebrate level.-Poganik, J. R., Long, M. J. C., Disare, M. T., Liu, X., Chang, S.-H., Hla, T., Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Marcus J C Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Michael T Disare
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Xuyu Liu
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Timothy Hla
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA; and.,Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Inhibition of Caspase-2 Translation by the mRNA Binding Protein HuR: A Novel Path of Therapy Resistance in Colon Carcinoma Cells? Cells 2019; 8:cells8080797. [PMID: 31366165 PMCID: PMC6721497 DOI: 10.3390/cells8080797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.
Collapse
|
40
|
Cheng M, Yang L, Fan M, An S, Li J. Proatherogenic stimuli induce HuR in atherosclerosis through MAPK/ErK pathway. Am J Transl Res 2019; 11:2317-2327. [PMID: 31105838 PMCID: PMC6511797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease inflicting the arterial wall, and endothelial activation and dysfunction play an important role in its pathogenesis. The RNA-binding protein HuR has been associated with events of inflammation and activation in endothelial cells, however, its connection with atherosclerosis remains unclear. Here, we show that the expression and RNA-binding activity of HuR are upregulated in human and mouse atherosclerotic lesions. In addition, proatherogenic stimuli, such as inflammatory lipids (Ox-PAPC) and cytokines (TNF-α and IL-1β), induce HuR in human aortic endothelial cells (HAECs) in vitro. Moreover, HuR is also induced in mouse aorta ECs fed a high-fat diet, and the inducible degree is correlated with proatherogenic hyperlipidemia. We further show that the MAPK/ErK pathway in ECs is activated by proatherogenic stimuli in vitro and by high-fat diet in vivo. Finally, we demonstrate that the MAPK/ErK pathway is required for HuR induction by proatherogenic stimuli. Altogether, our study uncovers the inducible effect of proatherogenic stimuli on HuR in ECs, and connects this effect to the activated MAPK/ErK pathway.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Liguo Yang
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Ming Fan
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| | - Junquan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
41
|
Karginov FV. HuR controls apoptosis and activation response without effects on cytokine 3' UTRs. RNA Biol 2019; 16:686-695. [PMID: 30777501 DOI: 10.1080/15476286.2019.1582954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
RNA binding proteins regulate gene expression through several post-transcriptional mechanisms. The broadly expressed HuR/ELAVL1 is important for proper function of multiple immune cell types, and has been proposed to regulate cytokine and other mRNA 3' UTRs upon activation. However, this mechanism has not been previously dissected in stable cellular settings. In this study, HuR demonstrated strong anti-apoptotic and activation roles in Jurkat T cells. Detailed transcriptomic analysis of HuR knockout cells revealed a substantial negative impact on the activation program, coordinately preventing the expression of immune response gene categories, including all cytokines. Knockout cells showed a significant defect in IL-2 production, which was rescued upon reintroduction of HuR. Interestingly, the mechanism of HuR regulation did not involve control of the cytokine 3' UTRs: HuR knockout did not affect the activity of 3' UTR reporters in 293 cells, and had no effect on IL-2 and TNF 3' UTRs in resting or activated Jurkats. Instead, impaired cytokine production corresponded with defective induction of the IL-2 promoter upon activation. Accordingly, upregulation of NFATC1 was also impaired, without 3' UTR effects. Together, these results indicate that HuR controls cytokine production through coordinated upstream pathways, and that additional mechanisms must be considered in investigating its function.
Collapse
Affiliation(s)
- Fedor V Karginov
- a Department of Molecular, Cell, and Systems Biology , Institute for Integrative Genome Biology, University of California , Riverside , CA , USA
| |
Collapse
|
42
|
Zhou X, Wang S, Zheng M, Kuver A, Wan X, Dai K, Li X. Phosphorylation of ELAVL1 (Ser219/Ser316) mediated by PKC is required for erythropoiesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:214-224. [PMID: 30395882 DOI: 10.1016/j.bbamcr.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022]
Abstract
Elavl1 (also known as HuR), an RNA binding protein highly conserved between zebrafish and human, regulates gene expression by stabilizing target mRNA. Our previous studies have uncovered that the predominant isoform elavl1a is required for zebrafish embryonic erythropoiesis. However, the exact mechanism of how elav11 spatiotemporally stabilizes target mRNAs to regulate specific erythropoiesis is not yet understood. Here we show that phosphorylation of elavl1a at Ser219 and Ser316 by PKC is necessarily required for cytosolic shuttling from the nucleus to stabilize gata1 mRNA and thus promotes erythropoiesis. Knockdown of elavl1a resulted in the hindrance of erythropoiesis and Hemin-induced erythroid differentiation of human myeloid leukemia K562 cells. Interestingly, inhibition of PKC reproduced the phenotype seen during zebrafish embryogenesis and erythroid differentiation of myeloid leukemia. Mechanistically, Hemin induced elavl1a export from nuclear to cytoplasmic space in K562 cells in a manner dependent on phosphorylation on Ser219 and Ser316, as overexpression of elavl1a with mutations on Ser219 and Ser316 resulted in erythropoiesis failure. Additionally, co-administration of low doses of elavl1a morpholino (MO) and three PKC inhibitors showed a combined effect in zebrafish embryonic erythropoiesis dysplasia. In conclusion, our study reveals that PKC-mediated phosphorylation of elavl1a at Ser219 and Ser316 sites controls its nucleo-cytoplasmic translocation in zebrafish, thereby regulating embryonic erythropoiesis.
Collapse
Affiliation(s)
- Xianyong Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shao Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Aarti Kuver
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyang Wan
- Institute of Infectious Liver Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China
| | - Kezhi Dai
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xi Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
43
|
Li J, Liu S, Cao G, Sun Y, Chen W, Dong F, Xu J, Zhang C, Zhang W. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH1. J Cell Mol Med 2018; 22:5406-5417. [PMID: 30091833 PMCID: PMC6201367 DOI: 10.1111/jcmm.13812] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/30/2018] [Indexed: 12/23/2022] Open
Abstract
Smoking is a major preventable risk factor for atherosclerosis. However, the causative link between cigarette smoke and atherosclerosis remains to be established. The objective of this study is to characterize the role of GTP cyclohydrolase 1 (GTPCH1), the rate-limiting enzyme for de novo tetrahydrobiopterin (BH4) synthesis, in the smoking-accelerated atherosclerosis and the mechanism involved. In vitro, human umbilical vein endothelial cells were treated with nicotine, a major component of cigarette smoke, which reduced the mRNA and protein levels of GTPCH1 and led to endothelial dysfunction. GTPCH1 overexpression or sepiapterin could attenuate nicotine-reduced nitric oxide and -increased reactive oxygen species levels. Mechanistically, human antigen R (HuR) bound with the adenylateuridylate-rich elements of the GTPCH1 3' untranslated region and increased its stability; nicotine inhibited HuR translocation from the nucleus to cytosol, which downregulated GTPCH1. In vivo, nicotine induced endothelial dysfunction and promoted atherosclerosis in ApoE-/- mice, which were attenuated by GTPCH1 overexpression or BH4 supplement. Our findings may provide a novel and promising approach to atherosclerosis treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Shangming Liu
- Department of Histology and EmbryologyShandong University School of MedicineJinanChina
| | - Guangqing Cao
- Department of Cardiovascular SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Weiqian Chen
- Departmen of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSoochow UniversitySuzhouChina
| | - Fajin Dong
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Jinfeng Xu
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
44
|
Endothelial HuR deletion reduces the expression of proatherogenic molecules and attenuates atherosclerosis. Int Immunopharmacol 2018; 65:248-255. [PMID: 30340104 DOI: 10.1016/j.intimp.2018.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of arterial wall, and the proatherogenic molecules derived from endothelium and leukocyte recruitment are major contributors to its pathogenesis. The RNA-binding protein HuR plays several physiological roles in endothelial cells, but its relevance to atherosclerosis is not yet determined. Here, by utilizing the ApoE-/- mice depleted of endothelia HuR (ApoE-/-; HuRfl/fl; Cdh5-Cre), we observed that these mice exhibited attenuated atherosclerosis compared with wild-type littermates (ApoE-/-; HuRfl/fl). Mechanistically, this phenomenon may not be associated with systemic effects on lipid metabolism, however, we found that the expression levels of proatherogenic molecules, degree of local inflammation and extent of leukocyte recruitment to aortic endothelium were all decreased when endothelia HuR was absent. Collectively, our study uncovers the role of endothelia HuR deletion in attenuating atherosclerosis, and suggests that this effect is at least in part attributed to the decreased expression of proatherogenic molecules and suppressed local inflammation. Hence, our study might offer a potential strategy for atherosclerosis treatment via manipulating endothelia HuR.
Collapse
|
45
|
Moore KS, Yagci N, van Alphen F, Meijer AB, ‘t Hoen PAC, von Lindern M. Strap associates with Csde1 and affects expression of select Csde1-bound transcripts. PLoS One 2018; 13:e0201690. [PMID: 30138317 PMCID: PMC6107111 DOI: 10.1371/journal.pone.0201690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.
Collapse
Affiliation(s)
- Kat S. Moore
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nurcan Yagci
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floris van Alphen
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
| | - Alexander B. Meijer
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter A. C. ‘t Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
47
|
Feng Y, Wang J, Yuan Y, Zhang X, Shen M, Yuan F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7. FASEB J 2018; 32:1626-1639. [PMID: 29146732 DOI: 10.1096/fj.201700640r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1) has been previously confirmed to participate in the formation of choroidal neovascularization (CNV) via its receptor, CXC chemokine receptor (CXCR) 4; CXCR7 is a recently identified receptor for SDF-1. The molecular mechanisms and therapeutic value of CXCR7 in CNV remain undefined. In this study, experimental CNV was induced by laser photocoagulation in Brown-Norway pigmented rats, and aberrant CXCR7 overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of laser-injured eyes. Blockade of CXCR7 activation via CXCR7 knockdown or neutralizing Ab administration inhibited SDF-1-induced cell survival and the tubular formation of human retinal microvascular endothelial cells (HRMECs) in vitro and reduced CNV leakage and lesion size in vivo. By using microRNA array screening and bioinformatic analyses, we identified miR-539-5p as a regulator of CXCR7. Transfection of HRMECs and choroid-retinal endothelial (RF/6A) cells with the miR-539-5p mimic inhibited their survival and tube formation, whereas CXCR7 overexpression rescued the suppressive effect of miR-539-5p. The antiangiogenic activities of the miR-539-5p mimic were additionally demonstrated in vivo by intravitreal injection. ERK1/2 and AKT signaling downstream of CXCR7 is involved in the miR-539-5p regulation of endothelial cell behaviors. These findings suggest that the manipulation of miR-539-5p/CXCR7 levels may have important therapeutic implications in CNV-associated diseases.-Feng, Y., Wang, J., Yuan, Y., Zhang, X., Shen, M., Yuan, F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7.
Collapse
Affiliation(s)
- Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Li Y, Sahni N, Pancsa R, McGrail DJ, Xu J, Hua X, Coulombe-Huntington J, Ryan M, Tychhon B, Sudhakar D, Hu L, Tyers M, Jiang X, Lin SY, Babu MM, Yi S. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer. Cell Rep 2017; 21:798-812. [PMID: 29045845 PMCID: PMC5689467 DOI: 10.1016/j.celrep.2017.09.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rita Pancsa
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Michael Ryan
- In Silico Solutions, Falls Church, VA 22043, USA
| | - Boranai Tychhon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dhanistha Sudhakar
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Tyers
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Xiaoqian Jiang
- Division of Biomedical Informatics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Song Yi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
49
|
HuR-Dependent Editing of a New Mineralocorticoid Receptor Splice Variant Reveals an Osmoregulatory Loop for Sodium Homeostasis. Sci Rep 2017; 7:4835. [PMID: 28684740 PMCID: PMC5500589 DOI: 10.1038/s41598-017-04838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/12/2017] [Indexed: 02/04/2023] Open
Abstract
Aldosterone and the Mineralocorticoid Receptor (MR) control hydroelectrolytic homeostasis and alterations of mineralocorticoid signaling pathway are involved in the pathogenesis of numerous human diseases, justifying the need to decipher molecular events controlling MR expression level. Here, we show in renal cells that the RNA-Binding Protein, Human antigen R (HuR), plays a central role in the editing of MR transcript as revealed by a RNA interference strategy. We identify a novel Δ6 MR splice variant, which lacks the entire exon 6, following a HuR-dependent exon skipping event. Using isoform-specific TaqMan probes, we show that Δ6 MR variant is expressed in all MR-expressing tissues and cells and demonstrate that extracelullar tonicity regulates its renal expression. More importantly, this splice variant exerts dominant-negative effects on transcriptional activity of the full-length MR protein. Collectively, our data highlight a crucial role of HuR as a master posttranscriptional regulator of MR expression in response to osmotic stress. We demonstrate that hypotonicity, not only enhances MR mRNA stability, but also decreases expression of the Δ6 MR variant, thus potentiating renal MR signaling. These findings provide compelling evidence for an autoregulatory feedback loop for the control of sodium homeostasis through posttranscriptional events, likely relevant in renal pathophysiological situations.
Collapse
|
50
|
Zhang J, Kong L, Guo S, Bu M, Guo Q, Xiong Y, Zhu N, Qiu C, Yan X, Chen Q, Zhang H, Zhuang J, Wang Q, Zhang SS, Shen Y, Chen M. hnRNPs and ELAVL1 cooperate with uORFs to inhibit protein translation. Nucleic Acids Res 2016; 45:2849-2864. [PMID: 27789685 PMCID: PMC5389705 DOI: 10.1093/nar/gkw991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/23/2016] [Indexed: 01/25/2023] Open
Abstract
Most of our knowledge about translation regulatory mechanisms comes from studies on lower organisms. However, the translation control system of higher organisms is less understood. Here we find that in 5΄ untranslated region (5΄UTR) of human Annexin II receptor (AXIIR) mRNA, there are two upstream open reading frames (uORFs) acting in a fail-safe manner to inhibit the translation from the main AUG. These uORFs are unfavorable for re-initiation after termination of uORF translation. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), hnRNPA0 and ELAV like RNA binding protein 1 (ELAVL1) bind to the 5΄UTR of AXIIR mRNA. They focus the translation of uORFs on uORF1 and attenuate leaky scanning that bypasses uORFs. The cooperation between the two uORFs and the three proteins formed a multiple fail-safe system that tightly inhibits the translation of downstream AXIIR. Such cooperation between multiple molecules and elements reflects that higher organism develops a complex translation regulatory system to achieve accurate and flexible gene expression control.
Collapse
Affiliation(s)
- Jiewen Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijuan Kong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Sichao Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengmeng Bu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qian Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yuan Xiong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ning Zhu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chuan Qiu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuejing Yan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qian Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hongfei Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Qiong Wang
- Department of Cardiology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PN 17033, USA
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meihong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|