1
|
Landa MS, Schuman ML, Aisicovich M, Peres Diaz LS, Gironacci MM, García SI, Pirola CJ. Valproate decreases transgenerationally blood pressure by affecting thyrotropin-releasing hormone promoter DNA methylation and gene expression in spontaneously hypertensive rat. Mol Cell Biochem 2025; 480:937-949. [PMID: 38630362 DOI: 10.1007/s11010-024-05001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 02/19/2025]
Abstract
Central TRH, a neuropeptide, is involved in cardiovascular regulation. We demonstrated that the overexpression of diencephalic TRH (dTRH) in SHR rats can be prevented by antisense treatment, normalizing blood pressure (BP). Valproate (VPA) is an inhibitor of histone deacetylases (HDAC) which modulates gene expression through epigenetic modifications such as DNA methylation. AIMS Study the role of HDAC inhibition in the regulation of dTRH gene expression and its effect on the pathogenesis of hypertension. MAIN METHODS We treated 7-weeks-old male and female SHR and WKY rats with VPA for 10 weeks and evaluated BP, dTRH mRNA and methylation gene status. KEY FINDINGS VPA attenuated the elevated BP and dTRH mRNA expression characteristic of SHR. Indeed, we found a significant 62% reduction in dTRH mRNA expression in the SHR + VPA group compared to control SHR. The decrease TRH mRNA expression induced by VPA was confirmed "in vitro" in a primary neuron culture using trichostatin A. With methylation specific PCR we demonstrated a significant increase in TRH promoter DNA methylation level in SHR + VPA group compared to control SHR. After 2 weeks of treatment interruption, rats were mated. Although they did not receive any treatment, the offspring born from VPA-treated SHR parents showed similar changes in BP, dTRH expression and methylation status, implying a transgenerational inheritance. Our findings suggest that dTRH modulation by epigenetics mechanism affects BP and could be inherited by the next generation in SHR rats.
Collapse
Affiliation(s)
- María S Landa
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Mariano L Schuman
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Maia Aisicovich
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Ludmila S Peres Diaz
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Mariela M Gironacci
- Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, School of Pharmacy and Biochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia I García
- School of Medicine, Institute of Medical Research A. Lanari, Universidad de Buenos Aires, Combatientes de Malvinas 3150, 1427, Ciudad Autonoma de Buenos Aires, Argentina.
- Department of Molecular Cardiology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autonoma de Buenos Aires, Argentina.
- Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Carlos J Pirola
- Department of Molecular Genetics and Biology of Complex Diseases, Center for Traslational Research in Health, Maimonides University, Hidalgo 775, 1405, Ciudad Autonoma de Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Chatterjee S, Ghosh S, Sin Z, Davis E, Preval LV, Tran N, Bammidi S, Gautam P, Hose S, Sergeev Y, Flores-Bellver M, Aldiri I, Sinha D, Guha P. βA3/A1-crystallin is an epigenetic regulator of histone deacetylase 3 (HDAC3) in the retinal pigmented epithelial (RPE) cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606634. [PMID: 39211129 PMCID: PMC11361014 DOI: 10.1101/2024.08.06.606634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The retinal pigmented epithelial (RPE) cells maintain retinal homeostasis, and alterations in their function contribute to non-exudative age-related macular degeneration (AMD) 1,2 . Here, we explore the intricate relationship between RPE cells, epigenetic modifications, and the development of AMD. Importantly, the study reveals a substantial decrease in histone deacetylase 3 (HDAC3) activity and elevated histone acetylation in the RPE of human AMD donor eyes. To investigate epigenetic mechanisms in AMD development, we used a mouse model with RPE-specific Cryba1 knockout 3-5 , revealing that the loss of βA3/A1-crystallin selectively reduces HDAC3 activity, resulting in increased histone acetylation. βA3/A1-crystallin activates HDAC3 by facilitating its interaction with the casein kinase II (CK2) and phosphorylating HDAC3, as well as by regulating intracellular InsP6 (phytic acid) levels, required for activating HDAC3. These findings highlight a novel function of βA3/A1-crystallin as an epigenetic regulator of HDAC3 in the RPE cells and provide insights into potential therapeutic strategies in non-exudative AMD.
Collapse
|
3
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S. Role of histone deacetylase inhibitors in non-neoplastic diseases. Heliyon 2024; 10:e33997. [PMID: 39071622 PMCID: PMC11283006 DOI: 10.1016/j.heliyon.2024.e33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Epigenetic dysregulation has been implicated in the development and progression of a variety of human diseases, but epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. Histone deacetylase inhibitors (HDACis), as a class of epigenetic drugs, are widely used to treat various cancers and other diseases involving abnormal gene expression. Results Specially, HDACis have emerged as a promising strategy to enhance the therapeutic effect of non-neoplastic conditions, including neurological disorders, cardiovascular diseases, renal diseases, autoimmune diseases, inflammatory diseases, infectious diseases and rare diseases, along with their related mechanisms. However, their clinical efficacy has been limited by drug resistance and toxicity. Conclusions To date, most clinical trials of HDAC inhibitors have been related to the treatment of cancer rather than the treatment of non-cancer diseases, for which experimental studies are gradually underway. Discussions regarding non-neoplastic diseases often concentrate on specific disease types. Therefore, this review highlights the development of HDACis and their potential therapeutic applications in non-neoplastic diseases, either as monotherapy or in combination with other drugs or therapies.
Collapse
Affiliation(s)
- Chunxiao Zhou
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Dengke Zhao
- Harbin Medical University, Harbin, 150000, China
| | - Chunyan Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Zhimin Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Wen Zhang
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shilv Chen
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Xindong Zhao
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shaoling Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
5
|
Temgire P, Arthur R, Kumar P. Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm. Inflammopharmacology 2024; 32:1791-1804. [PMID: 38653938 DOI: 10.1007/s10787-024-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Swiatlowska P, Iskratsch T. Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation. Cardiovasc Drugs Ther 2024; 38:215-222. [PMID: 36653625 PMCID: PMC10959834 DOI: 10.1007/s10557-022-07422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
The local mechanical microenvironment impacts on the cell behavior. In the cardiovascular system, cells in both the heart and the vessels are exposed to continuous blood flow, blood pressure, stretching forces, and changing extracellular matrix stiffness. The force-induced signals travel all the way to the nucleus regulating epigenetic changes such as chromatin dynamics and gene expression. Mechanical cues are needed at the very early stage for a faultless embryological development, while later in life, aberrant mechanical signaling can lead to a range of pathologies, including diverse cardiovascular diseases. Hence, an investigation of force-generated epigenetic alteration at different time scales is needed to understand fully the phenotypic changes in disease onset and progression. That being so, cardiovascular mechano-epigenetics emerges as an attractive field of study. Given the rapid advances in this emergent field of research, this short review aims to provide an analysis of the state of knowledge of force-induced epigenetic changes in the cardiovascular field.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules 2023; 13:biom13040581. [PMID: 37189329 DOI: 10.3390/biom13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Inherited retinal degeneration (IRD) represents a diverse group of gene mutation-induced blinding diseases. In IRD, the loss of photoreceptors is often connected to excessive activation of histone-deacetylase (HDAC), poly-ADP-ribose-polymerase (PARP), and calpain-type proteases (calpain). Moreover, the inhibition of either HDACs, PARPs, or calpains has previously shown promise in preventing photoreceptor cell death, although the relationship between these enzyme groups remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type mice and rd1 mice as a model for IRD were treated with different combinations of inhibitors specific for HDAC, PARP, and calpain. The outcomes were assessed using in situ activity assays for HDAC, PARP, and calpain, immunostaining for activated calpain-2, and the TUNEL assay for cell death detection. We confirmed that inhibition of either HDAC, PARP, or calpain reduced rd1 mouse photoreceptor degeneration, with the HDAC inhibitor Vorinostat (SAHA) being most effective. Calpain activity was reduced by inhibition of both HDAC and PARP whereas PARP activity was only reduced by HDAC inhibition. Unexpectedly, combined treatment with either PARP and calpain inhibitors or HDAC and calpain inhibitors did not produce synergistic rescue of photoreceptors. Together, these results indicate that in rd1 photoreceptors, HDAC, PARP, and calpain are part of the same degenerative pathway and are activated in a sequence that begins with HDAC and ends with calpain.
Collapse
|
9
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
10
|
Yang Q, Falahati A, Khosh A, Mohammed H, Kang W, Corachán A, Bariani MV, Boyer TG, Al-Hendy A. Targeting Class I Histone Deacetylases in Human Uterine Leiomyosarcoma. Cells 2022; 11:cells11233801. [PMID: 36497061 PMCID: PMC9735512 DOI: 10.3390/cells11233801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is unknown. Class I histone deacetylases (including HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit distinct cellular and subcellular expression patterns and are involved in many biological processes and diseases through diverse signaling pathways. However, the link between class I HDACs and uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) decreased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs in uLMS may provide a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Ali Falahati
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Azad Khosh
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Hanaa Mohammed
- Anatomy Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Ana Corachán
- Department of Paediatrics, University of Valencia, Obstetrics and Gynecology, 46026 Valencia, Spain
| | | | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
12
|
Metzger JJ, Pereda C, Adhikari A, Haremaki T, Galgoczi S, Siggia ED, Brivanlou AH, Etoc F. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models. CELL REPORTS METHODS 2022; 2:100297. [PMID: 36160045 PMCID: PMC9500000 DOI: 10.1016/j.crmeth.2022.100297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/06/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.
Collapse
Affiliation(s)
- Jakob J. Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Carlota Pereda
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Arjun Adhikari
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| |
Collapse
|
13
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
14
|
Hwang YJ, Hyeon SJ, Kim Y, Lim S, Lee MY, Kim J, Londhe AM, Gotina L, Kim Y, Pae AN, Cho YS, Seong J, Seo H, Kim YK, Choo H, Ryu H, Min SJ. Modulation of SETDB1 activity by APQ ameliorates heterochromatin condensation, motor function, and neuropathology in a Huntington's disease mouse model. J Enzyme Inhib Med Chem 2021; 36:856-868. [PMID: 33771089 PMCID: PMC8008885 DOI: 10.1080/14756366.2021.1900160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
The present study describes evaluation of epigenetic regulation by a small molecule as the therapeutic potential for treatment of Huntington's disease (HD). We identified 5-allyloxy-2-(pyrrolidin-1-yl)quinoline (APQ) as a novel SETDB1/ESET inhibitor using a combined in silico and in vitro cell based screening system. APQ reduced SETDB1 activity and H3K9me3 levels in a HD cell line model. In particular, not only APQ reduced H3K9me3 levels in the striatum but it also improved motor function and neuropathological symptoms such as neuronal size and activity in HD transgenic (YAC128) mice with minimal toxicity. Using H3K9me3-ChIP and genome-wide sequencing, we also confirmed that APQ modulates H3K9me3-landscaped epigenomes in YAC128 mice. These data provide that APQ, a novel small molecule SETDB1 inhibitor, coordinates H3K9me-dependent heterochromatin remodelling and can be an epigenetic drug for treating HD, leading with hope in clinical trials of HD.
Collapse
Affiliation(s)
- Yu Jin Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Younghee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
| | | | - Jieun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ashwini M. Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yong Seo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jihye Seong
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Neurology and Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
15
|
DNA Methylation in Huntington's Disease. Int J Mol Sci 2021; 22:ijms222312736. [PMID: 34884540 PMCID: PMC8657460 DOI: 10.3390/ijms222312736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides is the major DNA modification in mammalian cells that is a key component of stable epigenetic marks. This modification, which on the one hand is reversible, while on the other hand, can be maintained through successive rounds of replication plays roles in gene regulation, genome maintenance, transgenerational epigenetic inheritance, and imprinting. Disturbed DNA methylation contributes to a wide array of human diseases from single-gene disorders to sporadic metabolic diseases or cancer. DNA methylation was also shown to affect several neurodegenerative disorders, including Huntington's disease (HD), a fatal, monogenic inherited disease. HD is caused by a polyglutamine repeat expansion in the Huntingtin protein that brings about a multifaceted pathogenesis affecting several cellular processes. Research of the last decade found complex, genome-wide DNA methylation changes in HD pathogenesis that modulate transcriptional activity and genome stability. This article reviews current evidence that sheds light on the role of DNA methylation in HD.
Collapse
|
16
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
17
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
18
|
The Synergistic Anti-Tumor Activity of EZH2 Inhibitor SHR2554 and HDAC Inhibitor Chidamide through ORC1 Reduction of DNA Replication Process in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13174249. [PMID: 34503063 PMCID: PMC8428225 DOI: 10.3390/cancers13174249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The EZH2-targeted drugs have demonstrated notable therapeutic effects in EZH2 mutant B-cell lymphoma patients. In this study, we demonstrated that the combination of EZH2 inhibitor SHR2554 and HDAC inhibitor HBI8000 exert synergistic anti-proliferative activity in both EZH2 wide-type and mutation B-cell lymphoma. More importantly, gene expression profile analysis revealed simultaneous treatment with these agents led to dramatic inhibition of DNA replication initiator protein ORC1, which might contribute to great efficacy of combination strategy. The combination of EZH2 inhibitor and HDAC inhibitor could provide a potential therapeutic treatment for both EZH2 wide-type and mutation B-cell lymphoma patients. Abstract Background: Upregulation of H3K27me3 induced by EZH2 overexpression or somatic heterozygous mutations were implicated in lymphomagenesis. It has been demonstrated that several EZH2-target agents have notable therapeutic effects in EZH2-mutant B-cell lymphoma patients. Here we present a novel highly selective EZH2 inhibitor SHR2554 and possible combination strategy in diffuse large B-cell lymphoma (DLBCL). Methods: Cell proliferation, cell cycle and apoptosis were analyzed by CellTiter-Glo Luminescent Cell Viability Assay and flow cytometry. Western Blot was used to detect the expression of related proteins. The gene expression profiling post combination treatment was analyzed by RNA-Seq. Finally, CDX and PDX models were used to evaluate the synergistic anti-tumor effects of the combination treatment in vivo. Results: The novel EZH2 inhibitor SHR2554 inhibited proliferation and induced G1 phase arrest in EZH2-mutant DLBCL cell lines. The combination of EZH2 inhibitor SHR2554 with histone deacetylase (HDAC) inhibitor chidamide (hereafter referred to as HBI8000) exerted synergistic anti-proliferative activity in vitro and in vivo. Gene expression profile analysis revealed dramatic inhibition of the DNA replication process in combined treatment. Conclusions: SHR2554, a potent, highly selective small molecule inhibitor of EZH2, inhibited EZH2-mutant DLBCL more significantly in vitro and in vivo. The combination of HDAC inhibitor HBI8000 with EZH2 inhibitor SHR2554 exhibited dramatic anti-tumor activity in both mutant and wild-type DLBCL, which may become a potential therapeutic modality for the treatment of DLBCL patients.
Collapse
|
19
|
Ajdary M, Farzan S, Razavi Y, Arabdolatabadi A, Haghparast A. Effects of Morphine on Serum Reproductive Hormone Levels and the Expression of Genes Involved in Fertility-related Pathways in Male Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:153-164. [PMID: 34400949 PMCID: PMC8170771 DOI: 10.22037/ijpr.2019.112119.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of morphine on serum reproductive hormone levels and markers involved in fertility-related pathways were evaluated. A total of 30 male Wistar rats were divided into three groups (n = 10) and intraperitoneally administered the following substances for 20 days: two single daily doses of morphine (10 mg/kg; morphine group), saline (healthy saline), and intact group. After confirming the morphine dependence of the experimental groups, all the animals were sacrificed and their total testis tissue was extracted and stored at -80 °C until use. Male reproductive parameters (blood serum of testosterone, luteinizing hormone, and follicle-stimulating hormone) and using Q-PCR and western blot, we evaluated mRNA and protein expression of CREM, TBP, CREB1, HDAC1, and FOS involved in fertility-related pathways were analyzed and compared in the testis samples. The luteinizing hormone and testosterone levels were significantly lower in the morphine-administered group than in the saline and intact groups (P < 0.05). Moreover, the expressions of all five target genes were downregulated in the morphine group (P < 0.05). The protein expression of all five target proteins was downregulated in the morphine group (P < 0.05). We concluded that morphine could decrease the reproductive parameters in male rats.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Abadan Faculty of Medical Sciences, Abadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Farzan
- Department of Anesthesiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Arabdolatabadi
- Young Researchers and Elite Club, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Pogoda A, Chmielewska N, Maciejak P, Szyndler J. Transcriptional Dysregulation in Huntington's Disease: The Role in Pathogenesis and Potency for Pharmacological Targeting. Curr Med Chem 2021; 28:2783-2806. [PMID: 32628586 DOI: 10.2174/0929867327666200705225821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF- κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.
Collapse
Affiliation(s)
- Aleksandra Pogoda
- Faculty of Medicine, Medical University of Warsaw, Zwirki i Wigury Street 61, 02-097 Warsaw, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha Street 1B, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
22
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:2020293118. [PMID: 33952696 DOI: 10.1073/pnas.2020293118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.
Collapse
|
24
|
Ding D, Wang C, Chen Z, Xia K, Tang B, Qiu R, Jiang H. Polyglutamine-expanded ataxin3 alter specific gene expressions through changing DNA methylation status in SCA3/MJD. Aging (Albany NY) 2020; 13:3680-3698. [PMID: 33411688 PMCID: PMC7906150 DOI: 10.18632/aging.202331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
DNA methylation has recently been linked to transcriptional dysregulation and neuronal dysfunction in polyglutamine (polyQ) disease. This study aims to determine whether (CAG)n expansion in ATXN3 perturbs DNA methylation status and affects gene expression. We analyzed DNA methylation throughout the genome using reduced representation bisulfite sequencing (RRBS) and confirmed the results using MethylTarget sequencing. Dynamic changes in DNA methylation, transcriptional and translational levels of specific genes were detected using BSP, qRT-PCR and western blot. In total, 135 differentially methylated regions (DMRs) were identified between SCA3/MJD and WT mouse cerebellum. KEGG analysis revealed differentially methylated genes involved in amino acid metabolism, Hedgehog signaling pathway, thyroid cancer, tumorigenesis and other pathways. We focused on DMRs that were directly associated with gene expression. On this basis, we further assessed 7 genes, including 13 DMRs, for DNA methylation validation and gene expression. We found that the methylation status of the DMRs of En1 and Nkx2-1 was negatively associated with their transcriptional and translational levels and that alteration of the DNA methylation status of DMRs and the corresponding transcription occurred before dyskinesia in SCA3/MJD mice. These results revealed novel DNA methylation-regulated genes, En1 and Nkx2-1, which may be useful for understanding the pathogenesis of SCA3/MJD.
Collapse
Affiliation(s)
- Dongxue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Diseases, Changsha, Hunan, P. R. China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Diseases, Changsha, Hunan, P. R. China
| |
Collapse
|
25
|
New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signal 2020; 4:NS20200010. [PMID: 33224521 PMCID: PMC7672267 DOI: 10.1042/ns20200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is a fatal, inherited neurodegenerative disease that causes neuronal death, particularly in medium spiny neurons. HD leads to serious and progressive motor, cognitive and psychiatric symptoms. Its genetic basis is an expansion of the CAG triplet repeat in the HTT gene, leading to extra glutamines in the huntingtin protein. HD is one of nine genetic diseases in this polyglutamine (polyQ) category, that also includes a number of inherited spinocerebellar ataxias (SCAs). Traditionally it has been assumed that HD age of onset and disease progression were solely the outcome of age-dependent exposure of neurons to toxic effects of the inherited mutant huntingtin protein. However, recent genome-wide association studies (GWAS) have revealed significant effects of genetic variants outside of HTT. Surprisingly, these variants turn out to be mostly in genes encoding DNA repair factors, suggesting that at least some disease modulation occurs at the level of the HTT DNA itself. These DNA repair proteins are known from model systems to promote ongoing somatic CAG repeat expansions in tissues affected by HD. Thus, for triplet repeats, some DNA repair proteins seem to abandon their normal genoprotective roles and, instead, drive expansions and accelerate disease. One attractive hypothesis—still to be proven rigorously—is that somatic HTT expansions augment the disease burden of the inherited allele. If so, therapeutic approaches that lower levels of huntingtin protein may need blending with additional therapies that reduce levels of somatic CAG repeat expansions to achieve maximal effect.
Collapse
|
26
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
27
|
Miyazaki H, Yamanaka T, Oyama F, Kino Y, Kurosawa M, Yamada-Kurosawa M, Yamano R, Shimogori T, Hattori N, Nukina N. FACS-array-based cell purification yields a specific transcriptome of striatal medium spiny neurons in a murine Huntington disease model. J Biol Chem 2020; 295:9768-9785. [PMID: 32499373 DOI: 10.1074/jbc.ra120.012983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the Huntingtin gene. Results from previous studies have suggested that transcriptional dysregulation is one of the key mechanisms underlying striatal medium spiny neuron (MSN) degeneration in HD. However, some of the critical genes involved in HD etiology or pathology could be masked in a common expression profiling assay because of contamination with non-MSN cells. To gain insight into the MSN-specific gene expression changes in presymptomatic R6/2 mice, a common HD mouse model, here we used a transgenic fluorescent protein marker of MSNs for purification via FACS before profiling gene expression with gene microarrays and compared the results of this "FACS-array" with those obtained with homogenized striatal samples (STR-array). We identified hundreds of differentially expressed genes (DEGs) and enhanced detection of MSN-specific DEGs by comparing the results of the FACS-array with those of the STR-array. The gene sets obtained included genes ubiquitously expressed in both MSNs and non-MSN cells of the brain and associated with transcriptional regulation and DNA damage responses. We proposed that the comparative gene expression approach using the FACS-array may be useful for uncovering the gene cascades affected in MSNs during HD pathogenesis.
Collapse
Affiliation(s)
- Haruko Miyazaki
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumitaka Oyama
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Yoshihiro Kino
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masaru Kurosawa
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | | | - Risa Yamano
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan .,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.,Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in Neurodegenerative Diseases: The Role of Histone Deacetylases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:11-18. [PMID: 30289079 DOI: 10.2174/1871527317666181004155136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & OBJECTIVE Imbalance in histone acetylation levels and consequently the dysfunction in transcription are associated with a wide variety of neurodegenerative diseases. Histone proteins acetylation and deacetylation is carried out by two opposite acting enzymes, histone acetyltransferases and histone deacetylases (HDACs), respectively. In-vitro and in-vivo animal models of neurodegenerative diseases and post mortem brains of patients have been reported overexpressed level of HDACs. In recent past numerous studies have indicated that HDAC inhibitors (HDACIs) might be a promising class of therapeutic agents for treating these devastating diseases. HDACs being a part of repressive complexes, the outcome of their inhibition has been attributed to enhanced gene expression due to heightened histone acetylation. Beneficial effects of HDACIs has been explored both in preclinical and clinical studies of these diseases. Thus, their screening as future therapeutics for neurodegenerative diseases has been widely explored. CONCLUSION In this review, we focus on the putative role of HDACs in neurodegeneration and further discuss their potential as a new therapeutic avenue for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - K C Sarathlal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
29
|
Gomboeva DE, Bragina EY, Nazarenko MS, Puzyrev VP. The Inverse Comorbidity between Oncological Diseases and Huntington’s Disease: Review of Epidemiological and Biological Evidence. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Louis Sam Titus ASC, Sharma D, Kim MS, D'Mello SR. The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neurosci 2019; 20:65. [PMID: 31883511 PMCID: PMC6935488 DOI: 10.1186/s12868-019-0546-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Histone deacetylase-3 (HDAC3) promotes neurodegeneration in various cell culture and in vivo models of neurodegeneration but the mechanism by which HDAC3 exerts neurotoxicity is not known. HDAC3 is known to be a transcriptional co-repressor. The goal of this study was to identify transcriptional targets of HDAC3 in an attempt to understand how it promotes neurodegeneration. Results We used chromatin immunoprecipitation analysis coupled with deep sequencing (ChIP-Seq) to identify potential targets of HDAC3 in cerebellar granule neurons. One of the genes identified was the activity-dependent and neuroprotective transcription factor, Neuronal PAS Domain Protein 4 (Npas4). We confirmed using ChIP that in healthy neurons HDAC3 associates weakly with the Npas4 promoter, however, this association is robustly increased in neurons primed to die. We find that HDAC3 also associates differentially with the brain-derived neurotrophic factor (Bdnf) gene promoter, with higher association in dying neurons. In contrast, association of HDAC3 with the promoters of other neuroprotective genes, including those encoding c-Fos, FoxP1 and Stat3, was barely detectable in both healthy and dying neurons. Overexpression of HDAC3 leads to a suppression of Npas4 and Bdnf expression in cortical neurons and treatment with RGFP966, a chemical inhibitor of HDAC3, resulted in upregulation of their expression. Expression of HDAC3 also repressed Npas4 and Bdnf promoter activity. Conclusion Our results suggest that Bdnf and Npas4 are transcriptional targets of Hdac3-mediated repression. HDAC3 inhibitors have been shown to protect against behavioral deficits and neuronal loss in mouse models of neurodegeneration and it is possible that these inhibitors work by upregulating neuroprotective genes like Bdnf and Npas4.
Collapse
Affiliation(s)
- Anto Sam Crosslee Louis Sam Titus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Min Soo Kim
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA. .,, Dallas, TX, 75243, USA.
| |
Collapse
|
31
|
Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019; 12:67. [PMID: 31722751 PMCID: PMC6852955 DOI: 10.1186/s13072-019-0313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.
Collapse
Affiliation(s)
- Alexandra V Goodnight
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA
| | - Isaac Kremsky
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Embryonic Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yoon Hee Jung
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - James M Billingsley
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci 2019; 20:ijms20071616. [PMID: 30939743 PMCID: PMC6480157 DOI: 10.3390/ijms20071616] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.
Collapse
|
33
|
Yeshurun S, Hannan AJ. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry 2019. [PMID: 29520039 DOI: 10.1038/s41380-018-0039-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, striking new evidence has demonstrated non-genetic inheritance of acquired traits associated with parental environmental exposures. In particular, this transgenerational modulation of phenotypic traits is of direct relevance to psychiatric disorders, including depression, post-traumatic stress disorder, and other anxiety disorders. Here we review the recent progress in this field, with an emphasis on acquired traits of psychiatric illnesses transmitted epigenetically via the male lineage. We discuss the transgenerational effects of paternal exposure to stress vs. positive stimuli, such as exercise, and discuss their impact on the behavioral, affective and cognitive characteristics of their progeny. Furthermore, we review the recent evidence suggesting that these transgenerational effects are mediated by epigenetic mechanisms, including changes in DNA methylation and small non-coding RNAs in the sperm. We discuss the urgent need for more research exploring transgenerational epigenetic effects in animal models and human populations. These future studies may identify epigenetic mechanisms as potential contributors to the 'missing heritability' observed in genome-wide association studies of psychiatric illnesses and other human disorders. This exciting new field of transgenerational epigenomics will facilitate the development of novel strategies to predict, prevent and treat negative epigenetic consequences on offspring health, and psychiatric disorders in particular.
Collapse
Affiliation(s)
- Shlomo Yeshurun
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
34
|
Rustad SR, Papale LA, Alisch RS. DNA Methylation and Hydroxymethylation and Behavior. Curr Top Behav Neurosci 2019; 42:51-82. [PMID: 31392630 DOI: 10.1007/7854_2019_104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Environmentally sensitive molecular mechanisms in the brain, such as DNA methylation, have become a significant focus of neuroscience research because of mounting evidence indicating that they are critical in response to social situations, stress, threats, and behavior. The recent identification of 5-hydroxymethylcytosine (5hmC), which is enriched in the brain (tenfold over peripheral tissues), raises new questions as to the role of this base in mediating epigenetic effects in the brain. The development of genome-wide methods capable of distinguishing 5-methylcytosine (5mC) from 5hmC has revealed that a growing number of behaviors are linked to independent disruptions of 5mC and 5hmC levels, further emphasizing the unique importance of both of these modifications in the brain. Here, we review the recent links that indicate DNA methylation (both 5mC and 5hmC) is highly dynamic and that perturbations in this modification may contribute to behaviors related to psychiatric disorders and hold clinical relevance.
Collapse
Affiliation(s)
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA. .,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
35
|
Jarred EG, Bildsoe H, Western PS. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs. F1000Res 2018; 7. [PMID: 30613387 PMCID: PMC6305226 DOI: 10.12688/f1000research.15935.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications, including DNA methylation and histone modifications, determine the way DNA is packaged within the nucleus and regulate cell-specific gene expression. The heritability of these modifications provides a memory of cell identity and function. Common dysregulation of epigenetic modifications in cancer has driven substantial interest in the development of epigenetic modifying drugs. Although these drugs have the potential to be highly beneficial for patients, they act systemically and may have “off-target” effects in other cells such as the patients’ sperm or eggs. This review discusses the potential for epigenomic drugs to impact on the germline epigenome and subsequent offspring and aims to foster further examination into the possible effects of these drugs on gametes. Ultimately, the information gained by further research may improve the clinical guidelines for the use of such drugs in patients of reproductive age.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| |
Collapse
|
36
|
Rafehi H, Kaspi A, Ziemann M, Okabe J, Karagiannis TC, El-Osta A. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 2018; 12:991-1003. [PMID: 28886276 DOI: 10.1080/15592294.2017.1371892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Antony Kaspi
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Mark Ziemann
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Jun Okabe
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia
| | - Tom C Karagiannis
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Monash University , Melbourne , Victoria , Australia.,b Department of Pathology, The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine, Nursing and Health Sciences, Department of Diabetes, Monash University , Melbourne , Victoria , Australia.,d Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong , Hong Kong SAR
| |
Collapse
|
37
|
Hiranaka S, Tega Y, Higuchi K, Kurosawa T, Deguchi Y, Arata M, Ito A, Yoshida M, Nagaoka Y, Sumiyoshi T. Design, Synthesis, and Blood-Brain Barrier Transport Study of Pyrilamine Derivatives as Histone Deacetylase Inhibitors. ACS Med Chem Lett 2018; 9:884-888. [PMID: 30258535 DOI: 10.1021/acsmedchemlett.8b00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
We designed and synthesized a pyrilamine derivative 1 as a selective class I HDAC inhibitor that targets pyrilamine-sensitive proton-coupled organic cation antiporter (PYSOCA) at the blood-brain barrier (BBB). Introduction of pyrilamine moiety to benzamide type HDAC inhibitors kept selective class I HDAC inhibitory activity and increased BBB permeability. Our BBB transport study showed that compound 1 is a substrate of PYSOCA. Thus, our findings suggest that the hybrid method of HDAC inhibitor and substrate of PYSOCA such as pyrilamine is useful for development of HDAC inhibitors with increased BBB permeability.
Collapse
Affiliation(s)
- Seiya Hiranaka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| | - Yuma Tega
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kei Higuchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiki Kurosawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiharu Deguchi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Mayumi Arata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi,
Hachioji, Tokyo 192-0392, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
| |
Collapse
|
38
|
Zadel M, Maver A, Kovanda A, Peterlin B. DNA Methylation Profiles in Whole Blood of Huntington's Disease Patients. Front Neurol 2018; 9:655. [PMID: 30158895 PMCID: PMC6104454 DOI: 10.3389/fneur.2018.00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation, are suggested to play a role in the age-of-onset in Huntington's disease (HD) based on studies on patient brains, and cellular and animal models. Methylation is tissue-specific and it is not clear how HD specific methylation in the brain correlates with the blood compartment, which represents a much more clinically accessible sample. Therefore, we explored the presence of HD specific DNA methylation patterns in whole blood on a cohort of HDM and healthy controls from Slovenia. We compared CpG site-specific DNA methylation in whole blood of 11 symptomatic and 9 pre-symptomatic HDM (HDM), and 15 healthy controls, by using bisulfite converted DNA on the Infinium® Human Methylation27 BeadChip microarray (Illumina) covering 27,578 CpG sites and 14,495 genes. Of the examined 14,495 genes, 437 were differentially methylated (p < 0.01) in pre-symptomatic HDM compared to controls, with three genes (CLDN16, DDC, NXT2) retaining statistical significance after the correction for multiple testing (false discovery rate, FDR < 0.05). Comparisons between symptomatic HDM and controls, and the comparison of symptomatic and pre-symptomatic HDM further identified 260 and 198 differentially methylated genes (p < 0.01), respectively, whereas the comparison of all HDM (symptomatic and pre-symptomatic) and healthy controls identified 326 differentially methylated genes (p < 0.01), however, none of these changes retained significance (FDR < 0.05) after the correction for multiple testing. The results of our study suggest that methylation signatures in the blood compartment are not robust enough to prove as valuable biomarkers for predicting HD progression, but recognizable changes in methylation deserve further research.
Collapse
Affiliation(s)
- Maja Zadel
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Community Health Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Kovanda
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Chen Y, Wang D, Zhao Y, Huang B, Cao H, Qi D. p300 promotes differentiation of Th17 cells via positive regulation of the nuclear transcription factor RORγt in acute respiratory distress syndrome. Immunol Lett 2018; 202:8-15. [PMID: 30009847 DOI: 10.1016/j.imlet.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has been the major cause of acute respiratory failure in critical patients and one of the leading causes of death worldwide for several decades. Th17 cells are involved in the occurrence and progression of ARDS. Furthermore, histone acetyltransferase (HAT) p300 is a transcriptional coactivator, and its activity is closely related to cancer and inflammatory diseases. p300 and histone deacetylase 1 (HDAC1) interact with and stabilize the nuclear transcription factor retinoic acid-related orphan receptor gamma t (RORγt) and participate in the regulation of RORγt-mediated IL-17 transcription in T helper 17 (Th17) cell differentiation by acetylation and deacetylation. However, the effect of p300 on RORγt and Th17 cells in ARDS is not well reported. Therefore, we aimed to investigate the clinical features of p300 and its effect on RORγt and Th17 cells in patients with ARDS as well as in lipopolysaccharide-induced acute lung injury (ALI) mouse models. Overexpression of p300 and RORγt mRNA was found in the peripheral blood mononuclear cells from patients with ARDS, especially among non-survivors, compared to that in healthy individuals (P < 0.05). Moreover, the decline of FOXP3 mRNA level correlated with survival and increased RORγt mRNA levels corelated with infection (P < 0.05). Immunohistochemical analysis revealed high p300 and RORγt expression in ALI mouse lung tissues. Inhibitor-mediated knockdown of p300 reduced lung tissue inflammation and lung injury score (P < 0.05). Western blotting and ELISA revealed that p300 inhibitor caused a decrease in the mRNA and protein levels of RORγt as well as interleukin 17 (IL-17) production in ALI mouse lung tissues (P < 0.05). Thus, our findings suggest that p300 may play a key role in ARDS by positively regulating RORγt transcription and is a potential new immunotherapy target for ARDS.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Huang
- Department of General Surgery, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan province, China
| | - Haiquan Cao
- Intensive Care Unit (ICU), The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan province, China
| | - Di Qi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
41
|
Rhodiola rosea Improves Lifespan, Locomotion, and Neurodegeneration in a Drosophila melanogaster Model of Huntington's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6726874. [PMID: 29984244 PMCID: PMC6015705 DOI: 10.1155/2018/6726874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022]
Abstract
Huntington's disease (HD) is a dominant, late-onset disease characterized by choreiform movements, cognitive decline, and personality disturbance. It is caused by a polyglutamine repeat expansion in the Huntington's disease gene encoding for the Huntingtin protein (Htt) which functions as a scaffold for selective macroautophagy. Mutant Htt (mHtt) disrupts vesicle trafficking and prevents autophagosome fusion with lysosomes, thus deregulating autophagy in neuronal cells, leading to cell death. Autophagy has been described as a therapeutic target for HD, owing to the key role Htt plays in the cellular process. Rhodiola rosea, a plant extract used in traditional medicine in Europe and Asia, has been shown to attenuate aging in the fly and other model species. It has also been shown to inhibit the mTOR pathway and induce autophagy in bladder cancer cell lines. We hypothesized that R. rosea, by inducing autophagy, may improve the phenotype of a Huntington's disease model of the fly. Flies expressing HttQ93 which exhibit decreased lifespan, impaired locomotion, and increased neurodegeneration were supplemented with R. rosea extract, and assays testing lifespan, locomotion, and pseudopupil degeneration provided quantitative measures of improvement. Based on our observations, R. rosea may be further evaluated as a potential therapy for Huntington's disease.
Collapse
|
42
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders. Int J Mol Sci 2018; 19:ijms19051456. [PMID: 29757967 PMCID: PMC5983601 DOI: 10.3390/ijms19051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Collapse
|
44
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
45
|
Xia J, Hu H, Xue W, Wang XS, Wu S. The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. J Enzyme Inhib Med Chem 2018; 33:525-535. [PMID: 29464997 PMCID: PMC5978667 DOI: 10.1080/14756366.2018.1437156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) is a potential target for the treatment of human diseases such as cancers, diabetes, chronic inflammation and neurodegenerative diseases. Previously, we proposed a virtual screening (VS) pipeline named “Hypo1_FRED_SAHA-3” for the discovery of HDAC3 inhibitors (HDAC3Is) and had thoroughly validated it by theoretical calculations. In this study, we attempted to explore its practical utility in a large-scale VS campaign. To this end, we used the VS pipeline to hierarchically screen the Specs chemical library. In order to facilitate compound cherry-picking, we then developed a knowledge-based pose filter (PF) by using our in-house quantitative structure activity relationship- (QSAR-) modelling approach and coupled it with FRED and Autodock Vina. Afterward, we purchased and tested 11 diverse compounds for their HDAC3 inhibitory activity in vitro. The bioassay has identified compound 2 (Specs ID: AN-979/41971160) as a HDAC3I (IC50 = 6.1 μM), which proved the efficacy of our workflow. As a medicinal chemistry study, we performed a follow-up substructure search and identified two more hit compounds of the same chemical type, i.e. 2–1 (AQ-390/42122119, IC50 = 1.3 μM) and 2–2 (AN-329/43450111, IC50 = 12.5 μM). Based on the chemical structures and activities, we have demonstrated the essential role of the capping group in maintaining the activity for this class of HDAC3Is. In addition, we tested the hit compounds for their in vitro activities on other HDACs, including HDAC1, HDAC2, HDAC8, HDAC4 and HDAC6. We have identified these compounds are HDAC1/2/3 selective inhibitors, of which compound 2 show the best selectivity profile. Taken together, the present study is an experimental validation and an update to our earlier VS strategy. The identified hits could be used as starting structures for the development of highly potent and selective HDAC3Is.
Collapse
Affiliation(s)
- Jie Xia
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Huabin Hu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Wenjie Xue
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xiang Simon Wang
- b Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, College of Pharmacy , Howard University , Washington, DC , USA
| | - Song Wu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
46
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Abstract
The dominant polyglutamine (polyQ) disorders are a group of progressive and incurable neurodegenerative disorders, which are caused by unstable expanded CAG trinucleotide repeats in the coding regions of their respective causative genes. The most prevalent polyQ disorders worldwide are Huntington’s disease and spinocerebellar ataxia type 3. Epigenetic mechanisms, such as DNA methylation, histone modifications and chromatin remodeling and noncoding RNA regulation, regulate gene expression or genome function. Epigenetic dysregulation has been suggested to play a pivotal role in the pathogenesis of polyQ disorders. Here, we summarize the current knowledge of epigenetic changes present in several representative polyQ disorders and discuss the potentiality of miRNAs as therapeutic targets for the clinic therapy of these disorders.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Maguire G. Amyotrophic lateral sclerosis as a protein level, non-genomic disease: Therapy with S2RM exosome released molecules. World J Stem Cells 2017; 9:187-202. [PMID: 29312526 PMCID: PMC5745587 DOI: 10.4252/wjsc.v9.i11.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that leads to death. No effective treatments are currently available. Based on data from epidemiological, etiological, laboratory, and clinical studies, I offer a new way of thinking about ALS and its treatment. This paper describes a host of extrinsic factors, including the exposome, that disrupt the extracellular matrix and protein function such that a spreading, prion-like disease leads to neurodegeneration in the motor tracts. A treatment regimen is described using the stem cell released molecules from a number of types of adult stem cells to provide tissue dependent molecules that restore homeostasis, including proteostasis, in the ALS patient. Because stem cells themselves as a therapeutic are cumbersome and expensive, and when implanted in a host cause aging of the host tissue and often fail to engraft or remain viable, only the S2RM molecules are used. Rebuilding of the extracellular matrix and repair of the dysfunctional proteins in the ALS patient ensues.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc., La Jolla, CA 92037, United States
| |
Collapse
|
49
|
Lee J, Hwang YJ, Kim Y, Lee MY, Hyeon SJ, Lee S, Kim DH, Jang SJ, Im H, Min SJ, Choo H, Pae AN, Kim DJ, Cho KS, Kowall NW, Ryu H. Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington's disease. Acta Neuropathol 2017; 134:729-748. [PMID: 28593442 DOI: 10.1007/s00401-017-1732-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurological disorder caused by expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. Altered histone modifications and epigenetic mechanisms are closely associated with HD suggesting that transcriptional repression may play a pathogenic role. Epigenetic compounds have significant therapeutic effects in cellular and animal models of HD, but they have not been successful in clinical trials. Herein, we report that dSETDB1/ESET, a histone methyltransferase (HMT), is a mediator of mutant HTT-induced degeneration in a fly HD model. We found that nogalamycin, an anthracycline antibiotic and a chromatin remodeling drug, reduces trimethylated histone H3K9 (H3K9me3) levels and pericentromeric heterochromatin condensation by reducing the expression of Setdb1/Eset. H3K9me3-specific ChIP-on-ChIP analysis identified that the H3K9me3-enriched epigenome signatures of multiple neuronal pathways including Egr1, Fos, Ezh1, and Arc are deregulated in HD transgenic (R6/2) mice. Nogalamycin modulated the expression of the H3K9me3-landscaped epigenome in medium spiny neurons and reduced mutant HTT nuclear inclusion formation. Moreover, nogalamycin slowed neuropathological progression, preserved motor function, and extended the life span of R6/2 mice. Together, our results indicate that modulation of SETDB1/ESET and H3K9me3-dependent heterochromatin plasticity is responsible for the neuroprotective effects of nogalamycin in HD and that small compounds targeting dysfunctional histone modification and epigenetic modification by SETDB1/ESET may be a rational therapeutic strategy in HD.
Collapse
|
50
|
Yamada T, Amann JM, Tanimoto A, Taniguchi H, Shukuya T, Timmers C, Yano S, Shilo K, Carbone DP. Histone Deacetylase Inhibition Enhances the Antitumor Activity of a MEK Inhibitor in Lung Cancer Cells Harboring RAS Mutations. Mol Cancer Ther 2017; 17:17-25. [PMID: 29079711 DOI: 10.1158/1535-7163.mct-17-0146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) can be identified by precise molecular subsets based on genomic alterations that drive tumorigenesis and include mutations in EGFR, KRAS, and various ALK fusions. However, despite effective treatments for EGFR and ALK, promising therapeutics have not been developed for patients with KRAS mutations. It has been reported that one way the RAS-ERK pathway contributes to tumorigenesis is by affecting stability and localization of FOXO3a protein, an important regulator of cell death and the cell cycle. This is through regulation of apoptotic proteins BIM and FASL and cell-cycle regulators p21Cip1 and p27Kip1 We now show that an HDAC inhibitor affects the expression and localization of FOXO proteins and wanted to determine whether the combination of a MEK inhibitor with an HDAC inhibitor would increase the sensitivity of NSCLC with KRAS mutation. Combined treatment with a MEK inhibitor and an HDAC inhibitor showed synergistic effects on cell metabolic activity of RAS-mutated lung cancer cells through activation of FOXOs, with a subsequent increase in BIM and cell-cycle inhibitors. Moreover, in a mouse xenograft model, the combination of belinostat and trametinib significantly decreases tumor formation through FOXOs by increasing BIM and the cell-cycle inhibitors p21Cip1 and p27Kip1 These results demonstrate that control of FOXOs localization and expression is critical in RAS-driven lung cancer cells, suggesting that the dual molecular-targeted therapy for MEK and HDACs may be promising as novel therapeutic strategy in NSCLC with specific populations of RAS mutations. Mol Cancer Ther; 17(1); 17-25. ©2017 AACR.
Collapse
Affiliation(s)
- Tadaaki Yamada
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Joseph M Amann
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takehito Shukuya
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Cynthia Timmers
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Konstantin Shilo
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|