1
|
Selvaratnam L, Willson TM, Schapira M. Structural Chemistry of Helicase Inhibition. J Med Chem 2025; 68:4022-4039. [PMID: 39933052 PMCID: PMC11873931 DOI: 10.1021/acs.jmedchem.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Helicases are essential motor enzymes that couple nucleoside-triphosphate hydrolysis with DNA or RNA strand unwinding. Helicases are integral to replication, transcription, splicing, and translation of the genome, play crucial roles in the proliferation of cancer cells and propagation of viral pathogens, and are implicated in neurodegenerative diseases. Despite their therapeutic potential, drug discovery efforts targeting helicases face significant challenges due to their dynamic enzymatic cycles, the transient nature of their conformational states, and the conservation of their active sites. Analysis of cocrystal structures of inhibitor-helicase complexes revealed four distinct mechanisms of inhibition: allosteric, ATP-competitive, RNA-competitive, and interfacial inhibitors. While these static X-ray structures reveal potential binding pockets that may support the development of selective drugs, the application of advanced techniques such as cryo-EM, single-molecule analysis, and computational modeling will be essential for understanding helicase dynamics and designing effective inhibitors.
Collapse
Affiliation(s)
- Lakshi Selvaratnam
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8 Canada
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
2
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
3
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
6
|
Craig JM, Mills M, Kim HC, Huang JR, Abell S, Mount J, Gundlach J, Neuman K, Laszlo A. Nanopore tweezers measurements of RecQ conformational changes reveal the energy landscape of helicase motion. Nucleic Acids Res 2022; 50:10601-10613. [PMID: 36165957 PMCID: PMC9561376 DOI: 10.1093/nar/gkac837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics & Astronomy, University of Missouri, 701 S College Ave, Physics Building Rm 223, Columbia, MO 65211, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jonathan W Mount
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| |
Collapse
|
7
|
Pitsillou E, Liang J, Hung A, Karagiannis TC. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of potential small molecule inhibitors by in silico modelling. J Mol Graph Model 2022; 114:108193. [PMID: 35462185 PMCID: PMC9014761 DOI: 10.1016/j.jmgm.2022.108193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Although vaccines that provide protection against severe illness from coronavirus disease (COVID-19) have been made available, emerging variant strains of severe acute respiratory syndrome 2 coronavirus 2 (SARS-CoV-2) are of concern. A different research direction involves investigation of antiviral therapeutics. In addition to structural proteins, the SARS-CoV-2 non-structural proteins are of interest and this includes the helicase (nsp13). In this study, an initial screen of 300 ligands was performed to identify potential inhibitors of the SARS-CoV-2 nsp13 examining the nucleoside triphosphatase site (NTPase activity) as the target region. The antiviral activity of polyphenols has been previously reported in the literature and as a result, the phenolic compounds and fatty acids from the OliveNet™ library were utilised. Synthetic compounds with antimicrobial and anti-inflammatory properties were also selected. The structures of the SARS-CoV and MERS-CoV helicases, as well as the human RECQ-like DNA helicase, DHX9 helicase, PcrA helicase, hepatitis C NS3 helicase, and mouse Dna2 nuclease-helicase were used for comparison. As expected, sequence and structural homology between the various species was evident. A number of broad-spectrum and well-known inhibitors interacted with the NTPase active site highlighting the need to potentially identify more specific inhibitors for SARS-CoV-2. Acetylcysteine, clavulanic acid and homovanillic acid were identified as potential lead compounds for the SARS-CoV-2 helicase. Molecular dynamics simulations were performed with the leads bound to the SARS-CoV-2 helicase for 200 ns in triplicate, with favourable binding free energies to the NTPase site. Given their availability, further exploration of their potential inhibitory activity could be considered.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
9
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
RQC helical hairpin in Bloom's syndrome helicase regulates DNA unwinding by dynamically intercepting nascent nucleotides. iScience 2022; 25:103606. [PMID: 35005551 PMCID: PMC8718986 DOI: 10.1016/j.isci.2021.103606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
The RecQ family of helicases are important for maintenance of genomic integrity. Although functions of constructive subdomains of this family of helicases have been extensively studied, the helical hairpin (HH) in the RecQ-C-terminal domain (RQC) has been underappreciated and remains poorly understood. Here by using single-molecule fluorescence resonance energy transfer, we found that HH in the human BLM transiently intercepts different numbers of nucleotides when it is unwinding a double-stranded DNA. Single-site mutations in HH that disrupt hydrogen bonds and/or salt bridges between DNA and HH change the DNA binding conformations and the unwinding features significantly. Our results, together with recent clinical tests that correlate single-site mutations in HH of human BLM with the phenotype of cancer-predisposing syndrome or Bloom's syndrome, implicate pivotal roles of HH in BLM's DNA unwinding activity. Similar mechanisms might also apply to other RecQ family helicases, calling for more attention to the RQC helical hairpin.
Collapse
|
11
|
Abu-Libdeh B, Jhujh SS, Dhar S, Sommers JA, Datta A, Longo GM, Grange LJ, Reynolds JJ, Cooke SL, McNee GS, Hollingworth R, Woodward BL, Ganesh AN, Smerdon SJ, Nicolae CM, Durlacher-Betzer K, Molho-Pessach V, Abu-Libdeh A, Meiner V, Moldovan GL, Roukos V, Harel T, Brosh RM, Stewart GS. RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1. J Clin Invest 2022; 132:147301. [PMID: 35025765 PMCID: PMC8884905 DOI: 10.1172/jci147301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.
Collapse
Affiliation(s)
- Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, Jerusalem, Israel
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Gabriel Mc Longo
- Institute of Molecular Biology, Institute of Molecular Biology, Mainz, Germany
| | - Laura J Grange
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John J Reynolds
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie L Cooke
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gavin S McNee
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert Hollingworth
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Beth L Woodward
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anil N Ganesh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephen J Smerdon
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States of America
| | | | - Vered Molho-Pessach
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, Jerusalem, Israel
| | - Vardiella Meiner
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States of America
| | - Vassilis Roukos
- Institute of Molecular Biology, Institute of Molecular Biology, Mainz, Germany
| | - Tamar Harel
- Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Mukhopadhyay S, Das T, Bose M, Jain CK, Chakraborty M, Mukherjee S, Shikha K, Das AK, Ganguly A. Residues at the interface between zinc binding and winged helix domains of human RECQ1 play a significant role in DNA strand annealing activity. Nucleic Acids Res 2021; 49:11834-11854. [PMID: 34751402 PMCID: PMC8599812 DOI: 10.1093/nar/gkab968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
RECQ1 is the shortest among the five human RecQ helicases comprising of two RecA like domains, a zinc-binding domain and a RecQ C-terminal domain containing the winged-helix (WH). Mutations or deletions on the tip of a β-hairpin located in the WH domain are known to abolish the unwinding activity. Interestingly, the same mutations on the β-hairpin of annealing incompetent RECQ1 mutant (RECQ1T1) have been reported to restore its annealing activity. In an attempt to unravel the strand annealing mechanism, we have crystallized a fragment of RECQ1 encompassing D2–Zn–WH domains harbouring mutations on the β-hairpin. From our crystal structure data and interface analysis, we have demonstrated that an α-helix located in zinc-binding domain potentially interacts with residues of WH domain, which plays a significant role in strand annealing activity. We have shown that deletion of the α-helix or mutation of specific residues on it restores strand annealing activity of annealing deficient constructs of RECQ1. Our results also demonstrate that mutations on the α-helix induce conformational changes and affects DNA stimulated ATP hydrolysis and unwinding activity of RECQ1. Our study, for the first time, provides insight into the conformational requirements of the WH domain for efficient strand annealing by human RECQ1.
Collapse
Affiliation(s)
| | - Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Chetan Kumar Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Mayukh Chakraborty
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Sunandan Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Kumari Shikha
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit K Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
13
|
Liu NN, Song ZY, Guo HL, Yin H, Chen WF, Dai YX, Xin BG, Ai X, Ji L, Wang QM, Hou XM, Dou SX, Rety S, Xi XG. Endogenous Bos taurus RECQL is predominantly monomeric and more active than oligomers. Cell Rep 2021; 36:109688. [PMID: 34496242 DOI: 10.1016/j.celrep.2021.109688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
There is broad consensus that RecQ family helicase is a high-order oligomer that dissociates into a dimer upon ATP binding. This conclusion is based mainly on studies of highly purified recombinant proteins, and the oligomeric states of RecQ helicases in living cells remain unknown. We show here that, in contrast to current models, monomeric RECQL helicase is more abundant than oligomer/dimer forms in living cells. Further characterization of endogenous BtRECQL and isolated monomeric BtRECQL using various approaches demonstrates that both endogenous and recombinant monomeric BtRECQL effectively function as monomers, displaying higher helicase and ATPase activities than dimers and oligomers. Furthermore, monomeric BtRECQL unfolds intramolecular G-quadruplex DNA as efficiently as human RECQL and BLM helicases. These discoveries have implications for understanding endogenous RECQL oligomeric structures and their regulation. It is worth revisiting oligomeric states of the other members of the RecQ family helicases in living cells.
Collapse
Affiliation(s)
- Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ze-Yu Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hu Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ben-Ge Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing-Man Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Scully R, Elango R, Panday A, Willis NA. Recombination and restart at blocked replication forks. Curr Opin Genet Dev 2021; 71:154-162. [PMID: 34464818 DOI: 10.1016/j.gde.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
15
|
Zahn KE, Jensen RB. Polymerase θ Coordinates Multiple Intrinsic Enzymatic Activities during DNA Repair. Genes (Basel) 2021; 12:1310. [PMID: 34573292 PMCID: PMC8470613 DOI: 10.3390/genes12091310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The POLQ gene encodes DNA polymerase θ, a 2590 amino acid protein product harboring DNA-dependent ATPase, template-dependent DNA polymerase, dNTP-dependent endonuclease, and 5'-dRP lyase functions. Polymerase θ participates at an essential step of a DNA double-strand break repair pathway able to join 5'-resected substrates by locating and pairing microhomologies present in 3'-overhanging single-stranded tails, cleaving the extraneous 3'-DNA by dNTP-dependent end-processing, before extending the nascent 3' end from the microhomology annealing site. Metazoans require polymerase θ for full resistance to DNA double-strand break inducing agents but can survive knockout of the POLQ gene. Cancer cells with compromised homologous recombination, or other DNA repair defects, over-utilize end-joining by polymerase θ and often over-express the POLQ gene. This dependency points to polymerase θ as an ideal drug target candidate and multiple drug-development programs are now preparing to enter clinical trials with small-molecule inhibitors. Specific inhibitors of polymerase θ would not only be predicted to treat BRCA-mutant cancers, but could thwart accumulated resistance to current standard-of-care cancer therapies and overcome PARP-inhibitor resistance in patients. This article will discuss synthetic lethal strategies targeting polymerase θ in DNA damage-response-deficient cancers and summarize data, describing molecular structures and enzymatic functions.
Collapse
Affiliation(s)
- Karl E. Zahn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Repare Therapeutics, 7210 Rue Frederick Banting, Montreal, QC H4S 2A1, Canada
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
RecQ helicases in DNA repair and cancer targets. Essays Biochem 2021; 64:819-830. [PMID: 33095241 PMCID: PMC7588665 DOI: 10.1042/ebc20200012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.
Collapse
|
17
|
Genome-Wide Analysis Unveils DNA Helicase RECQ1 as a Regulator of Estrogen Response Pathway in Breast Cancer Cells. Mol Cell Biol 2021; 41:MCB.00515-20. [PMID: 33468559 DOI: 10.1128/mcb.00515-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Susceptibility to breast cancer is significantly increased in individuals with germ line mutations in RECQ1 (also known as RECQL or RECQL1), a gene encoding a DNA helicase essential for genome maintenance. We previously reported that RECQ1 expression predicts clinical outcomes for sporadic breast cancer patients stratified by estrogen receptor (ER) status. Here, we utilized an unbiased integrative genomics approach to delineate a cross talk between RECQ1 and ERα, a known master regulatory transcription factor in breast cancer. We found that expression of ESR1, the gene encoding ERα, is directly activated by RECQ1. More than 35% of RECQ1 binding sites were cobound by ERα genome-wide. Mechanistically, RECQ1 cooperates with FOXA1, the pioneer transcription factor for ERα, to enhance chromatin accessibility at the ESR1 regulatory regions in a helicase activity-dependent manner. In clinical ERα-positive breast cancers treated with endocrine therapy, high RECQ1 and high FOXA1 coexpressing tumors were associated with better survival. Collectively, these results identify RECQ1 as a novel cofactor for ERα and uncover a previously unknown mechanism by which RECQ1 regulates disease-driving gene expression in ER-positive breast cancer cells.
Collapse
|
18
|
Roske JJ, Liu S, Loll B, Neu U, Wahl MC. A skipping rope translocation mechanism in a widespread family of DNA repair helicases. Nucleic Acids Res 2021; 49:504-518. [PMID: 33300032 PMCID: PMC7797055 DOI: 10.1093/nar/gkaa1174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.
Collapse
Affiliation(s)
- Johann J Roske
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany
| | - Ursula Neu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Biochemistry of Viruses, Takustraβe 6, D-14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustraβe 6, D-14195 Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
19
|
Newman JA, Gavard AE, Lieb S, Ravichandran MC, Hauer K, Werni P, Geist L, Böttcher J, Engen JR, Rumpel K, Samwer M, Petronczki M, Gileadi O. Structure of the helicase core of Werner helicase, a key target in microsatellite instability cancers. Life Sci Alliance 2021; 4:e202000795. [PMID: 33199508 PMCID: PMC7671478 DOI: 10.26508/lsa.202000795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517-1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional β-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Katja Hauer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Benedict B, van Bueren MA, van Gemert FP, Lieftink C, Guerrero Llobet S, van Vugt MA, Beijersbergen RL, Te Riele H. The RECQL helicase prevents replication fork collapse during replication stress. Life Sci Alliance 2020; 3:3/10/e202000668. [PMID: 32820027 PMCID: PMC7441523 DOI: 10.26508/lsa.202000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Most tumors lack the G1/S phase checkpoint and are insensitive to antigrowth signals. Loss of G1/S control can severely perturb DNA replication as revealed by slow replication fork progression and frequent replication fork stalling. Cancer cells may thus rely on specific pathways that mitigate the deleterious consequences of replication stress. To identify vulnerabilities of cells suffering from replication stress, we performed an shRNA-based genetic screen. We report that the RECQL helicase is specifically essential in replication stress conditions and protects stalled replication forks against MRE11-dependent double strand break (DSB) formation. In line with these findings, knockdown of RECQL in different cancer cells increased the level of DNA DSBs. Thus, RECQL plays a critical role in sustaining DNA synthesis under conditions of replication stress and as such may represent a target for cancer therapy.
Collapse
Affiliation(s)
- Bente Benedict
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit Ae van Bueren
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank Pa van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Atm van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Debnath S, Sharma S. RECQ1 Helicase in Genomic Stability and Cancer. Genes (Basel) 2020; 11:E622. [PMID: 32517021 PMCID: PMC7348745 DOI: 10.3390/genes11060622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
RECQ1 (also known as RECQL or RECQL1) belongs to the RecQ family of DNA helicases, members of which are linked with rare genetic diseases of cancer predisposition in humans. RECQ1 is implicated in several cellular processes, including DNA repair, cell cycle and growth, telomere maintenance, and transcription. Earlier studies have demonstrated a unique requirement of RECQ1 in ensuring chromosomal stability and suggested its potential involvement in tumorigenesis. Recent reports have suggested that RECQ1 is a potential breast cancer susceptibility gene, and missense mutations in this gene contribute to familial breast cancer development. Here, we provide a framework for understanding how the genetic or functional loss of RECQ1 might contribute to genomic instability and cancer.
Collapse
Affiliation(s)
- Subrata Debnath
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
- National Human Genome Center, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|
22
|
Crystal structure of the winged-helix domain of MCM8. Biochem Biophys Res Commun 2020; 526:993-998. [DOI: 10.1016/j.bbrc.2020.03.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
23
|
Kelso AA, Goodson SD, Sehorn MG. In Vitro Assays for DNA Branch Migration. Methods Mol Biol 2020; 1999:271-284. [PMID: 31127584 DOI: 10.1007/978-1-4939-9500-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homologous recombination is a high-fidelity DNA double-strand break repair pathway that uses a homologous template to repair the break. Recombinases are the central enzymes that facilitate the strand invasion step of homologous recombination, which forms a DNA joint molecule. These DNA joint molecules can be moved through branch migration activity. In this chapter, we describe two assays to determine the branch migration activity and directionality of an enzyme. Monitoring the branch migration activity of an enzyme can provide insight into the roles of these factors in homologous recombination.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC, USA.
- Clemson University School of Health Research, Clemson, SC, USA.
| |
Collapse
|
24
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
25
|
Bagchi D, Manosas M, Zhang W, Manthei KA, Hodeib S, Ducos B, Keck JL, Croquette V. Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Res 2019; 46:8500-8515. [PMID: 30053104 PMCID: PMC6144805 DOI: 10.1093/nar/gky647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a ‘Helicase and RNase D C-terminal’ (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, ‘slow’ and ‘normal’, as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third ‘fast’ unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.
Collapse
Affiliation(s)
- Debjani Bagchi
- Physics Department, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002, India
| | - Maria Manosas
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Weiting Zhang
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Samar Hodeib
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Bertrand Ducos
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Vincent Croquette
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
26
|
Hilz P, Heinrihsone R, Pätzold LA, Qi Q, Trofimovics G, Gailite L, Irmejs A, Gardovskis J, Miklasevics E, Daneberga Z. Allelic variants of breast cancer susceptibility genes PALB2 and RECQL in the Latvian population. Hered Cancer Clin Pract 2019; 17:17. [PMID: 31312277 PMCID: PMC6610821 DOI: 10.1186/s13053-019-0116-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Large-scale case control studies revealed a number of moderate risk - low frequency breast cancer alleles of the PALB2 and RECQL genes. Some of these were reported as founder variants of Central and Eastern Europe. Based on highly similar founder variant spectra of the BRCA1 in Poland and Latvia, we decided to test the frequency of other common variants of moderate breast cancer risk — c.509_510delGA (rs515726124) and c.172_175delTTGT (rs180177143) of the PALB2 gene and c.1667_1667+3delAGTA variant of the RECQL gene in a breast cancer case-control series from Latvia to better understand the role of genes in susceptibility to breast cancer and their clinical significance. Methods The case-control study was performed based on an unselected breast cancer case group of 2480 women and a control group, including 1240 voluntary, to our knowledge unrelated, female donors without reported oncological disease. Results The calculated frequency for c.509_510delGA of the PALB2 gene in the case group is 0.35 and 0.00% in the control group, with respective relative risk (RR) 7.18 (CI 95% 0.37–138.75; p = 0.19). As for the PALB2 c.172_175delTTGT variant, the frequency in the case group of our study is 0.04%. In the control group of our study all individuals were homozygous for the wild-type allele, which lead to calculated RR = 1.50 (CI 95% 0.06–36.83; p-value = 0.80). There were no carriers of the RECQL variant c.1667_1667+3delAGTA identified in our case group and 2 heterozygotes were identified in the control group. The calculated RR = 0.26 (CI 95% 0.01–5.33; p-value = 0.38). Conclusion Results obtained for the PALB2 gene variants are able to supplement evidence on the allele frequency in breast cancer patients from the region of Central and Eastern Europe. Based on our results we cannot confirm the contribution of the RECQL variant c.1667_1667+3delAGTA allele to breast cancer development.
Collapse
Affiliation(s)
- Philip Hilz
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,Present address:Center for Anaesthesiology and Intensive Care Medicine, Martinistreet 52, Building Ost 10, 2.OG, 20246 Hamburg, Germany
| | - Reicela Heinrihsone
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | | | - Qi Qi
- 2Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People's Republic of China
| | - Genadijs Trofimovics
- 3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Linda Gailite
- 4Scientific Laboratory of Molecular Genetics, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Arvids Irmejs
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Janis Gardovskis
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Edvins Miklasevics
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Zanda Daneberga
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| |
Collapse
|
27
|
Griffin WC, Trakselis MA. The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair (Amst) 2019; 76:1-10. [PMID: 30743181 DOI: 10.1016/j.dnarep.2019.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.
Collapse
Affiliation(s)
- Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
28
|
Windgassen TA, Leroux M, Sandler SJ, Keck JL. Function of a strand-separation pin element in the PriA DNA replication restart helicase. J Biol Chem 2018; 294:2801-2814. [PMID: 30593500 DOI: 10.1074/jbc.ra118.006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Indexed: 11/06/2022] Open
Abstract
DNA helicases are motor proteins that couple the chemical energy of nucleoside triphosphate hydrolysis to the mechanical functions required for DNA unwinding. Studies of several helicases have identified strand-separating "pin" structures that are positioned to intercept incoming dsDNA and promote strand separation during helicase translocation. However, pin structures vary among helicases and it remains unclear whether they confer a conserved unwinding mechanism. Here, we tested the biochemical and cellular roles of a putative pin element within the Escherichia coli PriA DNA helicase. PriA orchestrates replication restart in bacteria by unwinding the lagging-strand arm of abandoned DNA replication forks and reloading the replicative helicase with the help of protein partners that combine with PriA to form what is referred to as a primosome complex. Using in vitro protein-DNA cross-linking, we localized the putative pin (a β-hairpin within a zinc-binding domain in PriA) near the ssDNA-dsDNA junction of the lagging strand in a PriA-DNA replication fork complex. Removal of residues at the tip of the β-hairpin eliminated PriA DNA unwinding, interaction with the primosome protein PriB, and cellular function. We isolated a spontaneous intragenic suppressor mutant of the priA β-hairpin deletion mutant in which 22 codons around the deletion site were duplicated. This suppressor variant and an Ala-substituted β-hairpin PriA variant displayed wildtype levels of DNA unwinding and PriB binding in vitro These results suggest essential but sequence nonspecific roles for the PriA pin element and coupling of PriA DNA unwinding to its interaction with PriB.
Collapse
Affiliation(s)
- Tricia A Windgassen
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
29
|
Datta A, Brosh RM. New Insights Into DNA Helicases as Druggable Targets for Cancer Therapy. Front Mol Biosci 2018; 5:59. [PMID: 29998112 PMCID: PMC6028597 DOI: 10.3389/fmolb.2018.00059] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Small molecules that deter the functions of DNA damage response machinery are postulated to be useful for enhancing the DNA damaging effects of chemotherapy or ionizing radiation treatments to combat cancer by impairing the proliferative capacity of rapidly dividing cells that accumulate replicative lesions. Chemically induced or genetic synthetic lethality is a promising area in personalized medicine, but it remains to be optimized. A new target in cancer therapy is DNA unwinding enzymes known as helicases. Helicases play critical roles in all aspects of nucleic acid metabolism. We and others have investigated small molecule targeted inhibition of helicase function by compound screens using biochemical and cell-based approaches. Small molecule-induced trapping of DNA helicases may represent a generalized mechanism exemplified by certain topoisomerase and PARP inhibitors that exert poisonous consequences, especially in rapidly dividing cancer cells. Taking the lead from the broader field of DNA repair inhibitors and new information gleaned from structural and biochemical studies of DNA helicases, we predict that an emerging strategy to identify useful helicase-interacting compounds will be structure-based molecular docking interfaced with a computational approach. Potency, specificity, drug resistance, and bioavailability of helicase inhibitor drugs and targeting such compounds to subcellular compartments where the respective helicases operate must be addressed. Beyond cancer therapy, continued and new developments in this area may lead to the discovery of helicase-interacting compounds that chemically rescue clinically relevant helicase missense mutant proteins or activate the catalytic function of wild-type DNA helicases, which may have novel therapeutic application.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| |
Collapse
|
30
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
31
|
Bogdanova N, Pfeifer K, Schürmann P, Antonenkova N, Siggelkow W, Christiansen H, Hillemanns P, Park-Simon TW, Dörk T. Analysis of a RECQL splicing mutation, c.1667_1667+3delAGTA, in breast cancer patients and controls from Central Europe. Fam Cancer 2017; 16:181-186. [PMID: 27832498 DOI: 10.1007/s10689-016-9944-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RECQL is a DNA helicase required for genomic stability. Two studies have recently identified RECQL as a novel breast cancer susceptibility gene. The most common RECQL mutation, the 4 bp-deletion c.1667_1667+3delAGTA, was five-fold enriched in Polish breast cancer patients, but the exact magnitude of the risk is uncertain. We investigated two hospital-based breast cancer case-control series from Belarus and Germany, respectively, comprising a total of 2596 breast cancer patients and 2132 healthy females. The mutation was found in 9 cases and 6 controls, with an adjusted Odds Ratio 1.23 (95% CI 0.44-3.47; p = 0.69) in the combined analysis. Among the cases, heterozygosity for c.1667_1667+3delAGTA was linked with estrogen-receptor positive breast cancer. There was no significant difference in age at diagnosis between carriers and non-carriers, and only one of the carriers reported a first-degree family history. Meta-analysis with the initial study from Poland suggests an about two-fold increase in risk for this mutation (OR 2.51; 95% CI 1.13-5.57, p = 0.02). Altogether, the data indicate that RECQL* c.1667_1667+3delAGTA is not a high-risk mutation for breast cancer though it could represent a moderate-risk breast cancer susceptibility allele. Further studies will be required to determine the clinical significance of testing for this RECQL mutation.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Katja Pfeifer
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Peter Schürmann
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Natalia Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | | | - Hans Christiansen
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Tjoung-Won Park-Simon
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Newman JA, Aitkenhead H, Savitsky P, Gileadi O. Insights into the RecQ helicase mechanism revealed by the structure of the helicase domain of human RECQL5. Nucleic Acids Res 2017; 45:4231-4243. [PMID: 28100692 PMCID: PMC5397160 DOI: 10.1093/nar/gkw1362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
RecQ helicases are important maintainers of genome integrity with distinct roles in almost every cellular process requiring access to DNA. RECQL5 is one of five human RecQ proteins and is particularly versatile in this regard, forming protein complexes with a diverse set of cellular partners in order to coordinate its helicase activity to various processes including replication, recombination and DNA repair. In this study, we have determined crystal structures of the core helicase domain of RECQL5 both with and without the nucleotide ADP in two distinctly different (‘Open’ and ‘Closed’) conformations. Small angle X-ray scattering studies show that the ‘Open’ form of the protein predominates in solution and we discuss implications of this with regards to the RECQL5 mechanism and conformational changes. We have measured the ATPase, helicase and DNA binding properties of various RECQL5 constructs and variants and discuss the role of these regions and residues in the various RECQL5 activities. Finally, we have performed a systematic comparison of the RECQL5 structures with other RecQ family structures and based on these comparisons we have constructed a model for the mechano-chemical cycle of the common catalytic core of these helicases.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.,Structural Genomics Consortium, State University of Campinas, Campinas SP 13083-886, Brazil
| |
Collapse
|
33
|
Shi J, Chen WF, Zhang B, Fan SH, Ai X, Liu NN, Rety S, Xi XG. A helical bundle in the N-terminal domain of the BLM helicase mediates dimer and potentially hexamer formation. J Biol Chem 2017; 292:5909-5920. [PMID: 28228481 DOI: 10.1074/jbc.m116.761510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
Collapse
Affiliation(s)
- Jing Shi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Zhang
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - San-Hong Fan
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- the Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 Passage du Vercors, 69367 Lyon, France, and
| | - Xu-Guang Xi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China, .,the Laboratoire de Biologie et Pharmacologie Appliquée, ENS de Cachan, Université Paris-Saclay, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
34
|
Mojumdar A, De March M, Marino F, Onesti S. The Human RecQ4 Helicase Contains a Functional RecQ C-terminal Region (RQC) That Is Essential for Activity. J Biol Chem 2016; 292:4176-4184. [PMID: 27998982 DOI: 10.1074/jbc.m116.767954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/18/2016] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential in the maintenance of genome stability. Five paralogues (RecQ1, Bloom, Werner, RecQ4, and RecQ5) are found in human cells, with distinct but overlapping roles. Mutations in human RecQ4 give rise to three distinct genetic disorders (Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes), characterized by genetic instability, growth deficiency, and predisposition to cancer. Previous studies suggested that RecQ4 was unique because it did not seem to contain a RecQ C-terminal region (RQC) found in the other RecQ paralogues; such a region consists of a zinc domain and a winged helix domain and plays an important role in enzyme activity. However, our recent bioinformatic analysis identified in RecQ4 a putative RQC. To experimentally confirm this hypothesis, we report the purification and characterization of the catalytic core of human RecQ4. Inductively coupled plasma-atomic emission spectrometry detected the unusual presence of two zinc clusters within the zinc domain, consistent with the bioinformatic prediction. Analysis of site-directed mutants, targeting key RQC residues (putative zinc ligands and the aromatic residue predicted to be at the tip of the winged helix β-hairpin), showed a decrease in DNA binding, unwinding, and annealing, as expected for a functional RQC domain. Low resolution structural information obtained by small angle X-ray scattering data suggests that RecQ4 interacts with DNA in a manner similar to RecQ1, whereas the winged helix domain may assume alternative conformations, as seen in the bacterial enzymes. These combined results experimentally confirm the presence of a functional RQC domain in human RecQ4.
Collapse
Affiliation(s)
- Aditya Mojumdar
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and.,the Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Matteo De March
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Francesca Marino
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Silvia Onesti
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| |
Collapse
|
35
|
Black SJ, Kashkina E, Kent T, Pomerantz RT. DNA Polymerase θ: A Unique Multifunctional End-Joining Machine. Genes (Basel) 2016; 7:E67. [PMID: 27657134 PMCID: PMC5042397 DOI: 10.3390/genes7090067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases.
Collapse
Affiliation(s)
- Samuel J Black
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Ekaterina Kashkina
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
36
|
Abstract
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Taraswi Banerjee
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| |
Collapse
|
37
|
Sami F, Gary RK, Fang Y, Sharma S. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain. Mutat Res 2016; 790:8-18. [PMID: 27248010 DOI: 10.1016/j.mrfmmm.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/16/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.
Collapse
Affiliation(s)
- Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Ronald K Gary
- Department of Chemistry and Biochemistry, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA.
| |
Collapse
|
38
|
Singh SP, Koc KN, Stodola JL, Galletto R. A Monomer of Pif1 Unwinds Double-Stranded DNA and It Is Regulated by the Nature of the Non-Translocating Strand at the 3'-End. J Mol Biol 2016; 428:1053-1067. [PMID: 26908222 DOI: 10.1016/j.jmb.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
Abstract
Using a DNA polymerase coupled assay and FRET (Förster resonance energy transfer)-based helicase assays, in this work, we show that a monomer of Saccharomyces cerevisiae Pif1 can unwind dsDNA (double-stranded DNA). The helicase activity of a Pif1 monomer is modulated by the nature of the 3'-ssDNA (single-stranded DNA) tail of the substrate and its effect on a Pif1-dependent re-winding activity that is coupled to the opening of dsDNA. We propose that, in addition to the ssDNA site on the protein that interacts with the translocating strand, Pif1 has a second site that binds the 3'-ssDNA of the substrate. Interaction of DNA with this site modulates the degree to which re-winding counteracts unwinding. Depending on the nature of the 3'-tail and the length of the duplex DNA to be unwound, this activity is sufficiently strong to mask the helicase activity of a monomer. In excess Pif1 over the DNA, the Pif1-dependent re-winding of the opened DNA strongly limits unwinding, independent of the 3'-tail. We propose that, in this case, binding of DNA to the second site is precluded and modulation of the Pif1-dependent re-winding activity is largely lost.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
39
|
Zhou X, Ren W, Bharath SR, Tang X, He Y, Chen C, Liu Z, Li D, Song H. Structural and Functional Insights into the Unwinding Mechanism of Bacteroides sp Pif1. Cell Rep 2016; 14:2030-9. [PMID: 26904952 DOI: 10.1016/j.celrep.2016.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/27/2022] Open
Abstract
Pif1 is a conserved SF1B DNA helicase involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. Here, we report the structures of the helicase domain of human Pif1 and Bacteroides sp Pif1 (BaPif1) in complex with ADP-AlF4(-) and two different single-stranded DNAs (ssDNAs). The wedge region equivalent to the β hairpin in other SF1B DNA helicases folds into an extended loop followed by an α helix. The Pif1 signature motif of BaPif1 interacts with the wedge region and a short helix in order to stabilize these ssDNA binding elements, therefore indirectly exerting its functional role. Domain 2B of BaPif1 undergoes a large conformational change upon concomitant binding of ATP and ssDNA, which is critical for Pif1's activities. BaPif1 cocrystallized with a tailed dsDNA and ADP-AlF4(-), resulting in a bound ssDNA bent nearly 90° at the ssDNA/dsDNA junction. The conformational snapshots of BaPif1 provide insights into the mechanism governing the helicase activity of Pif1.
Collapse
Affiliation(s)
- Xianglian Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wendan Ren
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Yang He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Zhou Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Dewang Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Haiwei Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
40
|
Gasiorek M, Schneider HJ. Unwinding DNA and RNA with Synthetic Complexes: On the Way to Artificial Helicases. Chemistry 2015; 21:18328-32. [PMID: 26503404 DOI: 10.1002/chem.201502738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 01/04/2023]
Abstract
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single-stranded nucleic acids than to double-stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis-intercalation with only single strands and not double strands. In this respect, such ligands also mimic single-strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm =50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre-organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm =48 °C), whereas the AT strand remains untouched, and with poly(rA)-poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM.
Collapse
Affiliation(s)
- Martin Gasiorek
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany)
| | - Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany).
| |
Collapse
|
41
|
RECQL5 has unique strand annealing properties relative to the other human RecQ helicase proteins. DNA Repair (Amst) 2015; 37:53-66. [PMID: 26717024 DOI: 10.1016/j.dnarep.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
The RecQ helicases play important roles in genome maintenance and DNA metabolism (replication, recombination, repair, and transcription). Five different homologs are present in humans, three of which are implicated in accelerated aging genetic disorders: Rothmund Thomson (RECQL4), Werner (WRN), and Bloom (BLM) syndromes. While the DNA helicase activities of the 5 human RecQ helicases have been extensively characterized, much less is known about their DNA double strand annealing activities. Strand annealing is an important integral enzymatic activity in DNA metabolism, including DNA repair. Here, we have characterized the strand annealing activities of all five human RecQ helicase proteins and compared them. Interestingly, the relative strand annealing activities of the five RecQ proteins are not directly (inversely) related to their helicase activities. RECQL5 possesses relatively strong annealing activity on long or small duplexed substrates compared to the other RecQs. Additionally, the strand annealing activity of RECQL5 is not inhibited by the presence of ATP, unlike the other RecQs. We also show that RECQL5 efficiently catalyzes annealing of RNA to DNA in vitro in the presence or absence of ATP, revealing a possible new function for RECQL5. Additionally, we investigate how different known RecQ interacting proteins, RPA, Ku, FEN1 and RAD51, regulate their strand annealing activity. Collectively, we find that the human RecQ proteins possess differential DNA double strand annealing activities and we speculate on their individual roles in DNA repair. This insight is important in view of the many cellular DNA metabolic actions of the RecQ proteins and elucidates their unique functions in the cell.
Collapse
|
42
|
Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. Structure of the Helicase Domain of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining Pathway. Structure 2015; 23:2319-2330. [PMID: 26636256 PMCID: PMC4671958 DOI: 10.1016/j.str.2015.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
DNA polymerase theta (Polθ) has been identified as a crucial alternative non-homologous end-joining factor in mammalian cells. Polθ is upregulated in a range of cancer cell types defective in homologous recombination, and knockdown has been shown to inhibit cell survival in a subset of these, making it an attractive target for cancer treatment. We present crystal structures of the helicase domain of human Polθ in the presence and absence of bound nucleotides, and a characterization of its DNA-binding and DNA-stimulated ATPase activities. Comparisons with related helicases from the Hel308 family identify several unique features. Polθ exists as a tetramer both in the crystals and in solution. We propose a model for DNA binding to the Polθ helicase domain in the context of the Polθ tetramer, which suggests a role for the helicase domain in strand annealing of DNA templates for subsequent processing by the polymerase domain.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher D O Cooper
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
43
|
Catalytic strand separation by RECQ1 is required for RPA-mediated response to replication stress. Curr Biol 2015; 25:2830-2838. [PMID: 26455304 DOI: 10.1016/j.cub.2015.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/19/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
Three (BLM, WRN, and RECQ4) of the five human RecQ helicases are linked to genetic disorders characterized by genomic instability, cancer, and accelerated aging [1]. RECQ1, the first human RecQ helicase discovered [2-4] and the most abundant [5], was recently implicated in breast cancer [6, 7]. RECQ1 is an ATP-dependent DNA-unwinding enzyme (helicase) [8, 9] with roles in replication [10-12] and DNA repair [13-16]. RECQ1 is highly expressed in various tumors and cancer cell lines (for review, see [17]), and its suppression reduces cancer cell proliferation [14], suggesting a target for anti-cancer drugs. RECQ1's assembly state plays a critical role in modulating its helicase, branch migration (BM), or strand annealing [18, 19]. The crystal structure of truncated RECQ1 [20, 21] resembles that of E. coli RecQ [22] with two RecA-like domains, a RecQ-specific zinc-binding domain and a winged-helix domain, the latter implicated in DNA strand separation and oligomer formation. In addition, a conserved aromatic loop (AL) is important for DNA unwinding by bacterial RecQ [23, 24] and truncated RECQ1 helicases [21]. To better understand the roles of RECQ1, two AL mutants (W227A and F231A) in full-length RECQ1 were characterized biochemically and genetically. The RECQ1 mutants were defective in helicase or BM but retained DNA binding, oligomerization, ATPase, and strand annealing. RECQ1-depleted HeLa cells expressing either AL mutant displayed reduced replication tract length, elevated dormant origin firing, and increased double-strand breaks that could be suppressed by exogenously expressed replication protein A (RPA). Thus, RECQ1 governs RPA's availability in order to maintain normal replication dynamics, suppress DNA damage, and preserve genome homeostasis.
Collapse
|
44
|
Newman JA, Savitsky P, Allerston CK, Bizard AH, Özer Ö, Sarlós K, Liu Y, Pardon E, Steyaert J, Hickson ID, Gileadi O. Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes. Nucleic Acids Res 2015; 43:5221-35. [PMID: 25901030 PMCID: PMC4446433 DOI: 10.1093/nar/gkv373] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Bloom's syndrome helicase (BLM) is a member of the RecQ family of DNA helicases, which play key roles in the maintenance of genome integrity in all organism groups. We describe crystal structures of the BLM helicase domain in complex with DNA and with an antibody fragment, as well as SAXS and domain association studies in solution. We show an unexpected nucleotide-dependent interaction of the core helicase domain with the conserved, poorly characterized HRDC domain. The BLM–DNA complex shows an unusual base-flipping mechanism with unique positioning of the DNA duplex relative to the helicase core domains. Comparison with other crystal structures of RecQ helicases permits the definition of structural transitions underlying ATP-driven helicase action, and the identification of a nucleotide-regulated tunnel that may play a role in interactions with complex DNA substrates.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Charles K Allerston
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Özgün Özer
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 , 1050 Brussels, Belgium Structural Biology Research Center, VIB, Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2 , 1050 Brussels, Belgium Structural Biology Research Center, VIB, Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|