1
|
Xu C, Jiang Y, Wang M, Cheng A, Zhang W, Ou X, Sun D, Yang Q, Wu Y, Tian B, He Y, Wu Z, Zhang S, Zhao X, Huang J, Zhu D, Chen S, Liu M, Jia R. Duck hepatitis A virus utilizes PCBP2 to facilitate viral translation and replication. Vet Res 2024; 55:110. [PMID: 39300570 PMCID: PMC11414061 DOI: 10.1186/s13567-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Collapse
Affiliation(s)
- Chenxia Xu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yurui Jiang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, 225100, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekang Zhu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Kallert E, Almena Rodriguez L, Husmann JÅ, Blatt K, Kersten C. Structure-based virtual screening of unbiased and RNA-focused libraries to identify new ligands for the HCV IRES model system. RSC Med Chem 2024; 15:1527-1538. [PMID: 38784459 PMCID: PMC11110755 DOI: 10.1039/d3md00696d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Targeting RNA including viral RNAs with small molecules is an emerging field. The hepatitis C virus internal ribosome entry site (HCV IRES) is a potential target for translation inhibitor development to raise drug resistance mutation preparedness. Using RNA-focused and unbiased molecule libraries, a structure-based virtual screening (VS) by molecular docking and pharmacophore analysis was performed against the HCV IRES subdomain IIa. VS hits were validated by a microscale thermophoresis (MST) binding assay and a Förster resonance energy transfer (FRET) assay elucidating ligand-induced conformational changes. Ten hit molecules were identified with potencies in the high to medium micromolar range proving the suitability of structure-based virtual screenings against RNA-targets. Hit compounds from a 2-guanidino-quinazoline series, like the strongest binder, compound 8b with an EC50 of 61 μM, show low molecular weight, moderate lipophilicity and reduced basicity compared to previously reported IRES ligands. Therefore, it can be considered as a potential starting point for further optimization by chemical derivatization.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Laura Almena Rodriguez
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Jan-Åke Husmann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Kathrin Blatt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University BioZentrum I, Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| |
Collapse
|
3
|
Geng G, Yu C, Yuan X. Variable eIF4E-binding sites and their synergistic effect on cap-independent translation in a novel IRES of wheat yellow mosaic virus RNA2 isolates. Int J Biol Macromol 2024; 254:128062. [PMID: 37967597 DOI: 10.1016/j.ijbiomac.2023.128062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Some viral proteins are translated cap-independently via the internal ribosome entry site (IRES), which maintains conservative characteristic among different isolates of the same virus species. However, IRES activity showed a 7-fold variance in RNA2 of wheat yellow mosaic virus (WYMV) HC and LYJN isolates in this study. Based on RNA structure probing and mutagenesis assay, the loosened middle stem of H1 and the hepta-nucleotide top loop of H2 in the LYJN isolate synergistically ensured higher IRES activity than that in the HC isolate. In addition, the conserved top loop of H1 ensured basic IRES activity in HC and LYJN isolates. WYMV RNA2 5'-UTR specifically interacted with the wheat eIF4E, accomplished by the top loop of H1 in the HC isolate or the top loop of H1 and H2 in the LYJN isolate. The high IRES activity of the WYMV RNA2 LYJN isolate was regulated by two eIF4E-binding sites, which showed a synergistic effect mediated by the proximity of the H1 and H2 top loops owing to the flexibility of the middle stem in H1. This report presents a novel evolution pattern of IRES, which altered the number of eIF4E-binding sites to regulate IRES activity.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
4
|
Jaramillo-Mesa H, Rakotondrafara AM. All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event. Semin Cell Dev Biol 2023; 148-149:51-61. [PMID: 36608998 DOI: 10.1016/j.semcdb.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The Potyviridae family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting Picornaviridae family, the potyviral RNA genome lacks a 5' cap, and instead has a viral protein (VPg) linked to its 5' end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5' cap, the Potyviridae family depends on cis-acting elements in their 5' untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5'UTR-driven, cap-independent translation mechanisms employed by the Potyviridae family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.
Collapse
Affiliation(s)
- Helena Jaramillo-Mesa
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53704, USA
| | - Aurélie M Rakotondrafara
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53704, USA.
| |
Collapse
|
5
|
Abstract
For more than three decades, RNA has been known to be a relevant and attractive macromolecule to target but figuring out which RNA should be targeted and how remains challenging. Recent years have seen the confluence of approaches for screening, drug optimization, and target validation that have led to the approval of a few RNA-targeting therapeutics for clinical applications. This focused perspective aims to highlight - but not exhaustively review - key factors accounting for these successes while pointing at crucial aspects worth considering for further breakthroughs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
6
|
Martín-Villamil M, Sanmartín I, Moreno Á, Gallego J. Pharmacophore-Based Discovery of Viral RNA Conformational Modulators. Pharmaceuticals (Basel) 2022; 15:ph15060748. [PMID: 35745667 PMCID: PMC9229403 DOI: 10.3390/ph15060748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
New RNA-binding small-molecule scaffolds are needed to unleash the pharmacological potential of RNA targets. Here we have applied a pharmacophore-based virtual screening approach, seldom used in the RNA recognition field, to identify novel conformational inhibitors of the hepatitis C virus internal ribosome entry site. The conformational effect of the screening hits was assessed with a fluorescence resonance energy transfer assay, and the affinity, specificity, and binding site of the ligands were determined using a combination of fluorescence intensity and NMR spectroscopy experiments. The results indicate that this strategy can be successfully applied to discover RNA conformational inhibitors bearing substantially less positive charge than the reference ligands. This methodology can potentially be accommodated to other RNA motifs of pharmacological interest, facilitating the discovery of novel RNA-targeted molecules.
Collapse
|
7
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
8
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
A simple screening strategy for complex RNA-DNA hybrid nanoshapes. Methods 2021; 197:106-111. [PMID: 33631308 DOI: 10.1016/j.ymeth.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The design of hybrid nucleic acid nanomaterials capitalizes on the partitioning of architectural and functional roles between structurally diverse RNA modules and chemically robust DNA components. Selecting optimal combinations of RNA and DNA building blocks is the key to preparing stable polygonal RNA-DNA hybrid nanoshapes. Here, we outline a simple screening strategy by gel electrophoresis under native folding conditions to identify combinations of RNA and DNA modules that self-assemble to robust polygonal hybrid nanoshapes. As a proof of concept, we outline the preparation of RNA-DNA hybrid nanoshapes containing a set of different RNA architectural joints, including internal loop motifs and three-way junction (3WJ) folds. For each hybrid nanoshape, we demonstrate the selection process used to identify optimal DNA modules from a library of DNA connectors. The simple screening strategy outlined here provides a general robust method to identify and prepare RNA-DNA hybrid nanoshapes from diverse libraries of discrete nucleic acid building blocks.
Collapse
|
10
|
Armstrong I, Aldhumani AH, Schopis JL, Fang F, Parsons E, Zeng C, Hossain MI, Bergmeier SC, Hines JV. RNA drug discovery: Conformational restriction enhances specific modulation of the T-box riboswitch function. Bioorg Med Chem 2020; 28:115696. [PMID: 33069065 DOI: 10.1016/j.bmc.2020.115696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Antibacterial drug resistance is a global health concern that requires multiple solution approaches including development of new antibacterial compounds acting at novel targets. Targeting regulatory RNA is an emerging area of drug discovery. The T-box riboswitch is a regulatory RNA mechanism that controls gene expression in Gram-positive bacteria and is an exceptional, novel target for antibacterial drug design. We report the design, synthesis and activity of a series of conformationally restricted oxazolidinone-triazole compounds targeting the highly conserved antiterminator RNA element of the T-box riboswitch. Computational binding energies correlated with experimentally-derived Kd values indicating the predictive capabilities for docking studies within this series of compounds. The conformationally restricted compounds specifically inhibited T-box riboswitch function and not overall transcription. Complex disruption, computational docking and RNA binding specificity data indicate that inhibition may result from ligand binding to an allosteric site. These results highlight the importance of both ligand affinity and RNA conformational outcome for targeted RNA drug design.
Collapse
Affiliation(s)
- Ian Armstrong
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Jia L Schopis
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Fang Fang
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Eric Parsons
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Chunxi Zeng
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Stephen C Bergmeier
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Laboratories, Ohio University, Athens, OH 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
11
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
12
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
13
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
14
|
Geng G, Yu C, Li X, Yuan X. A unique internal ribosome entry site representing a dynamic equilibrium state of RNA tertiary structure in the 5'-UTR of Wheat yellow mosaic virus RNA1. Nucleic Acids Res 2020; 48:390-404. [PMID: 31713626 PMCID: PMC7145537 DOI: 10.1093/nar/gkz1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023] Open
Abstract
Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5'-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3'-UTR synergistically enhanced this IRES activity via long-distance RNA-RNA interaction between C80U81and A7574G7575. Within the 5'-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA-RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5'-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| |
Collapse
|
15
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
16
|
Abstract
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Jeffrey E Ehrhardt
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| |
Collapse
|
17
|
Monferrer A, Zhang D, Lushnikov AJ, Hermann T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat Commun 2019; 10:608. [PMID: 30723214 PMCID: PMC6363791 DOI: 10.1038/s41467-019-08521-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022] Open
Abstract
DNA and RNA have emerged as a material for nanotechnology applications that take advantage of the nucleic acids' ability to encode folding and programmable self-assembly through mainly base pairing. The two types of nucleic acid have rarely been used in combination to enhance structural diversity or for partitioning of functional and architectural roles. Here, we report a design and screening strategy to integrate combinations of RNA motifs as architectural joints and DNA building blocks as functional modules for programmable self-assembly of a versatile toolkit of polygonal nucleic acid nanoshapes. Clean incorporation of diverse DNA modules with various topologies attest to the extraordinary robustness of the RNA-DNA hybrid framework. The design and screening strategy enables systematic development of RNA-DNA hybrid nanoshapes as programmable platforms for applications in molecular recognition, sensor and catalyst development as well as protein interaction studies.
Collapse
Affiliation(s)
- Alba Monferrer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Douglas Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Genomic-Scale Interaction Involving Complementary Sequences in the Hepatitis C Virus 5'UTR Domain IIa and the RNA-Dependent RNA Polymerase Coding Region Promotes Efficient Virus Replication. Viruses 2018; 11:v11010017. [PMID: 30597844 PMCID: PMC6357077 DOI: 10.3390/v11010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) genome contains structured elements thought to play important regulatory roles in viral RNA translation and replication processes. We used in vitro RNA binding assays to map interactions involving the HCV 5′UTR and distal sequences in NS5B to examine their impact on viral RNA replication. The data revealed that 5′UTR nucleotides (nt) 95–110 in the internal ribosome entry site (IRES) domain IIa and matching nt sequence 8528–8543 located in the RNA-dependent RNA polymerase coding region NS5B, form a high-affinity RNA-RNA complex in vitro. This duplex is composed of both wobble and Watson-Crick base-pairings, with the latter shown to be essential to the formation of the high-affinity duplex. HCV genomic RNA constructs containing mutations in domain IIa nt 95–110 or within the genomic RNA location comprising nt 8528–8543 displayed, on average, 5-fold less intracellular HCV RNA and 6-fold less infectious progeny virus. HCV genomic constructs containing complementary mutations for IRES domain IIa nt 95–110 and NS5B nt 8528–8543 restored intracellular HCV RNA and progeny virus titers to levels obtained for parental virus RNA. We conclude that this long-range duplex interaction between the IRES domain IIa and NS5B nt 8528–8543 is essential for optimal virus replication.
Collapse
|
19
|
Lozano G, Francisco-Velilla R, Martinez-Salas E. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biol 2018; 8:rsob.180155. [PMID: 30487301 PMCID: PMC6282068 DOI: 10.1098/rsob.180155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Beyond the general cap-dependent translation initiation, eukaryotic organisms use alternative mechanisms to initiate protein synthesis. Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of translation using a cap-independent mechanism. However, their lack of primary sequence and secondary RNA structure conservation, as well as the diversity of host factor requirement to recruit the ribosomal subunits, suggest distinct types of IRES elements. In spite of this heterogeneity, conserved motifs preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES-driven translation. This conservation brings the question of whether IRES elements could consist of basic building blocks, which upon evolutionary selection result in functional elements with different properties. Although RNA-binding proteins (RBPs) perform a crucial role in the assembly of ribonucleoprotein complexes, the versatility and plasticity of RNA molecules, together with their high flexibility and dynamism, determines formation of macromolecular complexes in response to different signals. These properties rely on the presence of short RNA motifs, which operate as modular entities, and suggest that decomposition of IRES elements in short modules could help to understand the different mechanisms driven by these regulatory elements. Here we will review evidence suggesting that model IRES elements consist of the combination of short modules, providing sites of interaction for ribosome subunits, eIFs and RBPs, with implications for definition of criteria to identify novel IRES-like elements genome wide.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
20
|
Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 2018; 115:11513-11518. [PMID: 30341219 DOI: 10.1073/pnas.1716689115] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.
Collapse
|
21
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Diaz-Toledano R, Lozano G, Martinez-Salas E. In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA. Nucleic Acids Res 2017; 45:1416-1432. [PMID: 28180318 PMCID: PMC5388415 DOI: 10.1093/nar/gkw795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.
Collapse
Affiliation(s)
- Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| |
Collapse
|
25
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
26
|
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan USA
| |
Collapse
|
27
|
Abstract
Biological RNA architectures are composed of autonomously folding modules which can be tailored as building blocks for the construction of RNA nanostructures. Designed base pair interactions allow complex nano-objects to self-assemble from simple RNA motifs. X-ray crystallography plays an important role in both the design and analysis of such RNA nanostructures. Here, we describe methods for the design and X-ray crystallographic structure analysis of an RNA square and two different triangles, which self-assemble from short oligonucleotides and serve as a platform for building functional nano-sized nucleic acid architectures.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Charrette BP, Boerneke MA, Hermann T. Ligand Optimization by Improving Shape Complementarity at a Hepatitis C Virus RNA Target. ACS Chem Biol 2016; 11:3263-3267. [PMID: 27775338 DOI: 10.1021/acschembio.6b00687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crystal structure analysis revealed key interactions of a 2-amino-benzimidazole viral translation inhibitor that captures an elongated conformation of an RNA switch target in the internal ribosome entry site (IRES) of hepatitis C virus (HCV). Here, we have designed and synthesized quinazoline derivatives with improved shape complementarity at the ligand binding site of the viral RNA target. A spiro-cyclopropyl modification aimed at filling a pocket in the back of the RNA binding site led to a 5-fold increase of ligand affinity while a slightly more voluminous dimethyl substitution at the same position did not improve binding. We demonstrate that precise shape complementarity based solely on hydrophobic interactions contributes significantly to ligand binding even at a hydrophilic RNA target site such as the HCV IRES conformational switch.
Collapse
Affiliation(s)
- Brian P. Charrette
- Department
of Chemistry and Biochemistry, University of California, San Diego,
9500 Gilman Drive, La Jolla, California 92093, United States
| | - Mark A. Boerneke
- Department
of Chemistry and Biochemistry, University of California, San Diego,
9500 Gilman Drive, La Jolla, California 92093, United States
| | - Thomas Hermann
- Department
of Chemistry and Biochemistry, University of California, San Diego,
9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Drug Discovery Innovation, University of California, San Diego,
9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Mandal PK, Kauffmann B, Destecroix H, Ferrand Y, Davis AP, Huc I. Crystal structure of a complex between β-glucopyranose and a macrocyclic receptor with dendritic multicharged water solubilizing chains. Chem Commun (Camb) 2016; 52:9355-8. [PMID: 27373805 DOI: 10.1039/c6cc04466b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using commercial screens for crystallization of biomolecules and taking advantage of the use of racemic crystallography allowed the production of X-ray quality single crystals and the elucidation at 1.08 Å resolution of the solid state structure of a difficult target: the complex between glucopyranose and a water soluble macrocyclic receptor equipped with dendritic multianionic solubilizing chains.
Collapse
Affiliation(s)
- Pradeep K Mandal
- Univ. Bordeaux, CBMN (UMR 5248), IECB, 2 rue Robert Escarpit, F-33600 Pessac, France.
| | | | | | | | | | | |
Collapse
|
30
|
Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA. Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods 2016; 103:128-37. [PMID: 27090005 PMCID: PMC6319925 DOI: 10.1016/j.ymeth.2016.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Designing self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog. As an example of a potential use of this resource, we chose a predicted RNA square structure consisting of five RNA strands and demonstrate experimentally that the self-assembly of those five strands leads to the formation of a square-like complex. This is a demonstration of a novel "design by catalog" approach to RNA nano-structure generation. The URL https://rnajunction.ncifcrf.gov/ringdb can be used to access the resource.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rishabh Sharan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Nathan Bartlett
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel Moriarty
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerome Oliver
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Bruce A Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
31
|
Hermann T. Small molecules targeting viral RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:726-743. [PMID: 27307213 PMCID: PMC7169885 DOI: 10.1002/wrna.1373] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug‐like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug‐like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA‐binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect‐borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726–743. doi: 10.1002/wrna.1373 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs
Collapse
Affiliation(s)
- Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. .,Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Abstract
Ligand-responsive RNA mechanical switches represent a new class of simple switching modules that adopt well-defined ligand-free and bound conformational states, distinguishing them from metabolite-sensing riboswitches. Initially discovered in the internal ribosome entry site (IRES) of hepatitis C virus (HCV), these RNA switch motifs were found in the genome of diverse other viruses. Although large variations are seen in sequence and local secondary structure of the switches, their function in viral translation initiation that requires selective ligand recognition is conserved. We recently determined the crystal structure of an RNA switch from Seneca Valley virus (SVV) which is able to functionally replace the switch of HCV. The switches from both viruses recognize identical cognate ligands despite their sequence dissimilarity. Here, we describe the discovery of 7 new switches in addition to the previously established 5 examples. We highlight structural and functional features unique to this class of ligand-responsive RNA mechanical switches and discuss implications for therapeutic development and the construction of RNA nanostructures.
Collapse
Key Words
- AEV, avian encephalomyelitis virus
- BDV, border disease virus
- BVDV, bovine viral diarrhea virus
- CSFV, classical swine fever virus
- DHV, Duck hepatitis virus
- DPV, duck picornavirus
- GBV, GB virus
- GPV, giraffe pestivirus
- HCV, hepatitis C virus
- IRES
- IRES, internal ribosome entry site
- IVT, in vitro translation
- NPHV, non-primate hepacivirus
- RNA switch
- SPV, simian picornavirus
- SVV, Seneca Valley virus
- conformational switch
- hepatitis C virus
- riboswitch
Collapse
Affiliation(s)
- Mark A Boerneke
- a Department of Chemistry and Biochemistry ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
33
|
Boerneke MA, Dibrov SM, Hermann T. Kristallstruktur-geleitetes Design selbstorganisierender RNA-Nanodreiecke. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Sergey M. Dibrov
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
- Center for Drug Discovery Innovation; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
34
|
Boerneke MA, Dibrov SM, Hermann T. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles. Angew Chem Int Ed Engl 2016; 55:4097-100. [PMID: 26914842 DOI: 10.1002/anie.201600233] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/25/2016] [Indexed: 12/11/2022]
Abstract
RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Lozano G, Trapote A, Ramajo J, Elduque X, Grandas A, Robles J, Pedroso E, Martínez-Salas E. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation. RNA Biol 2016; 12:555-68. [PMID: 25775053 PMCID: PMC4615676 DOI: 10.1080/15476286.2015.1025190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 μM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells.
Collapse
Affiliation(s)
- Gloria Lozano
- a Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CMT. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J 2015; 34:3042-58. [PMID: 26604301 DOI: 10.15252/embj.201592469] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Marianne Collier
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Jochen Ismer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thiemo Sprink
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tanvir R Shaikh
- Structural Biology Programme, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marylena Dabrowski
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
37
|
Conformational flexibility of viral RNA switches studied by FRET. Methods 2015; 91:35-39. [PMID: 26381686 DOI: 10.1016/j.ymeth.2015.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
The function of RNA switches involved in the regulation of transcription and translation relies on their ability to adopt different, structurally well-defined states. A new class of ligand-responsive RNA switches, which we recently discovered in positive strand RNA viruses, are distinct from conventional riboswitches. The viral switches undergo large conformational changes in response to ligand binding while retaining the same secondary structure in their free and ligand-bound forms. Here, we describe FRET experiments to study folding and ligand binding of the viral RNA switches. In addition to reviewing previous approaches involving RNA model constructs which were directly conjugated with fluorescent dyes, we outline the design and application of new modular constructs for FRET experiments, in which dye labeling is achieved by hybridization of a core RNA switch module with universal DNA fluorescent probes. As an example, folding and ligand binding of the RNA switch from the internal ribosome entry site of hepatitis C virus is studied comparatively with conventional and modular FRET constructs.
Collapse
|
38
|
Lozano G, Martínez-Salas E. Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol 2015; 12:113-20. [PMID: 26004307 DOI: 10.1016/j.coviro.2015.04.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/10/2023]
Abstract
A diverse group of viruses subvert the host translational machinery to promote viral genome translation. This process often involves altering canonical translation initiation factors to repress cellular protein synthesis while viral proteins are efficiently synthesized. The discovery of this strategy in picornaviruses, which is based on the use of internal ribosome entry site (IRES) elements, opened new avenues to study alternative translational control mechanisms evolved in different groups of RNA viruses. IRESs are cis-acting RNA sequences that adopt three-dimensional structures and recruit the translation machinery assisted by a subset of translation initiation factors and various RNA binding proteins. However, IRESs present in the genome of different RNA viruses perform the same function despite lacking conservation of primary sequence and secondary RNA structure, and differing in host factor requirement to recruit the translation machinery. Evolutionary conserved motifs tend to preserve sequences impacting on RNA structure and RNA-protein interactions important for IRES function. While some motifs are found in various picornavirus IRESs, others occur only in one type reflecting specialized factor requirements. This review is focused to describe recent advances on the principles and RNA structure features of picornavirus IRESs.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Asnani M, Kumar P, Hellen CUT. Widespread distribution and structural diversity of Type IV IRESs in members of Picornaviridae. Virology 2015; 478:61-74. [PMID: 25726971 DOI: 10.1016/j.virol.2015.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
Picornavirus genomes contain internal ribosomal entry sites (IRESs) that promote end-independent translation initiation. Five structural classes of picornavirus IRES have been identified, but numerous IRESs remain unclassified. Here, previously unrecognized Type IV IRESs were identified in members of three proposed picornavirus genera (Limnipivirus, Pasivirus, Rafivirus) and four recognized genera (Kobuvirus, Megrivirus, Sapelovirus, Parechovirus). These IRESs are ~230-420 nucleotides long, reflecting heterogeneity outside a common structural core. Closer analysis yielded insights into evolutionary processes that have shaped contemporary IRESs. The presence of related IRESs in diverse genera supports the hypothesis that they are heritable genetic elements that spread by horizontal gene transfer. Recombination likely also accounts for the exchange of some peripheral subdomains, suggesting that IRES evolution involves incremental addition of elements to a pre-existing core. Nucleotide conservation is concentrated in ribosome-binding sites, and at the junction of helical domains, likely to ensure orientation of subdomains in an active conformation.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Parimal Kumar
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
40
|
Rynearson KD, Charrette B, Gabriel C, Moreno J, Boerneke MA, Dibrov SM, Hermann T. 2-Aminobenzoxazole ligands of the hepatitis C virus internal ribosome entry site. Bioorg Med Chem Lett 2014; 24:3521-5. [PMID: 24930829 PMCID: PMC4114401 DOI: 10.1016/j.bmcl.2014.05.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
Abstract
2-Aminobenzoxazoles have been synthesized as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The compounds were designed to explore the less basic benzoxazole system as a replacement for the core scaffold in previously discovered benzimidazole viral translation inhibitors. Structure-activity relationships in the target binding of substituted benzoxazole ligands were investigated.
Collapse
Affiliation(s)
- Kevin D Rynearson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Brian Charrette
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Christopher Gabriel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Jesus Moreno
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|