1
|
Nageeb WM, Adam SH, Hashem N, Abdelsalam N. In-vitro and In-silico evaluation of antimicrobial and antibiofilm effect of Neem oil and Calcium hydroxide nanoparticles against Mutans Streptococci and Enterococcus faecalis isolated from endodontic infections. Sci Rep 2024; 14:26441. [PMID: 39488551 PMCID: PMC11531576 DOI: 10.1038/s41598-024-75669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024] Open
Abstract
Different Streptococcal species including Streptococcus mutans, Streptococcus sobrinus and Enterococcus faecalis are commonly isolated in root canal infections including refractory, recurrent, and persistent cases. Calcium hydroxide (Ca (OH)2) has been widely used in endodontics as an intracanal medicament. However, using new antimicrobial herbal alternatives offers promising potentials which can be additionally enhanced by using nanoparticles (NPs). In this study, we evaluate the antimicrobial efficacy and antibiofilm effect of Neem oil including its NPs preparations and we compare the effect of conventional Ca (OH)2 to Ca (OH)2 NPs using standard disc diffusion method and quantitative microtitre dish biofilm formation assay against common pathogens isolated from root canal samples. Molecular docking was used to test the binding of 10 Streptococcal macromolecules to 5 candidate neem active constituents. Neem NPs 0.125 mg/ml showed better antibacterial effect than both Neem 15 mg/ml and Neem 0.15 mg/ml. Ca (OH)2 NPs 0.125 mg/ml also showed better antibacterial effect than each of Ca (OH)2 10 mg/ml and Ca (OH)2 0.1 mg/ml. Best biofilm mass inhibition was achieved by Neem oil 0.15 mg/ml at 74.55% ( IQ: 67.36-87.65) and Neem NPs 0.0125 mg/ml at 59.33% (IQ: 51--75.27). For Ca (OH)2, the best biofilm mass inhibition was observed with Ca (OH)2 NPs 0.125 mg/ml at 54.7% (IQ: 42.37- 77.25). Both neem oil and neem NPs show promising antibacterial and antibiofilm potential against Mutans Streptococci group at low concentrations and hence are good candidates for use as endodontic medications. In silico analysis shows that both Sitosterol and Gedunin appear to be important active constituents of neem and possible drug candidates. Additionally, Ca (OH)2 NPs showed significantly higher antimicrobial effect against Mutans streptococci group than conventional Ca (OH)2 preparations.
Collapse
Affiliation(s)
- Wedad M Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Sherouk Hussein Adam
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Nasr Hashem
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Nelly Abdelsalam
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Liu P, Wang L, Song Y, Pei H, Cao X. Virtual Screening of Inhibitors of Streptococcus mutans Biofilm from Lonicera japonica flos and Activity Validation. ACS Med Chem Lett 2024; 15:781-790. [PMID: 38894900 PMCID: PMC11181501 DOI: 10.1021/acsmedchemlett.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, potential inhibitors of Streptococcus mutans biofilm were screened from Lonicera japonica flos using semiflexible molecular docking. A total of 88 metabolites from L. japonica flos and 14 biofilm-related proteins of S. mutans were analyzed, and 25 compounds were initially screened out. Subsequently, 9 compounds with higher availability were subjected to experimental validation, confirming that 6 of them effectively inhibit the S. mutans biofilm formation. Notably, chlorogenic acid was found to potentially disrupt the GbpC protein, which plays a role in the sucrose-dependent adhesion pathway. Similarly, oleanolic acid appeared to impede the adhesin P1 protein involved in the sucrose-independent adhesion mechanism, corroborating the computational predictions. The results of this study provide essential insights for leveraging L. japonica flos in the creation of dental-care-related products and food items aimed at oral health.
Collapse
Affiliation(s)
- Ping Liu
- Beijing Advanced
Innovation
Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Wang
- Beijing Advanced
Innovation
Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ya Song
- Beijing Advanced
Innovation
Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hairun Pei
- Beijing Advanced
Innovation
Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Cao
- Beijing Advanced
Innovation
Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Peng EQ, Caldas Nogueira ML, Rivière G, Brady LJ, Long JR. Backbone NMR resonance assignments for the C terminal domain of the Streptococcus mutans adhesin P1. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:293-299. [PMID: 37864759 PMCID: PMC10695118 DOI: 10.1007/s12104-023-10158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Adhesin P1 (aka AgI/II) plays a pivotal role in mediating Streptococcus mutans attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1's naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms. The heterologous, 51-kD C123 construct comprises most of AgII and was previously characterized by X-ray crystallography. C123 contains three structurally homologous domains, C1, C2, and C3. NMR samples made using the original C123 construct, or its C3 domain, yielded moderately resolved NMR spectra. Using Alphafold, we re-analyzed the P1 sequence to better identify domain boundaries for C123, and in particular the C3 domain. We then generated a more tractable construct for NMR studies of the monomeric form, including quaternary interactions with other proteins. The addition of seven amino acids at the C-terminus greatly improved the spectral dispersion for C3 relative to the prior construct. Here we report the backbone NMR resonance assignments for the new construct and characterize some of its quaternary interactions. These data are in good agreement with the structure predicted by Alphafold, which contains additional β-sheet secondary structure compared to the C3 domain in the C123 crystal structure for a construct lacking the seven C-terminal amino acids. Its quaternary interactions with known protein partners are in good agreement with prior competitive binding assays. This construct can be used for further NMR studies, including protein-protein interaction studies and assessing the impact of environmental conditions on C3 structure and dynamics within C123 as it transitions from monomer to amyloid form.
Collapse
Affiliation(s)
- Emily-Qingqing Peng
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
| | - M Luiza Caldas Nogueira
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
- National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA
| | - Gwladys Rivière
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA
- National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA
| | - L Jeannine Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0245, USA.
- National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA.
| |
Collapse
|
4
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Werum V, Ehrmann M, Vogel R, Hilgarth M. Comparative genome analysis, predicted lifestyle and antimicrobial strategies of Lactococcus carnosus and Lactococcus paracarnosus isolated from meat. Microbiol Res 2022; 258:126982. [DOI: 10.1016/j.micres.2022.126982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
6
|
Chen Y, Cui G, Cui Y, Chen D, Lin H. Small molecule targeting amyloid fibrils inhibits Streptococcus mutans biofilm formation. AMB Express 2021; 11:171. [PMID: 34919191 PMCID: PMC8683520 DOI: 10.1186/s13568-021-01333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
Amyloid fibrils are important scaffold in bacterial biofilms. Streptococcus mutans is an established cariogenic bacteria dwelling within biofilms, and C123 segment of P1 protein is known to form amyloid fibrils in S. mutans biofilms, among which C3 segment could serve as a promising anti-amyloid target due to its critical role in C123-P1 interactions. Recently, small molecules have been found to successfully inhibit biofilms by targeting amyloid fibrils. Thus, our study aimed to screen small molecules targeting C3 segment with the capacity to influence amyloid fibrils and S. mutans biofilms. In silico screening was utilized to discover promising small molecules, which were evaluated for their effects on bacterial cells and amyloid fibrils. We selected 99 small molecules and enrolled 55 small molecules named D1-D55 for crystal violet staining. Notably, D25 selectively inhibit S. mutans biofilms but had no significant influence on biofilms formed by Streptococcus gordonii and Streptococcus sanguinis, and D25 showed no bactericidal effects and low cytotoxicity. In addition, amyloid fibrils in free-floating bacteria, biofilms and purified C123 were quantified with ThT assays, and the differences were not statistically significant in the presence or absence of D25. Morphological changes of amyloid fibrils were visualized with TEM images, where amorphous aggregates were obvious coupled with long and atypical amyloid fibrils. Moreover, amyloid-related genes were upregulated in response to D25. In conclusion, D25 is a promising antimicrobial agent with the capacity to influence amyloid fibrils and inhibit S. mutans biofilms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Guxin Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yuqi Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Dongru Chen
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
7
|
Schormann N, Purushotham S, Mieher JL, Patel M, Wu H, Deivanayagam C. Structural and functional analysis of the C-terminal region of Streptococcus gordonii SspB. Acta Crystallogr D Struct Biol 2021; 77:1206-1215. [PMID: 34473090 PMCID: PMC8411976 DOI: 10.1107/s2059798321008135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/06/2021] [Indexed: 03/16/2023] Open
Abstract
Streptococcus gordonii is a member of the viridans streptococci and is an early colonizer of the tooth surface. Adherence to the tooth surface is enabled by proteins present on the S. gordonii cell surface, among which SspB belongs to one of the most well studied cell-wall-anchored adhesin families: the antigen I/II (AgI/II) family. The C-terminal region of SspB consists of three tandemly connected individual domains that display the DEv-IgG fold. These C-terminal domains contain a conserved Ca2+-binding site and isopeptide bonds, and they adhere to glycoprotein 340 (Gp340; also known as salivary agglutinin, SAG). Here, the structural and functional characterization of the C123SspB domain at 2.7 Å resolution is reported. Although the individual C-terminal domains of Streptococcus mutans AgI/II and S. gordonii SspB show a high degree of both sequence and structural homology, superposition of these structures highlights substantial differences in their electrostatic surface plots, and this can be attributed to the relative orientation of the individual domains (C1, C2 and C3) with respect to each other and could reflect their specificity in binding to extracellular matrix molecules. Studies further confirmed that affinity for Gp340 or its scavenger receptor cysteine-rich (SRCR) domains requires two of the three domains of C123SspB, namely C12 or C23, which is different from AgI/II. Using protein-protein docking studies, models for this observed functional difference between C123SspB and C123AgI/II in their binding to SRCR1 are presented.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sangeetha Purushotham
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua L. Mieher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manisha Patel
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR 97239, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Monzon V, Lafita A, Bateman A. Discovery of fibrillar adhesins across bacterial species. BMC Genomics 2021; 22:550. [PMID: 34275445 PMCID: PMC8286594 DOI: 10.1186/s12864-021-07586-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.
Collapse
Affiliation(s)
- Vivian Monzon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
9
|
Ostadhossein F, Moitra P, Altun E, Dutta D, Sar D, Tripathi I, Hsiao SH, Kravchuk V, Nie S, Pan D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun Biol 2021; 4:846. [PMID: 34267305 PMCID: PMC8282845 DOI: 10.1038/s42003-021-02372-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Dental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Esra Altun
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Debapriya Dutta
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Indu Tripathi
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Valeriya Kravchuk
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shuming Nie
- Departments of Bioengineering, Carle Illinois College of Medicine, Beckman Institute, Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, MD, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, Baltimore, MD, USA.
| |
Collapse
|
10
|
In Silico Selection and In Vitro Evaluation of New Molecules That Inhibit the Adhesion of Streptococcus mutants through Antigen I/II. Int J Mol Sci 2020; 22:ijms22010377. [PMID: 33396525 PMCID: PMC7795114 DOI: 10.3390/ijms22010377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
Streptococcus mutans is the main early colonizing cariogenic bacteria because it recognizes salivary pellicle receptors. The Antigen I/II (Ag I/II) of S. mutans is among the most important adhesins in this process, and is involved in the adhesion to the tooth surface and the bacterial co-aggregation in the early stage of biofilm formation. However, this protein has not been used as a target in a virtual strategy search for inhibitors. Based on the predicted binding affinities, drug-like properties and toxicity, molecules were selected and evaluated for their ability to reduce S. mutans adhesion. A virtual screening of 883,551 molecules was conducted; cytotoxicity analysis on fibroblast cells, S. mutans adhesion studies, scanning electron microscopy analysis for bacterial integrity and molecular dynamics simulation were also performed. We found three molecules ZINC19835187 (ZI-187), ZINC19924939 (ZI-939) and ZINC19924906 (ZI-906) without cytotoxic activity, which inhibited about 90% the adhesion of S. mutans to polystyrene microplates. Molecular dynamic simulation by 300 nanoseconds showed stability of the interaction between ZI-187 and Ag I/II (PDB: 3IPK). This work provides new molecules that targets Ag I/II and have the capacity to inhibit in vitro the S. mutans adhesion on polystyrene microplates.
Collapse
|
11
|
Järvå MA, Hirt H, Dunny GM, Berntsson RPA. Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Front Microbiol 2020; 11:599899. [PMID: 33324381 PMCID: PMC7726212 DOI: 10.3389/fmicb.2020.599899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.
Collapse
Affiliation(s)
- Michael A Järvå
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Barran-Berdon AL, Ocampo S, Haider M, Morales-Aparicio J, Ottenberg G, Kendall A, Yarmola E, Mishra S, Long JR, Hagen SJ, Stubbs G, Brady LJ. Enhanced purification coupled with biophysical analyses shows cross-β structure as a core building block for Streptococcus mutans functional amyloids. Sci Rep 2020; 10:5138. [PMID: 32198417 PMCID: PMC7083922 DOI: 10.1038/s41598-020-62115-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Streptococcus mutans is an etiologic agent of human dental caries that forms dental plaque biofilms containing functional amyloids. Three amyloidogenic proteins, P1, WapA, and Smu_63c were previously identified. C123 and AgA are naturally occurring amyloid-forming fragments of P1 and WapA, respectively. We determined that four amyloidophilic dyes, ThT, CDy11, BD-oligo, and MK-H4, differentiate C123, AgA, and Smu_63c amyloid from monomers, but non-specific binding to bacterial cells in the absence of amyloid precludes their utility for identifying amyloid in biofilms. Congo red-induced birefringence is a more specific indicator of amyloid formation and differentiates biofilms formed by wild-type S. mutans from a triple ΔP1/WapA/Smu_63c mutant with reduced biofilm forming capabilities. Amyloid accumulation is a late event, appearing in older S. mutans biofilms after 60 hours of growth. Amyloid derived from pure preparations of all three proteins is visualized by electron microscopy as mat-like structures. Typical amyloid fibers become evident following protease digestion to eliminate non-specific aggregates and monomers. Amyloid mats, similar in appearance to those reported in S. mutans biofilm extracellular matrices, are reconstituted by co-incubation of monomers and amyloid fibers. X-ray fiber diffraction of amyloid mats and fibers from all three proteins demonstrate patterns reflective of a cross-β amyloid structure.
Collapse
Affiliation(s)
- Ana L Barran-Berdon
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Sebastian Ocampo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Momin Haider
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | | | - Gregory Ottenberg
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Amy Kendall
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R Long
- Department of Biochemistry, University of Florida, Gainesville, Florida, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - Gerald Stubbs
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
14
|
Rivière G, Peng EQ, Brotgandel A, Andring JT, Lakshmanan RV, Agbandje-McKenna M, McKenna R, Brady LJ, Long JR. Characterization of an intermolecular quaternary interaction between discrete segments of the Streptococcus mutans adhesin P1 by NMR spectroscopy. FEBS J 2019; 287:2597-2611. [PMID: 31782893 DOI: 10.1111/febs.15158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
Cell surface-localized P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans mediates sucrose-independent adhesion to tooth surfaces. Previous studies showed that P1's C-terminal segment (C123, AgII) is also liberated as a separate polypeptide, contributes to cellular adhesion, interacts specifically with intact P1 on the cell surface, and forms amyloid fibrils. Identifying how C123 specifically interacts with P1 at the atomic level is essential for understanding related virulence properties of S. mutans. However, with sizes of ~ 51 and ~ 185 kDa, respectively, C123 and full-length P1 are too large to achieve high-resolution data for full structural analysis by NMR. Here, we report on biologically relevant interactions of the individual C3 domain with A3VP1, a polypeptide that represents the apical head of P1 as it is projected on the cell surface. Also evaluated are C3's interaction with C12 and the adhesion-inhibiting monoclonal antibody (MAb) 6-8C. NMR titration experiments with 15 N-enriched C3 demonstrate its specific binding to A3VP1. Based on resolved C3 assignments, two binding sites, proximal and distal, are identified. Complementary NMR titration of A3VP1 with a C3/C12 complex suggests that binding of A3VP1 occurs on the distal C3 binding site, while the proximal site is occupied by C12. The MAb 6-8C binding interface to C3 overlaps with that of A3VP1 at the distal site. Together, these results identify a specific C3-A3VP1 interaction that serves as a foundation for understanding the interaction of C123 with P1 on the bacterial surface and the related biological processes that stem from this interaction. DATABASE: BMRB submission code: 27935.
Collapse
Affiliation(s)
- Gwladys Rivière
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA
| | - Emily-Qingqing Peng
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Albert Brotgandel
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jacob T Andring
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Renuk V Lakshmanan
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - L Jeannine Brady
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Ka D, An SY, Suh JY, Bae E. Crystal structure of an anti-CRISPR protein, AcrIIA1. Nucleic Acids Res 2019; 46:485-492. [PMID: 29182776 PMCID: PMC5758886 DOI: 10.1093/nar/gkx1181] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide bacteria with RNA-based adaptive immunity against phage infection. To counteract this defense mechanism, phages evolved anti-CRISPR (Acr) proteins that inactivate the CRISPR-Cas systems. AcrIIA1, encoded by Listeria monocytogenes prophages, is the most prevalent among the Acr proteins targeting type II-A CRISPR-Cas systems and has been used as a marker to identify other Acr proteins. Here, we report the crystal structure of AcrIIA1 and its RNA-binding affinity. AcrIIA1 forms a dimer with a novel two helical-domain architecture. The N-terminal domain of AcrIIA1 exhibits a helix-turn-helix motif similar to transcriptional factors. When overexpressed in Escherichia coli, AcrIIA1 associates with RNAs, suggesting that AcrIIA1 functions via nucleic acid recognition. Taken together, the unique structural and functional features of AcrIIA1 suggest its distinct mode of Acr activity, expanding the diversity of the inhibitory mechanisms employed by Acr proteins.
Collapse
Affiliation(s)
- Donghyun Ka
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399 4598, Japan
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
17
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine 2017; 35:7273-7282. [PMID: 29146379 DOI: 10.1016/j.vaccine.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the immunogenicity, protective efficacy and peptide-based immune signatures of antibodies raised in mice after sublingual immunization with a recombinant form of the P1 (aka AgI/II, PAc) adhesin (P139-512) of Streptococcus mutans, a major etiological agent of dental caries. Sublingual administration of P139-512 in combination with the mucosal adjuvant LTK4R (a derivative of heat-labile LT toxin) induced strong and long-lasting systemic and mucosal immune responses. Incorporation of the adjuvant resulted in an enhancement of the anti-adhesive and anti-colonization activity against S. mutans as evaluated both under in vitro and in vivo conditions. Incorporation of the adjuvant to the vaccine formulation also changed the epitope specificity of the induced antibodies as determined by immunological signatures of sera collected from vaccinated mice. Use of a peptide microarray library led to the identification of peptide targets recognized by antibodies in serum samples with enhanced anti-adhesive effects. Altogether, the results presented herein showed that the sublingual administration of a P1-based subunit vaccine represents a promising approach for the prevention of dental caries caused by S. mutans. In addition, the present study disclosed the role of adjuvants on the epitope specificity and functionality of antibodies raised by subunit vaccines.
Collapse
|
19
|
Esberg A, Sheng N, Mårell L, Claesson R, Persson K, Borén T, Strömberg N. Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine 2017; 24:205-215. [PMID: 28958656 PMCID: PMC5652290 DOI: 10.1016/j.ebiom.2017.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Dental caries, which affects billions of people, is a chronic infectious disease that involves Streptococcus mutans, which is nevertheless a poor predictor of individual caries development. We therefore investigated if adhesin types of S.mutans with sucrose-independent adhesion to host DMBT1 (i.e. SpaP A, B or C) and collagen (i.e. Cnm, Cbm) match and predict individual differences in caries development. The adhesin types were measured in whole saliva by qPCR in 452 12-year-old Swedish children and related to caries at baseline and prospectively at a 5-year follow-up. Strains isolated from the children were explored for genetic and phenotypic properties. The presence of SpaP B and Cnm subtypes coincided with increased 5-year caries increment, and their binding to DMBT1 and saliva correlated with individual caries scores. The SpaP B subtypes are enriched in amino acid substitutions that coincided with caries and binding and specify biotypes of S. mutans with increased acid tolerance. The findings reveal adhesin subtypes of S. mutans that match and predict individual differences in caries development and provide a rationale for individualized oral care. Adhesin subtypes of Streptococcus mutans match and predict individual caries development. Adhesin binding to salivary DMBT1 correlates with individual caries scores. The adhesin types coincide with distinct biotypes of S. mutans.
Dental caries, which affects billions of people, involves the bacterium Streptococcus mutans, which is nevertheless a poor predictor of caries development. The present findings provide the first evidence that S. mutans adhesin subtypes match and predict individual 5-year caries development in Swedish children. The binding strength of the adhesin subtypes correlates with individual caries scores, and the adhesin subtypes specify biotypes of S. mutans that also differ in acid tolerance. The present findings provide a rationale for individualized oral care and improved systemic health because chronic caries infection and carrying high-virulence strains pose a systemic disease risk.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nongfei Sheng
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Lena Mårell
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicklas Strömberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
20
|
Binepal G, Wenderska IB, Crowley P, Besingi RN, Senadheera DB, Jeannine Brady L, Cvitkovitch DG. K+ modulates genetic competence and the stress regulon of Streptococcus mutans. MICROBIOLOGY-SGM 2017; 163:719-730. [PMID: 28530170 DOI: 10.1099/mic.0.000458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Potassium (K+) is the most abundant cation in dental plaque fluid. Previously, we reported the link between K+ transport via Trk2 in Streptococcus mutans and its two critical virulence attributes: acid tolerance and surface adhesion. Herein, we build further on the intimate link between K+ levels and S. mutans biology. High (>25 mM) versus low (≤5 mM) K+ concentrations in the growth medium affected conformational epitopes of cell surface-localized adhesin P1. At low K+, the expression of stress response elements gcrR and codY, cell-adhesion-associated genes such as spaP and metabolism-associated genes such as bglP was induced at stationary phase (P<0.05), suggesting that K+-mediated regulation is growth phase-dependent and stress-sensitive. Production of the newly discovered secretory protein encoded by SMU_63c was strongly dependent on the availability of K+ and growth phase. This protein is a newly discovered regulator of genetic competence and biofilm cell density. Thus, the influence of K+ on DNA transformation efficiency was also examined. Compared with 25 mM K+ concentration, the presence of low K+ reduced the transformation frequency by 100-fold. Genetic transformation was abolished in a strain lacking a Trk2 system under all K+ concentrations tested. Consistent with these findings, repression of competence-associated genes, comS and comX, was observed under low environmental K+ conditions and in the strain lacking Trk2. Taken together, these results highlight a pivotal role for environmental K+ as a regulatory cation that modulates stress responses and genetic transformation in S. mutans.
Collapse
Affiliation(s)
- Gursonika Binepal
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, ON M5G 1G6, Toronto, Canada
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, ON M5G 1G6, Toronto, Canada
| | - Paula Crowley
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, ON M5G 1G6, Toronto, Canada
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, ON M5G 1G6, Toronto, Canada
| |
Collapse
|
21
|
Besingi RN, Wenderska IB, Senadheera DB, Cvitkovitch DG, Long JR, Wen ZT, Brady LJ. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. MICROBIOLOGY-SGM 2017; 163:488-501. [PMID: 28141493 DOI: 10.1099/mic.0.000443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Rego S, Heal TJ, Pidwill GR, Till M, Robson A, Lamont RJ, Sessions RB, Jenkinson HF, Race PR, Nobbs AH. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. J Biol Chem 2016; 291:15985-6000. [PMID: 27311712 DOI: 10.1074/jbc.m116.726562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.
Collapse
Affiliation(s)
- Sara Rego
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom, the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Timothy J Heal
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Grace R Pidwill
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Marisa Till
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Alice Robson
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Richard J Lamont
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202
| | - Richard B Sessions
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Paul R Race
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Angela H Nobbs
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom,
| |
Collapse
|
23
|
Tang W, Bhatt A, Smith AN, Crowley PJ, Brady LJ, Long JR. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:153-64. [PMID: 26837620 PMCID: PMC4756430 DOI: 10.1007/s10858-016-0017-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.
Collapse
Affiliation(s)
- Wenxing Tang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam N Smith
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Paula J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L Jeannine Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Crowley PJ, Brady LJ. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production. Mol Oral Microbiol 2015; 31:59-77. [PMID: 26386361 DOI: 10.1111/omi.12130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.
Collapse
Affiliation(s)
- P J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L J Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Heim KP, Sullan RMA, Crowley PJ, El-Kirat-Chatel S, Beaussart A, Tang W, Besingi R, Dufrene YF, Brady LJ. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem 2015; 290:9002-19. [PMID: 25666624 DOI: 10.1074/jbc.m114.626663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.
Collapse
Affiliation(s)
- Kyle P Heim
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Ruby May A Sullan
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Paula J Crowley
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Wenxing Tang
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Richard Besingi
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Yves F Dufrene
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - L Jeannine Brady
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| |
Collapse
|