1
|
Kanagal-Shamanna R, Puiggros A, Granada I, Raca G, Rack K, Mallo M, Dewaele B, Smith AC, Akkari Y, Levy B, Hasserjian RP, Cisneros A, Salido M, Garcia-Manero G, Yang H, Iqbal MA, Kolhe R, Solé F, Espinet B. Integration of Optical Genome Mapping in the Cytogenomic and Molecular Work-Up of Hematological Malignancies: Expert Recommendations From the International Consortium for Optical Genome Mapping. Am J Hematol 2025; 100:1029-1048. [PMID: 40304265 DOI: 10.1002/ajh.27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025]
Abstract
The latest updates to the classification of hematolymphoid malignancies using the World Health Organization (WHO, 5th ed.) and ICC (International Consensus Classification) criteria highlight the critical need for comprehensive and precise cytogenomic data for diagnosis, prognostication, and treatment. This presents significant challenges for clinical laboratories, requiring a complex workflow using multiple assays to detect different types of structural chromosomal variants (copy number changes, fusions, inversions) across the entire genome. Optical genome mapping (OGM) is an advanced cytogenomic tool for genome-wide detection of structural chromosomal alterations at the gene/exon level. Studies demonstrate that OGM facilitates the identification of novel cytogenomic biomarkers, improves risk stratification, and expands therapeutic targets and personalized treatment strategies. OGM is easy to implement and highly accurate in detecting structural variants (SVs) across various diagnostic entities. Consequently, many centers are integrating OGM into the clinical cytogenetic workflow for hematological malignancies. However, systemic clinical adoption has remained limited due to the lack of expert recommendations on clinical indications, testing algorithms, and result interpretation. To address this, experts from the International Consortium for OGM and relevant multidisciplinary fields developed recommendations for the integration of OGM as a standard-of-care cytogenetic assay for the diagnostic workflow in various clinical settings. These recommendations standardize the use of OGM across laboratories, ensure high-quality cytogenetic data, guide clinical trial design and development, and provide a basis for updates to diagnostic and classification models.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Isabel Granada
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català D'oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mar Mallo
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Haematological Malignancies, Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Adam C Smith
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Advanced Diagnostics Platform, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Adela Cisneros
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català D'oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Guillermo Garcia-Manero
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - M Anwar Iqbal
- DNA Microarray CGH Laboratory, URMC Central Laboratory, University of Rochester Medical Center, West Henrietta, New York, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Francesc Solé
- MDS Research Group, Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Mao R, Cai Z, Wang T, Li Y, Tian S, Li D, Li P. Comparative study of the three-dimensional genomes of granulosa cells in germinal vesicle and metaphase II follicles. Front Genet 2024; 15:1480153. [PMID: 39634272 PMCID: PMC11615058 DOI: 10.3389/fgene.2024.1480153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Follicle development is a critical process in the female reproductive system, with significant implications for fertility and reproductive health. Germinal vesicle (GV) oocytes are primary oocytes that are arrested in the dictyate stage, also known as the diplotene stage of meiotic prophase I. Metaphase II (MII) is the stage at which the oocyte is typically retrieved for assisted reproductive technologies such as in vitro fertilization (IVF). The granulosa cells play a pivotal role in follicle development processes. 3D chromatin organization is a fundamental aspect of cellular biology that has significant implications for gene regulation and cellular function. Methods In this study, we investigated 3D chromatin organization in granulosacells from GV and MII follicles, which is essential for understanding the regulatory mechanisms governing oocyte development. Results The results revealed distinct compartmentalization patterns,including stable genomic regions and transitions during oocyte maturation. Notably, there was a significant shift in functional gene activation, particularly in processes related to hormone metabolic pathways. Furthermore, alterations in topologically associating domains (TADs) were observed, with differential expression observed in genes that are involved in crucial biological processes. The analysis also identified a subset of genes with altered promoter-enhancer interactions (PEIs), reflecting a regulatory shift in gene expression related to reproductive processes. Discussion These findings provide valuable insights into 3D genome organization in granulosa cells with implications for reproductive health and the development of assisted reproductive technologies. Understanding spatial genome organization at different stages of follicular development may help realize novel strategies for enhancing success rates in assisted reproductive technologies.
Collapse
Affiliation(s)
- Rurong Mao
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi’nan Women’s and Children’s Hospital, Chengdu, China
| | - Zhongkun Cai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yan Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shilin Tian
- Global Product Center, Novogene Bioinformatics Institute, Beijing, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi’nan Women’s and Children’s Hospital, Chengdu, China
- Assisted Reproductive Center, Yunnan Jinxin Jiuzhou Hospital, Kunming, Yunnan, China
| |
Collapse
|
3
|
Noh C, Kang Y, Heo S, Kim T, Kim H, Chang J, Sundharbaabu PR, Shim S, Lim K, Lee JH, Jo K. Scanning Electron Microscopy Imaging of Large DNA Molecules Using a Metal-Free Electro-Stain Composed of DNA-Binding Proteins and Synthetic Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309702. [PMID: 38704672 PMCID: PMC11267313 DOI: 10.1002/advs.202309702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Indexed: 05/06/2024]
Abstract
This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM. The resulting DNA images exhibit a thickness of 15.0±4.0 nm. As SEM is the primary platform, it integrates seamlessly with various chemically functionalized large surfaces with the aid of microfluidic devices. The approach allows high-resolution imaging of various DNA structures including linear, circular, single-stranded DNA and RNA, originating from nuclear and mitochondrial genomes. Furthermore, quantum dots are successfully visualized as bright labels that are sequence-specifically incorporated into DNA molecules, which highlights the potential for SEM-based optical DNA mapping. In conclusion, DNA imaging using SEM with the novel electro-stain offers electron microscopic resolution with the ease of optical microscopy.
Collapse
Affiliation(s)
- Chanyoung Noh
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Yoonjung Kang
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Sujung Heo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Taesoo Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Hayeon Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Junhyuck Chang
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Priyannth Ramasami Sundharbaabu
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Sanghee Shim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Kwang‐il Lim
- Department of Chemical and Biological EngineeringSookmyung Women's UniversitySeoul04312South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Kyubong Jo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| |
Collapse
|
4
|
Calle-Casteñeda S, Winden E, Vasquez-Echeverri A, Schickling M, Browning E, Hernandez Ortiz JP, Schwartz DC. 'Gel-Stacks' gently confine or reversibly immobilize arrays of single DNA molecules for manipulation and study. Biotechniques 2024; 76:285-289. [PMID: 38655877 DOI: 10.2144/btn-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Large DNA molecules (>20 kb) are difficult analytes prone to breakage during serial manipulations and cannot be 'rescued' as full-length amplicons. Accordingly, to present, modify and analyze arrays of large, single DNA molecules, we created an easily realizable approach offering gentle confinement conditions or immobilization via spermidine condensation for controlled delivery of reagents that support live imaging by epifluorescence microscopy termed 'Gel-Stacks.' Molecules are locally confined between two hydrogel surfaces without covalent tethering to support time-lapse imaging and multistep workflows that accommodate large DNA molecules. With a thin polyacrylamide gel layer covalently bound to a glass surface as the base and swappable, reagent-infused, agarose slabs on top, DNA molecules are stably presented for imaging during reagent delivery by passive diffusion.
Collapse
Affiliation(s)
- Susana Calle-Casteñeda
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eamon Winden
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alejandro Vasquez-Echeverri
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew Schickling
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Evelyn Browning
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan Pablo Hernandez Ortiz
- GHI One Health Colombia & One Health Genomic Laboratory, Universidad Nacional de Colombia - Medellín, Medellín, 050034, Colombia
- Departamento de Materiales y Nanotecnología, Universidad Nacional de Colombia - Medellín, Medellín, 050034, Colombia
| | - David C Schwartz
- Laboratory for Molecular & Computational Genomics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Alamin M, Humaira Sultana M, Babarinde IA, Azad AKM, Moni MA, Xu H. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Brief Bioinform 2024; 25:bbae230. [PMID: 38739758 PMCID: PMC11089419 DOI: 10.1093/bib/bbae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Md Alamin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | | | - Isaac Adeyemi Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Ye JC, Tang G. Optical Genome Mapping: A Machine-Based Platform in Cytogenomics. Methods Mol Biol 2024; 2825:113-124. [PMID: 38913305 DOI: 10.1007/978-1-0716-3946-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optical genome mapping (OGM) has generated excitement following decades of research and development. Now, commercially available technical platforms have been used to compare various other cytogenetic and cytogenomic technologies, including karyotype, microarrays, and DNA sequencing, with impressive results. In this chapter, using OGM as a case study, we advocate for a new trend in future cytogenomics, emphasizing the power of machine automation to deliver higher-quality cytogenomic data. By briefly discussing OGM, along with its major advantages and limitations, we underscore the importance of karyotype-based genomic research, from both a theoretical framework and a new technology perspective. We also call for the encouragement of further technological platform development for the future of cytogenetics and cytogenomics.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Xie M, Xue J, Zhang Y, Zhou Y, Yu Q, Li H, Li Q. Combination of trio-based whole exome sequencing and optical genome mapping reveals a cryptic balanced translocation that causes unbalanced chromosomal rearrangements in a family with multiple anomalies. Front Genet 2023; 14:1248544. [PMID: 37745854 PMCID: PMC10512417 DOI: 10.3389/fgene.2023.1248544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Balanced translocation (BT) carriers can produce imbalanced gametes and experience recurrent spontaneous abortions (RSAs) and even give birth to a child with complex chromosomal disorders. Here, we report a cryptic BT, t(5; 6) (p15.31; p25.1), in the proband's grandmother, which caused unbalanced chromosomal rearrangements and various anomalies in the two subsequent generations. We also provide a thorough overview of the application of optical genome mapping (OGM) to identify chromosomal structural variants (SVs). Methods: Trio-based whole exome sequencing (Trio-WES) was conducted to explore the genetic basis of the phenotype of the proband and her mother. High-resolution karyotype analysis and OGM detection were performed on the proband's grandparents to trace the origin of the unbalanced rearrangements between chromosomes 5 and 6. A PubMed search was conducted with the following keywords: "OGM" and "SVs." Then, relevant studies were collected and systematically reviewed. Results: The proband and her mother presented with various anomalies, whereas the grandmother was healthy but had a history of four abnormal pregnancies. Trio-WES revealed a heterozygous duplication on the terminal region of chromosome 5p and a heterozygous deletion on the proximal end of chromosome 6p in the proband and her mother. High-resolution karyotype analysis revealed no aberrant karyotypes in either grandparent, whereas OGM detection revealed a cryptic BT, t(5; 6)(p15.31; p25.1), in the proband's grandmother. An overwhelming majority of research publications have verified the clinical utility of OGM in detecting SVs. Conclusion: The results of this study revealed that the unbalanced chromosomal rearrangements and many anomalies observed in multiple members of the family were attributable to the cryptic BT carried by the proband's grandmother. This study supports that OGM has a unique advantage for detecting cryptic BTs, and can be used as a first-tier genetic test for the etiological diagnosis of infertility, RSAs, and other complex genetic disorders.
Collapse
Affiliation(s)
- Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Yuxin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Ying Zhou
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qi Yu
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qiong Li
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Coccaro N, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Minervini CF, Minervini A, Conserva MR, Redavid I, Parciante E, Macchia MG, Specchia G, Musto P, Albano F. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. Diagnostics (Basel) 2023; 13:diagnostics13111841. [PMID: 37296693 DOI: 10.3390/diagnostics13111841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Giovanna Macchia
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
9
|
Rau S, Huynh T, Larsen A, Kounovsky-Shafer KL. Concentration of lambda concatemers using a 3D printed device. Electrophoresis 2023; 44:744-751. [PMID: 36799437 PMCID: PMC10121831 DOI: 10.1002/elps.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Identifying significant variations in genomes can be cumbersome, as the variations span a multitude of base pairs and can make genome assembly difficult. However, large DNA molecules that span the variation aid in assembly. Due to the DNA molecule's large size, routine molecular biology techniques can break DNA. Therefore, a method is required to concentrate large DNA. A bis-acrylamide roadblock was cured in a proof-of-principle 3D printed device to concentrate DNA at the interface between the roadblock and solution. Lambda concatemer DNA was stained with YOYO-1 and loaded into the 3D printed device. A dynamic range of voltages and acrylamide concentrations were tested to determine how much DNA was concentrated and recovered. The fluorescence of the original solution and the concentrated solution was measured, the recovery was 37% of the original sample, and the volume decreased by a factor of 3 of the original volume.
Collapse
Affiliation(s)
- Samantha Rau
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | - Thi Huynh
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | - Alex Larsen
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | | |
Collapse
|
10
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
12
|
Espejo Valle-Inclan J, Besselink NJ, de Bruijn E, Cameron DL, Ebler J, Kutzera J, van Lieshout S, Marschall T, Nelen M, Priestley P, Renkens I, Roemer MG, van Roosmalen MJ, Wenger AM, Ylstra B, Fijneman RJ, Kloosterman WP, Cuppen E. A multi-platform reference for somatic structural variation detection. CELL GENOMICS 2022; 2:100139. [PMID: 36778136 PMCID: PMC9903816 DOI: 10.1016/j.xgen.2022.100139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/06/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.
Collapse
Affiliation(s)
| | - Nicolle J.M. Besselink
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | | | - Daniel L. Cameron
- Hartwig Medical Foundation, Amsterdam, the Netherlands,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joachim Kutzera
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | | | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Nelen
- Department of Human Genetics, Radboud UMC, Nijmegen, the Netherlands
| | | | - Ivo Renkens
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Margaretha G.M. Roemer
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Bauke Ylstra
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Remond J.A. Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wigard P. Kloosterman
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands,Corresponding author
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands,Hartwig Medical Foundation, Amsterdam, the Netherlands,Corresponding author
| |
Collapse
|
13
|
Akkari YM, Baughn LB, Dubuc AM, Smith AC, Mallo M, Dal Cin P, Diez Campelo M, Gallego MS, Granada Font I, Haase DT, Schlegelberger B, Slavutsky I, Mecucci C, Levine RL, Hasserjian RP, Solé F, Levy B, Xu X. Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood 2022; 139:2273-2284. [PMID: 35167654 PMCID: PMC9710485 DOI: 10.1182/blood.2021014309] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.
Collapse
Affiliation(s)
- Yassmine M.N. Akkari
- Departments of Cytogenetics and Molecular Pathology, Legacy Health, Portland, OR
| | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Adrian M. Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Adam C. Smith
- Laboratory Medicine Program, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Mar Mallo
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Maria Diez Campelo
- Hematology Department University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Marta S. Gallego
- Laboratory of Cytogenetics and Molecular Cytogenetics, Department of Clinical Pathology, Italian Hospital, Buenos Aires, Argentina
| | - Isabel Granada Font
- Hematology Laboratory, Germans Trias i Pujol University Hospital–Catalan Institute of Oncology, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Detlef T. Haase
- Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Irma Slavutsky
- Laboratory Genetics of Lymphoid Malignancies, Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Cristina Mecucci
- Laboratory of Cytogenetics and Molecular Medicine, Hematology University of Perugia, Perugia, Italy
| | - Ross L. Levine
- Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Francesc Solé
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Brynn Levy
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Kakoo A, Al-Attar M, Rasheed T. Exonic variants in multiple myeloma patients associated with relapsed/ refractory and response to bortezomib regimens. Saudi J Biol Sci 2022; 29:610-614. [PMID: 35002457 PMCID: PMC8716956 DOI: 10.1016/j.sjbs.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Novel treatment in multiple myeloma represented by proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies have produced a deep response. However, relapses are possible, and all classes of drugs are refractory to patients. Next-generation sequencing has improved our understanding of the multiple myeloma genome related to drug resistance and has discovered many genomic variants. Therefore, this study was conducted to investigate new variants associated with drug resistance in MM patients who relapsed and refractory to bortezomib regimen and daratumumab treatment using next-generation sequencing for whole-exome sequencing. Peripheral blood samples were collected in EDTA tubes from six patients; four were in relapsed and refractory to bortezomib regimens and daratumumab; two patients responded to bortezomib regimens. Whole-exome sequencing was performed by the MGI-DNBSEQ-G400 instrument. We identified 21 variants in multiple myeloma patients. Seventeen variants were found in relapsed and refractory multiple myeloma in 11 genes (GNAQ, PMS1, CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, STK11 and ZFHX3). And four variants were identified in two patients with response to bortezomib regimens in 4 genes (RAF1, CREB1, ZFHX3 and INSR). We have observed several genetic variants in many genes that may have been associated with the poor prognosis and poor response to treatment in these patients. These values should be further confirmed in large sample studies using the RNA-seq technique to identify genome expression.
Collapse
Key Words
- BCL-2, B-cell lymphoma 2
- BWA, Burrows-Wheeler Aligner
- GATK, Genome Analysis Toolkit
- IGV, Integrative Genomic Viewer
- MAPK, mitogen-activated protein
- MCL-1, myeloid cell leukaemia-1
- MM, multiple myeloma
- MMR, mismatch repair
- Multiple myeloma
- M−CSF, macrophage colony-stimulating factor
- NF-кB, nuclear factor kappa B
- NGS, Next-generation sequence
- Next-generation sequencing
- RANKL, receptor activator of nuclear factors-кB ligand
- RTKs, tyrosine kinases receptors
- SNP, single nucleotide polymorphism
- VEGF-C, vascular endothelial growth factors receptors
- VUS, variant unknown significant
- WES, whole exome sequence
- drug resistance
Collapse
Affiliation(s)
- Ashraf Kakoo
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Mustafa Al-Attar
- Department- College of Science, Salahaddin University, Erbil, Iraq
| | - Taban Rasheed
- Department- College of Science, Salahaddin University, Erbil, Iraq
| |
Collapse
|
15
|
Kriegova E, Fillerova R, Minarik J, Savara J, Manakova J, Petrackova A, Dihel M, Balcarkova J, Krhovska P, Pika T, Gajdos P, Behalek M, Vasinek M, Papajik T. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities. Sci Rep 2021; 11:14671. [PMID: 34282158 PMCID: PMC8289962 DOI: 10.1038/s41598-021-93835-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp–50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.
Collapse
Affiliation(s)
- Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.
| | - Regina Fillerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.,Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Jirina Manakova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Martin Dihel
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jana Balcarkova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petra Krhovska
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomas Pika
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Marek Behalek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Michal Vasinek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
16
|
Navigating the Role of CD1d/Invariant Natural Killer T-cell/Glycolipid Immune Axis in Multiple Myeloma Evolution: Therapeutic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:358-365. [PMID: 32234294 DOI: 10.1016/j.clml.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The immunotherapeutic approach for MM therapy is evolving. The Cd1d/invariant natural killer T-cell/glycolipid immune axis belongs to the innate immunity, and we have highlighted role in myeloma pathogenesis in the present study. The recent development of the chimeric antigen receptor (CAR19)-invariant natural killer T-cells resulted in our renewed interest in this immune system and offer new perspectives for future anti-MM immunotherapies.
Collapse
|
17
|
Li Y, Tao T, Du L, Zhu X. Three-dimensional genome: developmental technologies and applications in precision medicine. J Hum Genet 2020; 65:497-511. [PMID: 32152365 DOI: 10.1038/s10038-020-0737-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
In the 20th century, our familiar structure of DNA was the double helix. Due to technical limitations, we do not have a good way to understand the finer structure of the genome, let alone its transcriptional regulation. Until the advent of 3C technologies, we were no longer blind to this one. Three-dimensional (3D) genomics is a new subject, which mainly studies the 3D structure and transcriptional regulation of eukaryotic genomes. Now, this field mainly has Hi-C series and CHIA-PET series technologies. Through 3D genomics, we can understand the basic structure of DNA, understand the growth and development of organisms and the occurrence of diseases, so as to promote human medical and health undertakings. The review introduces the main research techniques of 3D genomics and their characteristics, the latest development of 3D genome structure, the relationship between diseases and 3D genome structure, the applications of 3D genome in precision medicine, and the development of the 4D nucleome project.
Collapse
Affiliation(s)
- Yingqi Li
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Xiao Zhu
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
18
|
Müller V, Dvirnas A, Andersson J, Singh V, Kk S, Johansson P, Ebenstein Y, Ambjörnsson T, Westerlund F. Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Res 2019; 47:e89. [PMID: 31165870 PMCID: PMC6735870 DOI: 10.1093/nar/gkz489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 01/24/2023] Open
Abstract
Optical DNA mapping (ODM) allows visualization of long-range sequence information along single DNA molecules. The data can for example be used for detecting long range structural variations, for aiding DNA sequence assembly of complex genomes and for mapping epigenetic marks and DNA damage across the genome. ODM traditionally utilizes sequence specific marks based on nicking enzymes, combined with a DNA stain, YOYO-1, for detection of the DNA contour. Here we use a competitive binding approach, based on YOYO-1 and netropsin, which highlights the contour of the DNA molecules, while simultaneously creating a continuous sequence specific pattern, based on the AT/GC variation along the detected molecule. We demonstrate and validate competitive-binding-based ODM using bacterial artificial chromosomes (BACs) derived from the human genome and then turn to DNA extracted from white blood cells. We generalize our findings with in-silico simulations that show that we can map a vast majority of the human genome. Finally, we demonstrate the possibility of combining competitive binding with enzymatic labeling by mapping DNA damage sites induced by the cytotoxic drug etoposide to the human genome. Overall, we demonstrate that competitive-binding-based ODM has the potential to be used both as a standalone assay for studies of the human genome, as well as in combination with enzymatic approaches, some of which are already commercialized.
Collapse
Affiliation(s)
- Vilhelm Müller
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Albertas Dvirnas
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - John Andersson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sriram Kk
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pegah Johansson
- Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Shin E, Kim W, Lee S, Bae J, Kim S, Ko W, Seo HS, Lim S, Lee HS, Jo K. Truncated TALE-FP as DNA Staining Dye in a High-salt Buffer. Sci Rep 2019; 9:17197. [PMID: 31748571 PMCID: PMC6868158 DOI: 10.1038/s41598-019-53722-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/05/2019] [Indexed: 01/19/2023] Open
Abstract
Large DNA molecules are a promising platform for in vitro single-molecule biochemical analysis to investigate DNA-protein interactions by fluorescence microscopy. For many studies, intercalating fluorescent dyes have been primary DNA staining reagents, but they often cause photo-induced DNA breakage as well as structural deformation. As a solution, we previously developed several fluorescent-protein DNA-binding peptides or proteins (FP-DBP) for reversibly staining DNA molecules without structural deformation or photo-induced damage. However, they cannot stain DNA in a condition similar to a physiological salt concentration that most biochemical reactions require. Given these concerns, here we developed a salt-tolerant FP-DBP: truncated transcription activator-like effector (tTALE-FP), which can stain DNA up to 100 mM NaCl. Moreover, we found an interesting phenomenon that the tTALE-FP stained DNA evenly in 1 × TE buffer but showed AT-rich specific patterns from 40 mM to 100 mM NaCl. Using an assay based on fluorescence resonance energy transfer, we demonstrated that this binding pattern is caused by a higher DNA binding affinity of tTALE-FP for AT-rich compared to GC-rich regions. Finally, we used tTALE-FP in a single molecule fluorescence assay to monitor real-time restriction enzyme digestion of single DNA molecules. Altogether, our results demonstrate that this protein can provide a useful alternative as a DNA stain over intercalators.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Woojung Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Sanggil Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Wooseok Ko
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Hyun Soo Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| |
Collapse
|
20
|
Lee S, Kawamoto Y, Vaijayanthi T, Park J, Bae J, Kim-Ha J, Sugiyama H, Jo K. TAMRA-polypyrrole for A/T sequence visualization on DNA molecules. Nucleic Acids Res 2019; 46:e108. [PMID: 29931115 PMCID: PMC6182132 DOI: 10.1093/nar/gky531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Fluorophore-linked, sequence-specific DNA binding reagents can visualize sequence information on a large DNA molecule. In this paper, we synthesized newly designed TAMRA-linked polypyrrole to visualize adenine and thymine base pairs. A fluorescent image of the stained DNA molecule generates an intensity profile based on A/T frequency, revealing a characteristic sequence composition pattern. Computer-aided comparison of this intensity pattern with the genome sequence allowed us to determine the DNA sequence on a visualized DNA molecule from possible intensity profile pattern candidates for a given genome. Moreover, TAMRA-polypyrrole offers robust advantages for single DNA molecule detection: no fluorophore-mediated photocleavage and no structural deformation, since it exhibits a sequence-specific pattern alone without the use of intercalating dyes such as YOYO-1. Accordingly, we were able to identify genomic DNA fragments from Escherichia coli cells by aligning them to the genomic A/T frequency map based on TAMRA-polypyrrole-generated intensity profiles. Furthermore, we showed band and interband patterns of polytene chromosomal DNA stained with TAMRA-polypyrrole because it prefers to bind AT base pairs.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Jihyun Park
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Jaeyoung Bae
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
21
|
A simple dialysis device for large DNA molecules. Biotechniques 2019; 66:93-95. [PMID: 30744406 DOI: 10.2144/btn-2018-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential of genomic DNA is realized when new modalities are invented that manipulate large DNAs with minimal breakage or loss of sample. Here, we describe a polydimethylsiloxane-polycarbonate membrane device to remove small molecules from a sample while retaining large DNAs. Dialysis rates dramatically change as DNA size in kb (M) increases and DNA dimensions become comparable to pore size, and chain characteristics go from rod-like to Gaussian. Consequently, we describe empirical rates of dialysis, R, as a function of M as falling into two regimes: DNAs ≤ 1 kb show R(M) ∼e - t/τ M (t = time, τM = time constant), while DNAs ≥1.65 kb slowly passage with R(M) ∼M -1.68; such partitioning potentiates single-molecule imaging.
Collapse
|
22
|
Krerowicz SJ, Hernandez-Ortiz JP, Schwartz DC. Microscale Objects via Restructuring of Large, Double-Stranded DNA Molecules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41215-41223. [PMID: 30403478 PMCID: PMC6453721 DOI: 10.1021/acsami.8b18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As the interest in DNA nanotechnology increases, so does the need for larger and more complex DNA structures. In this work, we describe two methods of using large, double-stranded (ds) DNA to self-assemble sequence-specific, nonrepetitive microscale structures. A model system restructures T7 DNA (40 kb) through sequence-specific biotinylation followed by intramolecular binding to a 40 nm diameter neutravidin bead to create T7 "rosettes". This model system informed the creation of "nodal DNA" where "nodes" with single-stranded DNA flaps are attached to a large dsDNA insert so that a complementary oligonucleotide "strap" bridges the two nodes for restructuring to form a DNA "bolo". To do this in high yield, several methodologies were developed, including a protection/deprotection scheme using RNA/RNase H and dialysis chambers, which remove excess straps while retaining large DNA molecules. To assess these restructuring processes, the DNA was adsorbed onto supported lipid bilayers, allowing for a visual assay of their structure using single-molecule fluorescence microscopy. Good agreement between the expected and observed fluorescence intensity measurements of the individual features of restructured DNA for both the DNA rosettes and bolos gives us a high degree of confidence that both processes give sequence-specific restructuring of large, dsDNA molecules to create microscale objects.
Collapse
Affiliation(s)
- Samuel J.W. Krerowicz
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Juan P. Hernandez-Ortiz
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Departamento de Materiales y Nanotecnología, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
| |
Collapse
|
23
|
Masters C, Dolphin J, Maschmann A, McGill K, Moore M, Thompson D, Kounovsky-Shafer KL. Development of 3D printed mesofluidic devices to elute and concentrate DNA. Electrophoresis 2018; 40:810-816. [PMID: 30367503 DOI: 10.1002/elps.201800309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/08/2022]
Abstract
To understand structural variation for personal genomics, an extensive ensemble of large DNA molecules will be required to span large structural variations. Nanocoding, a whole-genome analysis platform, can analyze large DNA molecules for the construction of physical restriction maps of entire genomes. However, handling of large DNA is difficult and a system is needed to concentrate large DNA molecules, while keeping the molecules intact. Insert technology was developed to protect large DNA molecules during routine cell lysis and molecular biology techniques. However, eluting and concentrating DNA molecules has been difficult in the past. Utilizing 3D printed mesofluidic device, a proof of principle system was developed to elute and concentrate lambda DNA molecules at the interface between a solution and a poly-acrylamide roadblock. The matrix allowed buffer solution to move through the pores in the matrix; however, it slowed down the progression of DNA in the matrix, since the molecules were so large and the pore size was small. Using fluorescence intensity of the insert, 84% of DNA was eluted from the insert and 45% of DNA was recovered in solution from the eluted DNA. DNA recovered was digested with a restriction enzyme to determine that the DNA molecules remained full length during the elution and concentration of DNA.
Collapse
Affiliation(s)
- Cody Masters
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Jocelyn Dolphin
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - April Maschmann
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Keegan McGill
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Matthew Moore
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Drew Thompson
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | | |
Collapse
|
24
|
Nonsecretory and Light Chain Escape in Patients With Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:e515-e519. [PMID: 30201257 DOI: 10.1016/j.clml.2018.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is characterized by the secretion of monoclonal protein by malignant plasma cells in the vast majority of cases. We identified and analyzed patterns of disease relapse and progression associated with disappearance of the paraprotein ("nonsecretory [NS] escape"), or conversion from production of intact Ig molecule to its associated light chain ("LC escape"). PATIENTS AND METHODS We retrospectively reviewed medical records and a database of 791 consecutive patients with symptomatic MM. RESULTS Twenty-eight (3.5%) patients had disease evolution associated with either NS (n = 13) or LC (n = 15) escape. The event occurred at a median of 37 months (range, 3-156 months) after the diagnosis of MM, and after a median of 3 chemotherapy regimens (range, 1-8 regimens). Presence of extramedullary disease at progression was detected in 8 (29%) patients. Sensitivity to chemotherapy before and after escape was present in 21 (75%) and 14 (50%) patients, respectively. After a median follow-up of 55 months, 19 (68%) patients died, and progressive MM was the cause of death in 18 patients. The median overall survival after escape was 20 months (95% confidence interval, 9-25 months), and no significant difference was found between the NS and LC groups (P = .44). The median overall survival after diagnosis of MM was worse in patients with NS/LC escape than in those without escape (52 vs. 94 months; P = .018). CONCLUSIONS Our study describes the largest series of NS and LC escape in MM to date. The development of this phenomenon is associated with more aggressive clinical features, frequent resistance to chemotherapy, and worse clinical outcome.
Collapse
|
25
|
Abstract
Integrated analysis of structural variants (SVs) and copy number alterations in aneuploid cancer genomes is key to understanding tumor genome complexity. A recently developed algorithm, Weaver, can estimate, for the first time, allele-specific copy number of SVs and their interconnectivity in aneuploid cancer genomes. However, one major limitation is that not all SVs identified by Weaver are phased. In this article, we develop a general convex programming framework that predicts the interconnectivity of unphased SVs with possibly noisy allele-specific copy number estimations as input. We demonstrated through applications to both simulated data and HeLa whole-genome sequencing data that our method is robust to the noise in the input copy numbers and can predict SV phasings with high specificity. We found that our method can make consistent predictions with Weaver even if a large proportion of the input variants are unphased. We also applied our method to The Cancer Genome Atlas (TCGA) ovarian cancer whole-genome sequencing samples to phase SVs left unphased by Weaver. Our work provides an important new algorithmic framework for recovering more complete allele-specific cancer genome graphs.
Collapse
Affiliation(s)
- Ashok Rajaraman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University , Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Maschmann A, Masters C, Davison M, Lallman J, Thompson D, Kounovsky-Shafer KL. Determining if DNA Stained with a Cyanine Dye Can Be Digested with Restriction Enzymes. J Vis Exp 2018. [PMID: 29443093 DOI: 10.3791/57141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Visualization of DNA for fluorescence microscopy utilizes a variety of dyes such as cyanine dyes. These dyes are utilized due to their high affinity and sensitivity for DNA. In order to determine if the DNA molecules are full length after the completion of the experiment, a method is required to determine if the stained molecules are full length by digesting DNA with restriction enzymes. However, stained DNA may inhibit the enzymes, so a method is needed to determine what enzymes one could use for fluorochrome stained DNA. In this method, DNA is stained with a cyanine dye overnight to allow the dye and DNA to equilibrate. Next, stained DNA is digested with a restriction enzyme, loaded into a gel and electrophoresed. The experimental DNA digest bands are compared to an in silico digest to determine the restriction enzyme activity. If there is the same number of bands as expected, then the reaction is complete. More bands than expected indicate partial digestion and less bands indicate incomplete digestion. The advantage of this method is its simplicity and it uses equipment that a scientist would need for a restriction enzyme assay and gel electrophoresis. A limitation of this method is that the enzymes available to most scientists are commercially available enzymes; however, any restriction enzymes could be used.
Collapse
Affiliation(s)
| | - Cody Masters
- Department of Chemistry, University of Nebraska - Kearney
| | | | - Joshua Lallman
- Department of Chemistry, University of Nebraska - Kearney
| | - Drew Thompson
- Department of Chemistry, University of Nebraska - Kearney
| | | |
Collapse
|
27
|
Abstract
Repeated sequences make up approximately two-thirds of the human genome, which become fully accountable when very large DNA molecules are analyzed. Long, single DNA molecules are problematic using common experimental techniques and fluidic devices because of mechanical considerations that include breakage, dealing with the massive size of these coils, or the huge length of stretched DNAs. Accordingly, we harness analyte “issues” as exploitable advantages by invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched molecules as DNA dumbbells within nanoslit geometries that may also offer new routes to separation. This was accomplished by theoretical studies and experiments leveraging a series of electrical forces acting on DNA molecules, device walls, and the fluid flows within our devices. Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analyte “issues” as exploitable advantages by our invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecular gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an “electrostatic bottle.” This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslits, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the Mesoplasmaflorum genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.
Collapse
|
28
|
Abstract
OBJECTIVES This integrative review describes the genomic variants that have been found to be associated with poor prognosis in patients diagnosed with multiple myeloma (MM). Second, it identifies MM genetic and genomic changes using next-generation sequencing, specifically whole-genome sequencing or exome sequencing. DATA SOURCE A search for peer-reviewed articles through PubMed, EBSCOhost, and DePaul WorldCat Libraries Worldwide yielded 33 articles that were included in the final analysis. CONCLUSION The most commonly reported genetic changes were KRAS, NRAS, TP53, FAM46C, BRAF, DIS3, ATM, and CCND1. These genetic changes play a role in the pathogenesis of MM, prognostication, and therapeutic targets for novel therapies. IMPLICATIONS FOR NURSING PRACTICE MM genetics and genomics are expanding rapidly; oncology nurse clinicians must have basic competencies in genetics and genomics to help patients understand the complexities of genetic and genomic alterations and be able to refer patients to appropriate genomic professionals if needed.
Collapse
|
29
|
Asimakopoulos F, Hope C, Johnson MG, Pagenkopf A, Gromek K, Nagel B. Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche. J Leukoc Biol 2017; 102:265-275. [PMID: 28254840 DOI: 10.1189/jlb.3mr1116-468r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The last 10-15 years have witnessed a revolution in treating multiple myeloma, an incurable cancer of Ab-producing plasma cells. Advances in myeloma therapy were ushered in by novel agents that remodel the myeloma immune microenvironment. The first generation of novel agents included immunomodulatory drugs (thalidomide analogs) and proteasome inhibitors that target crucial pathways that regulate immunity and inflammation, such as NF-κB. This paradigm continued with the recent regulatory approval of mAbs (elotuzumab, daratumumab) that impact both tumor cells and associated immune cells. Moreover, recent clinical data support checkpoint inhibition immunotherapy in myeloma. With the success of these agents has come the growing realization that the myeloid infiltrate in myeloma lesions-what we collectively call the myeloid-in-myeloma compartment-variably sustains or deters tumor cells by shaping the inflammatory milieu of the myeloma niche and by promoting or antagonizing immune-modulating therapies. The myeloid-in-myeloma compartment includes myeloma-associated macrophages and granulocytes, dendritic cells, and myeloid-derived-suppressor cells. These cell types reflect variable states of differentiation and activation of tumor-infiltrating cells derived from resident myeloid progenitors in the bone marrow-the canonical myeloma niche-or myeloid cells that seed both canonical and extramedullary, noncanonical niches. Myeloma-infiltrating myeloid cells engage in crosstalk with extracellular matrix components, stromal cells, and tumor cells. This complex regulation determines the composition, activation state, and maturation of the myeloid-in-myeloma compartment as well as the balance between immunogenic and tolerogenic inflammation in the niche. Redressing this balance may be a crucial determinant for the success of antimyeloma immunotherapies.
Collapse
Affiliation(s)
- Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Chelsea Hope
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Michael G Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Adam Pagenkopf
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Kimberly Gromek
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Bradley Nagel
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Kim KI, Lee S, Jin X, Kim SJ, Jo K, Lee JH. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601926. [PMID: 27813273 DOI: 10.1002/smll.201601926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features.
Collapse
Affiliation(s)
- Kyung-Il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Su Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
31
|
Mojica WD, Hou T, Sykes D, Dey-Rao R. Front-end genomics: using an alternative approach for the recovery of high-quality DNA from core needle biopsies. J Clin Pathol 2016; 70:488-493. [PMID: 27777300 DOI: 10.1136/jclinpath-2016-204061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
AIMS Determine whether a simple prewash step will provide adequate amounts of high-quality DNA from core needle biopsies for molecular sequencing studies. METHODS The quantitative and qualitative metrics of DNA recovered from core needle biopsies processed either by 1) formalin fixation and paraffin embedding (FFPE), 2) cells recovered after the core needle biopsy was washed, and 3) frozen sections of the core needle biopsy tissue were evaluated and compared to one another. RESULTS Fairly equivalent amounts of DNA can be obtained from cells recovered from a prewash step relative to the FFPE and frozen section samples. The number of amplifiable DNA in the wash sample was greater than that from the FFPE samples. The average molecular size of DNA in the wash sample was greater than that of both the FFPE and frozen samples. CONCLUSIONS Although more starting material in terms of the number of cells was present in both the FFPE and frozen section samples than the wash samples, equivalent to better results were obtained from the latter with regard to quality. This approach may be a means to better aliquot the diminutive amounts of tissue associated with core needle biopsies, allowing dissociated cells to be dedicated for molecular studies while keeping the tissue intact for morphological studies.
Collapse
Affiliation(s)
- Wilfrido D Mojica
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Tieying Hou
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Don Sykes
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Rama Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
32
|
Li Y, Zhou S, Schwartz DC, Ma J. Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Syst 2016; 3:21-34. [PMID: 27453446 PMCID: PMC4965314 DOI: 10.1016/j.cels.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Aneuploidy and structural variations (SVs) generate cancer genomes containing a mixture of rearranged genomic segments with extensive somatic copy number alterations. However, existing methods can identify either SVs or allele-specific copy number alterations, but not both simultaneously, which provides a limited view of cancer genome structure. Here we introduce Weaver, an algorithm for the quantification and analysis of allele-specific copy numbers of SVs. Weaver uses a Markov Random Field to estimate joint probabilities of allele-specific copy number of SVs and their inter-connectivity based on paired-end whole-genome sequencing data. Weaver also predicts the timing of SVs relative to chromosome amplifications. We demonstrate the accuracy of Weaver using simulations and findings from whole-genome Optical Mapping. We apply Weaver to generate allele-specific copy numbers of SVs for MCF-7 and HeLa cell lines, and identify recurrent SV patterns in 44 TCGA ovarian cancer whole-genome sequencing datasets. Our approach provides a more complete assessment of the complex genomic architectures inherent to many cancer genomes.
Collapse
Affiliation(s)
- Yang Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
33
|
da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi MEB, Caetano AR. Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harboring QTLs affecting production traits. BMC Genomics 2016; 17:454. [PMID: 27297173 PMCID: PMC4907077 DOI: 10.1186/s12864-016-2752-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2752-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joaquim Manoel da Silva
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso (UNEMAT), Av. Prof Dr. Renato Figueiro Varella, CEP 78.690-000, Nova Xavantina, Mato Grosso, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular-Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Poliana Fernanda Giachetto
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | | | - Leandro Carrijo Cintra
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | - Samuel Rezende Paiva
- Embrapa - Secretaria de Relações Internacionais, Brasília, Distrito Federal, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil.,CNPq Fellow, ᅟ, ᅟ
| | | | | |
Collapse
|
34
|
Friedrich SM, Zec HC, Wang TH. Analysis of single nucleic acid molecules in micro- and nano-fluidics. LAB ON A CHIP 2016; 16:790-811. [PMID: 26818700 PMCID: PMC4767527 DOI: 10.1039/c5lc01294e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleic acid analysis has enhanced our understanding of biological processes and disease progression, elucidated the association of genetic variants and disease, and led to the design and implementation of new treatment strategies. These diverse applications require analysis of a variety of characteristics of nucleic acid molecules: size or length, detection or quantification of specific sequences, mapping of the general sequence structure, full sequence identification, analysis of epigenetic modifications, and observation of interactions between nucleic acids and other biomolecules. Strategies that can detect rare or transient species, characterize population distributions, and analyze small sample volumes enable the collection of richer data from biosamples. Platforms that integrate micro- and nano-fluidic operations with high sensitivity single molecule detection facilitate manipulation and detection of individual nucleic acid molecules. In this review, we will highlight important milestones and recent advances in single molecule nucleic acid analysis in micro- and nano-fluidic platforms. We focus on assessment modalities for single nucleic acid molecules and highlight the role of micro- and nano-structures and fluidic manipulation. We will also briefly discuss future directions and the current limitations and obstacles impeding even faster progress toward these goals.
Collapse
Affiliation(s)
- Sarah M Friedrich
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Helena C Zec
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA. and Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Lee S, Wang C, Song J, Kim DG, Oh Y, Ko W, Lee J, Park J, Lee HS, Jo K. Investigation of various fluorescent protein–DNA binding peptides for effectively visualizing large DNA molecules. RSC Adv 2016. [DOI: 10.1039/c6ra08683g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-molecule DNA visualization with fluorescent protein DNA binding peptides.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Cong Wang
- Department of Mechanical Engineering
- Sogang University
- Seoul
- Korea
| | - Junghyun Song
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Do-geun Kim
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Yeeun Oh
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Wooseok Ko
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Jinyong Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Jungyul Park
- Department of Mechanical Engineering
- Sogang University
- Seoul
- Korea
| | - Hyun Soo Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| |
Collapse
|
36
|
Lee J, Kim Y, Lim S, Jo K. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules. Analyst 2015; 141:847-52. [PMID: 26661446 DOI: 10.1039/c5an01875g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.
Collapse
Affiliation(s)
- Jinyong Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 121-742, Korea.
| | | | | | | |
Collapse
|
37
|
Yuan B, Liu P, Gupta A, Beck CR, Tejomurtula A, Campbell IM, Gambin T, Simmons AD, Withers MA, Harris RA, Rogers J, Schwartz DC, Lupski JR. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates. PLoS Genet 2015; 11:e1005686. [PMID: 26641089 PMCID: PMC4671654 DOI: 10.1371/journal.pgen.1005686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. Genomic instability due to the intrinsic sequence architecture of the genome, such as low copy repeats (LCRs), is a major contributor to de novo mutations that can occur in the process of human genome evolution. LCRs can mediate genomic rearrangements associated with genomic disorders by acting as substrates for nonallelic homologous recombination. Juvenile-onset nephronophthisis 1 is the most frequent genetic cause of renal failure in children. An LCR-mediated, homozygous common recurrent deletion encompassing NPHP1 is found in the majority of affected subjects, while heterozygous deletion representing the nephronophthisis 1 recessive carrier state is frequently observed amongst world populations. Interestingly, the human NPHP1 locus is located proximal to the head-to-head fusion site of two ancestral chromosomes that occurred in the great apes, which resulted in a reduction of chromosome number from 48 in nonhuman primates to the current 46 in humans. In this study, we characterized and provided evidence for the diverse genomic architecture at the NPHP1 locus and potential structural variant haplotypes in the human population. Furthermore, our analyses of primate genomes shed light on the massive changes of genomic architecture at the human NPHP1 locus and delineated a model for the emergence of the LCRs during primate evolution.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aditya Gupta
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and The UW-Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christine R. Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anusha Tejomurtula
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ian M. Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexandra D. Simmons
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marjorie A. Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and The UW-Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mendelowitz LM, Schwartz DC, Pop M. Maligner: a fast ordered restriction map aligner. Bioinformatics 2015; 32:1016-22. [PMID: 26637292 DOI: 10.1093/bioinformatics/btv711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION The Optical Mapping System discovers structural variants and potentiates sequence assembly of genomes via scaffolding and comparisons that globally validate or correct sequence assemblies. Despite its utility, there are few publicly available tools for aligning optical mapping datasets. RESULTS Here we present software, named 'Maligner', for the alignment of both single molecule restriction maps (Rmaps) and in silico restriction maps of sequence contigs to a reference. Maligner provides two modes of alignment: an efficient, sensitive dynamic programming implementation that scales to large eukaryotic genomes, and a faster indexed based implementation for finding alignments with unmatched sites in the reference but not the query. We compare our software to other publicly available tools on Rmap datasets and show that Maligner finds more correct alignments in comparable runtime. Lastly, we introduce the M-Score statistic for normalizing alignment scores across restriction maps and demonstrate its utility for selecting high quality alignments. AVAILABILITY AND IMPLEMENTATION The Maligner software is written in C ++ and is available at https://github.com/LeeMendelowitz/maligner under the GNU General Public License. CONTACT mpop@umiacs.umd.edu.
Collapse
Affiliation(s)
- Lee M Mendelowitz
- Center for Bioinformatics and Computational Biology, Applied Math & Statistics, and Scientific Computation
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, USA and the UW-Biotechnology Center, University of Wisconsin-Madison, WI 53706, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Applied Math & Statistics, and Scientific Computation, Department of Computer Science, University of Maryland, College Park, MD 20742, USA and
| |
Collapse
|
39
|
Olsen RA, Bunikis I, Tiukova I, Holmberg K, Lötstedt B, Pettersson OV, Passoth V, Käller M, Vezzi F. De novo assembly of Dekkera bruxellensis: a multi technology approach using short and long-read sequencing and optical mapping. Gigascience 2015; 4:56. [PMID: 26617983 PMCID: PMC4661999 DOI: 10.1186/s13742-015-0094-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. METHODS In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. RESULTS We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.
Collapse
Affiliation(s)
- Remi-Andre Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, NGI/SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, SE-752 37 Uppsala, Sweden
| | - Ievgeniia Tiukova
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden
| | - Kicki Holmberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Britta Lötstedt
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, NGI/SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, SE-752 37 Uppsala, Sweden
| | - Volkmar Passoth
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden
| | - Max Käller
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Francesco Vezzi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| |
Collapse
|
40
|
Abstract
Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.
Collapse
Affiliation(s)
- Prabu Ravindran
- Laboratory of Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and Biotechnology Center, University of Wisconsin, 425 Henry Mall, Madison, USA
| | - Aditya Gupta
- Laboratory of Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics and Biotechnology Center, University of Wisconsin, 425 Henry Mall, Madison, USA
| |
Collapse
|
41
|
Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays. Genetics 2015; 202:351-62. [PMID: 26510793 PMCID: PMC4701098 DOI: 10.1534/genetics.115.183483] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/28/2015] [Indexed: 01/06/2023] Open
Abstract
Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation.
Collapse
|