1
|
Hang H, Huang C, Barnett A, Kanso E. Self-reorganization and Information Transfer in Massive Schools of Fish. ARXIV 2025:arXiv:2505.05822v2. [PMID: 40386572 PMCID: PMC12083704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
The remarkable cohesion and coordination observed in moving animal groups and their collective responsiveness to threats are thought to be mediated by scale-free correlations, where changes in the behavior of one animal influence others in the group, regardless of the distance between them. But are these features independent of group size? Here, we investigate group cohesiveness and collective responsiveness in computational models of massive schools of fish of up to 50,000 individuals. We show that as the number of swimmers increases, flow interactions destabilize the school, creating clusters that constantly fragment, disperse, and regroup, similar to their biological counterparts. We calculate the spatial correlation and speed of information propagation in these dynamic clusters. Spatial correlations in cohesive and polarized clusters are indeed scale free, much like in natural animal groups, but fragmentation events are preceded by a decrease in correlation length, thus diminishing the group's collective responsiveness, leaving it more vulnerable to predation events. Importantly, in groups undergoing collective turns, the information about the change in direction propagates linearly in time among group members, thanks to the non-reciprocal nature of the visual interactions between individuals. Merging speeds up the transfer of information within each cluster by several fold, while fragmentation slows it down. Our findings suggest that flow interactions may have played an important role in group size regulation, behavioral adaptations, and dispersion in living animal groups.
Collapse
Affiliation(s)
- Haotian Hang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Chenchen Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Alex Barnett
- Center for Computational Mathematics, Flatiron Institute, New York City, NY 10010
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
2
|
Goldshtein A, Mazar O, Harten L, Amichai E, Assa R, Levi A, Orchan Y, Toledo S, Nathan R, Yovel Y. Onboard recordings reveal how bats maneuver under severe acoustic interference. Proc Natl Acad Sci U S A 2025; 122:e2407810122. [PMID: 40163729 PMCID: PMC12002023 DOI: 10.1073/pnas.2407810122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/02/2025] [Indexed: 04/02/2025] Open
Abstract
Echolocating bats rely on active acoustic sensing to perceive their environment. When multiple bats fly together, echolocating simultaneously, the calls emitted by nearby conspecifics could interfere with and mask the echoes necessary for orientation. Nowhere is this impairment of sensing more dramatic than when thousands of bats emerge from a cave at the same time. Here, we tracked the movement of tens of greater mouse-tailed bats flying within a group of thousands. By mounting miniature microphones onboard some of the bats, we monitored the acoustic scene from the point of view of an individual bat within the echolocating collective. We found that bats experienced a very high level of conspecific acoustic masking when emerging from their cave, which dropped within seconds as the bats spread out in space. A comprehensive sensorimotor model, based on the unique data that we collected, revealed how bats content with this severe echo masking almost without collisions. Our results demonstrate that even under severe masking, bats are hardly impaired sensorially, and we suggest how they are able to maneuver smoothly and avoid collisions, even at high densities, without applying a jamming avoidance response.
Collapse
Affiliation(s)
- Aya Goldshtein
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78464, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78464, Germany
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Omer Mazar
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Lee Harten
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Eran Amichai
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Reut Assa
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Anat Levi
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Yotam Orchan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Sivan Toledo
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Faculty of Exact Sciences, Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv6997801, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Yossi Yovel
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv6997801, Israel
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel-Aviv6997801, Israel
| |
Collapse
|
3
|
Castro D, Eloy C, Ruffier F. Visual collective behaviors on spherical robots. BIOINSPIRATION & BIOMIMETICS 2025; 20:026006. [PMID: 39813794 DOI: 10.1088/1748-3190/adaab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
The implementation of collective motion, traditionally, disregard the limited sensing capabilities of an individual, to instead assuming an omniscient perception of the environment. This study implements a visual flocking model in a 'robot-in-the-loop' approach to reproduce these behaviors with a flock composed of 10 independent spherical robots. The model achieves robotic collective motion by only using panoramic visual information of each robot, such as retinal position, optical size and optic flow of the neighboring robots. We introduce a virtual anchor to confine the collective robotic movements so to avoid wall interactions. For the first time, a simple visual robot-in-the-loop approach succeed in reproducing several collective motion phases, in particular, swarming, and milling. Another milestone achieved with by this model is bridging the gap between simulation and physical experiments by demonstrating nearly identical behaviors in both environments with the same visual model. To conclude, we show that our minimal visual collective motion model is sufficient to recreate most collective behaviors on a robot-in-the-loop system that be implemented using several individuals, behaves as numerical simulations predict and is easily comparable to traditional models.
Collapse
Affiliation(s)
- Diego Castro
- Aix Marseille Université, CNRS, ISM, Marseille 13288, France
- Aix Marseille Université, CNRS, Centrale Med, IRPHE, Marseille 13013, France
| | - Christophe Eloy
- Aix Marseille Université, CNRS, Centrale Med, IRPHE, Marseille 13013, France
| | - Franck Ruffier
- Aix Marseille Université, CNRS, ISM, Marseille 13288, France
| |
Collapse
|
4
|
Lecheval V, Theraulaz G. Conditioning a collective avoidance response in rummy-nose tetra. JOURNAL OF FISH BIOLOGY 2025. [PMID: 39817489 DOI: 10.1111/jfb.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Escape waves in animal groups, such as bird flocks and fish schools, have attracted a lot of attention, as they provide the opportunity to better understand how information can efficiently propagate in moving groups, and how individuals can coordinate their actions under the threat of predators. There is a lack of appropriate experimental protocols to study escape waves in highly social fish, in which the number of individuals initiating the escape and the identity of the initiators are controlled. Indeed, highly social fish or obligate schoolers have a tendency to not respond well or to freeze when tested in experimental setups designed for single individuals. In this manuscript, we report the results of a pilot experiment with limited sample size using an aversive conditioning protocol to trigger a collective escape response to a green light in a group of rummy-nose tetra (Hemigrammus rhodostomus). Our experimental results suggest that aversive conditioning can (i) be successfully used in this schooling species, (ii) trigger collective escape responses, and (iii) be transferred from the training setup to a new environment. We also introduce metrics to characterize learning and forgetting at group level. These results nurture promising future empirical research on the cognitive and behavioral mechanisms of escape responses in schools of fish, both at the individual and collective scales.
Collapse
Affiliation(s)
- Valentin Lecheval
- Institute for Theoretical Biology, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS) & Université de Toulouse (UPS), Toulouse, France
| |
Collapse
|
5
|
Wu R, Deussen O, Couzin ID, Li L. Non-invasive eye tracking and retinal view reconstruction in free swimming schooling fish. Commun Biol 2024; 7:1636. [PMID: 39668195 PMCID: PMC11638265 DOI: 10.1038/s42003-024-07322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Eye tracking has emerged as a key method for understanding how animals process visual information, identifying crucial elements of perception and attention. Traditional fish eye tracking often alters animal behavior due to invasive techniques, while non-invasive methods are limited to either 2D tracking or restricting animals after training. Our study introduces a non-invasive technique for tracking and reconstructing the retinal view of free-swimming fish in a large 3D arena without behavioral training. Using 3D fish bodymeshes reconstructed by DeepShapeKit, our method integrates multiple camera angles, deep learning for 3D fish posture reconstruction, perspective transformation, and eye tracking. We evaluated our approach using data from two fish swimming in a flow tank, captured from two perpendicular viewpoints, and validated its accuracy using human-labeled and synthesized ground truth data. Our analysis of eye movements and retinal view reconstruction within leader-follower schooling behavior reveals that fish exhibit negatively synchronised eye movements and focus on neighbors centered in the retinal view. These findings are consistent with previous studies on schooling fish, providing a further, indirect, validation of our method. Our approach offers new insights into animal attention in naturalistic settings and potentially has broader implications for studying collective behavior and advancing swarm robotics.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Computer and Information Science, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Oliver Deussen
- Department of Computer and Information Science, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Liang Li
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
6
|
Gu S, Quan Q. Collective properties of Petitella georgiae in tube environments. Sci Rep 2024; 14:29924. [PMID: 39622852 PMCID: PMC11612465 DOI: 10.1038/s41598-024-78614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
The movement of biological swarms is widespread in nature, and collective behavior enhances a swarm's adaptability to its environment. However, most research focuses on free swarm movement, overlooking the impact of environmental constraints such as tubes. This study examines the swimming behavior of Petitella georgiae through a tube. Observations of position, speed, and direction reveal that each fish is influenced by the swarm's distribution in its field of view. The speed ratio between the middle region and edge region positively correlates with tube angles, and higher speeds are associated with higher densities within specific angle ranges.
Collapse
Affiliation(s)
- Shuang Gu
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| | - Quan Quan
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Lee ED, Kwan AP, Hanel R, Bhatt A, Neffke F. Information consumption and firm size. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240027. [PMID: 39507997 PMCID: PMC11539792 DOI: 10.1098/rsos.240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 11/08/2024]
Abstract
Social and biological collectives exchange information through internal networks to function. Less studied is the quantity and variety of information transmitted. We characterize the information flow into organizations, primarily business firms. We measure online reading using a large dataset of articles accessed by employees across millions of firms. We measure and relate quantitatively three aspects: reading volume, variety and firm size. We compare volume with size, showing that firm sizes grow sublinearly with reading volume. This is like an economy of scale in information consumption that exaggerates the classic Zipf's law inequality for firm economics. We connect variety and volume to show that reading variety is limited. Firms above a threshold size read repetitively, consistent with the onset of a coordination problem between teams of employees in a simple model. Finally, we relate reading variety to size. The relationship is consistent with large firms that accumulate interests as they grow. We argue that this reflects structural constraints. Taking the scaling relations as a baseline, we show that excess reading is strongly correlated with returns and valuations. The results indicate how information consumption reflects internal structure, beyond individual employees, as is likewise important for collective information processing in other systems.
Collapse
Affiliation(s)
| | - Alan P. Kwan
- Hong Kong University, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Zheng Z, Tao Y, Xiang Y, Lei X, Peng X. Body orientation change of neighbors leads to scale-free correlation in collective motion. Nat Commun 2024; 15:8968. [PMID: 39420172 PMCID: PMC11487077 DOI: 10.1038/s41467-024-53361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Collective motion, such as milling, flocking, and collective turning, is a common and captivating phenomenon in nature, which arises in a group of many self-propelled individuals using local interaction mechanisms. Recently, vision-based mechanisms, which establish the relationship between visual inputs and motion decisions, have been applied to model and better understand the emergence of collective motion. However, previous studies often characterize the visual input as a transient Boolean-like sensory stream, which makes it challenging to capture the salient movements of neighbors. This further hinders the onset of the collective response in vision-based mechanisms and increases demands on visual sensing devices in robotic swarms. An explicit and context-related visual cue serving as the sensory input for decision-making in vision-based mechanisms is still lacking. Here, we hypothesize that body orientation change (BOC) is a significant visual cue characterizing the motion salience of neighbors, facilitating the emergence of the collective response. To test our hypothesis, we reveal the significant role of BOC during collective U-turn behaviors in fish schools by reconstructing scenes from the view of individual fish. We find that an individual with the larger BOC often takes on the leading role during U-turns. To further explore this empirical finding, we build a pairwise interaction mechanism on the basis of the BOC. Then, we conduct experiments of collective spin and collective turn with a real-time physics simulator to investigate the dynamics of information transfer in BOC-based interaction and further validate its effectiveness on 50 real miniature swarm robots. The experimental results show that BOC-based interaction not only facilitates the directional information transfer within the group but also leads to scale-free correlation within the swarm. Our study highlights the practicability of interaction governed by the neighbor's body orientation change in swarm robotics and the effect of scale-free correlation in enhancing collective response.
Collapse
Affiliation(s)
- Zhicheng Zheng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuan Tao
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaokang Lei
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| |
Collapse
|
9
|
Pan Y, Lauder GV. Combining Computational Fluid Dynamics and Experimental Data to Understand Fish Schooling Behavior. Integr Comp Biol 2024; 64:753-768. [PMID: 38760887 DOI: 10.1093/icb/icae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Understanding the flow physics behind fish schooling poses significant challenges due to the difficulties in directly measuring hydrodynamic performance and the three-dimensional, chaotic, and complex flow structures generated by collective moving organisms. Numerous previous simulations and experiments have utilized computational, mechanical, or robotic models to represent live fish. And existing studies of live fish schools have contributed significantly to dissecting the complexities of fish schooling. But the scarcity of combined approaches that include both computational and experimental studies, ideally of the same fish schools, has limited our ability to understand the physical factors that are involved in fish collective behavior. This underscores the necessity of developing new approaches to working directly with live fish schools. An integrated method that combines experiments on live fish schools with computational fluid dynamics (CFD) simulations represents an innovative method of studying the hydrodynamics of fish schooling. CFD techniques can deliver accurate performance measurements and high-fidelity flow characteristics for comprehensive analysis. Concurrently, experimental approaches can capture the precise locomotor kinematics of fish and offer additional flow information through particle image velocimetry (PIV) measurements, potentially enhancing the accuracy and efficiency of CFD studies via advanced data assimilation techniques. The flow patterns observed in PIV experiments with fish schools and the complex hydrodynamic interactions revealed by integrated analyses highlight the complexity of fish schooling, prompting a reevaluation of the classic Weihs model of school dynamics. The synergy between CFD models and experimental data grants us comprehensive insights into the flow dynamics of fish schools, facilitating the evaluation of their functional significance and enabling comparative studies of schooling behavior. In addition, we consider the challenges in developing integrated analytical methods and suggest promising directions for future research.
Collapse
Affiliation(s)
- Yu Pan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Beuria J, Behera L. Non-local interaction in discrete Ricci curvature-induced biological aggregation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240794. [PMID: 39233719 PMCID: PMC11371432 DOI: 10.1098/rsos.240794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
We investigate the collective dynamics of multi-agent systems in two- and three-dimensional environments generated by minimizing discrete Ricci curvature with local and non-local interaction neighbourhoods. We find that even a single effective topological neighbour suffices for significant order in a system with non-local topological interactions. We also explore topological information flow patterns and clustering dynamics using Hodge spectral entropy and mean Forman-Ricci curvature.
Collapse
Affiliation(s)
- Jyotiranjan Beuria
- IKSMHA Center, IIT Mandi, Mandi, India
- IKS Research Center, ISS Delhi, Delhi, India
| | - Laxmidhar Behera
- IKSMHA Center, IIT Mandi, Mandi, India
- Department of Electrical Engineering, IIT Kanpur, Kanpur, India
| |
Collapse
|
11
|
Peterson AN, Swanson N, McHenry MJ. Fish communicate with water flow to enhance a school's social network. J Exp Biol 2024; 227:jeb247507. [PMID: 39109661 DOI: 10.1242/jeb.247507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Schooling fish rely on a social network created through signaling between its members to interact with their environment. Previous studies have established that vision is necessary for schooling and that flow sensing by the lateral line system may aid in a school's cohesion. However, it remains unclear to what extent flow provides a channel of communication between schooling fish. Based on kinematic measurements of the speed and heading of schooling tetras (Petitella rhodostoma), we found that compromising the lateral line by chemical treatment reduced the mutual information between individuals by ∼13%. This relatively small reduction in pairwise communication propagated through schools of varying size to reduce the degree and connectivity of the social network by more than half. Treated schools additionally showed more than twice the spatial heterogeneity of fish with unaltered flow sensing. These effects were much more substantial than the changes that we measured in the nearest-neighbor distance, speed and intermittency of individual fish by compromising flow sensing. Therefore, flow serves as a valuable supplement to visual communication in a manner that is revealed through a school's network properties.
Collapse
Affiliation(s)
- Ashley N Peterson
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA
| | - Nathan Swanson
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Iacopini I, Karsai M, Barrat A. The temporal dynamics of group interactions in higher-order social networks. Nat Commun 2024; 15:7391. [PMID: 39191743 DOI: 10.1038/s41467-024-50918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Representing social systems as networks, starting from the interactions between individuals, sheds light on the mechanisms governing their dynamics. However, networks encode only pairwise interactions, while most social interactions occur among groups of individuals, requiring higher-order network representations. Despite the recent interest in higher-order networks, little is known about the mechanisms that govern the formation and evolution of groups, and how people move between groups. Here, we leverage empirical data on social interactions among children and university students to study their temporal dynamics at both individual and group levels, characterising how individuals navigate groups and how groups form and disaggregate. We find robust patterns across contexts and propose a dynamical model that closely reproduces empirical observations. These results represent a further step in understanding social systems, and open up research directions to study the impact of group dynamics on dynamical processes that evolve on top of them.
Collapse
Affiliation(s)
- Iacopo Iacopini
- Network Science Institute, Northeastern University London, London, E1W 1LP, United Kingdom.
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Department of Network and Data Science, Central European University, A-1100, Vienna, Austria.
| | - Márton Karsai
- Department of Network and Data Science, Central European University, A-1100, Vienna, Austria
- National Laboratory for Health Security, HUN-REN Alfréd Rényi Institute of Mathematics, 1053, Budapest, Hungary
| | - Alain Barrat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
13
|
Zada D, Schulze L, Yu JH, Tarabishi P, Napoli JL, Milan J, Lovett-Barron M. Development of neural circuits for social motion perception in schooling fish. Curr Biol 2024; 34:3380-3391.e5. [PMID: 39025069 PMCID: PMC11419698 DOI: 10.1016/j.cub.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The collective behavior of animal groups emerges from the interactions among individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually based schooling behavior of the micro glassfish Danionella cerebrum, we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners. This social maturation was accompanied by the development of neural populations in the midbrain that were preferentially driven by visual stimuli that resemble the shape and movements of schooling fish. Furthermore, social isolation over the course of development impaired both schooling behavior and the neural encoding of social motion in adults. This work demonstrates that neural populations selective for the form and motion of conspecifics emerge with the experience-dependent development of collective movement.
Collapse
Affiliation(s)
- David Zada
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisanne Schulze
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Princess Tarabishi
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Jimjohn Milan
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Bousquet CAH, Sueur C, King AJ, O'Bryan LR. Individual and ecological heterogeneity promote complex communication in social vertebrate group decisions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230204. [PMID: 38768211 PMCID: PMC11391315 DOI: 10.1098/rstb.2023.0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
To receive the benefits of social living, individuals must make effective group decisions that enable them to achieve behavioural coordination and maintain cohesion. However, heterogeneity in the physical and social environments surrounding group decision-making contexts can increase the level of difficulty social organisms face in making decisions. Groups that live in variable physical environments (high ecological heterogeneity) can experience barriers to information transfer and increased levels of ecological uncertainty. In addition, in groups with large phenotypic variation (high individual heterogeneity), individuals can have substantial conflicts of interest regarding the timing and nature of activities, making it difficult for them to coordinate their behaviours or reach a consensus. In such cases, active communication can increase individuals' abilities to achieve coordination, such as by facilitating the transfer and aggregation of information about the environment or individual behavioural preferences. Here, we review the role of communication in vertebrate group decision-making and its relationship to heterogeneity in the ecological and social environment surrounding group decision-making contexts. We propose that complex communication has evolved to facilitate decision-making in specific socio-ecological contexts, and we provide a framework for studying this topic and testing related hypotheses as part of future research in this area. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Christophe A. H. Bousquet
- Department of Psychology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
| | - Cédric Sueur
- Institut pluridisciplinaire Hubert Curien, Strasbourg67000, France
- Institut Universitaire de France, Paris75005, France
| | - Andrew J. King
- Biosciences, Faculty of Science and Engineering, SwanseaSA2 8PP, UK
| | - Lisa R. O'Bryan
- Department of Psychological Sciences, Rice University, Houston, TX77005, USA
| |
Collapse
|
15
|
Iacopini I, Foote JR, Fefferman NH, Derryberry EP, Silk MJ. Not your private tête-à-tête: leveraging the power of higher-order networks to study animal communication. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230190. [PMID: 38768202 PMCID: PMC11391305 DOI: 10.1098/rstb.2023.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 05/22/2024] Open
Abstract
Animal communication is frequently studied with conventional network representations that link pairs of individuals who interact, for example, through vocalization. However, acoustic signals often have multiple simultaneous receivers, or receivers integrate information from multiple signallers, meaning these interactions are not dyadic. Additionally, non-dyadic social structures often shape an individual's behavioural response to vocal communication. Recently, major advances have been made in the study of these non-dyadic, higher-order networks (e.g. hypergraphs and simplicial complexes). Here, we show how these approaches can provide new insights into vocal communication through three case studies that illustrate how higher-order network models can: (i) alter predictions made about the outcome of vocally coordinated group departures; (ii) generate different patterns of song synchronization from models that only include dyadic interactions; and (iii) inform models of cultural evolution of vocal communication. Together, our examples highlight the potential power of higher-order networks to study animal vocal communication. We then build on our case studies to identify key challenges in applying higher-order network approaches in this context and outline important research questions that these techniques could help answer. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Iacopo Iacopini
- Network Science Institute, Northeastern University London , London, E1W 1LP, UK
- Department of Physics, Northeastern University , Boston, MA 02115, USA
| | | | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, TN, USA
- Department of Mathematics, University of Tennessee , Knoxville, TN, USA
- NIMBioS, University of Tennessee , Knoxville, TN, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, TN, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD , Montpellier, France
- Institute of Ecology and Evolution, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
16
|
Ito S, Uchida N. Selective decision-making and collective behavior of fish by the motion of visual attention. PNAS NEXUS 2024; 3:pgae264. [PMID: 39045016 PMCID: PMC11264410 DOI: 10.1093/pnasnexus/pgae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
Collective motion provides a spectacular example of self-organization in Nature. Visual information plays a crucial role among various types of information in determining interactions. Recently, experiments have revealed that organisms such as fish and insects selectively utilize a portion, rather than the entirety, of visual information. Here, focusing on fish, we propose an agent-based model where the direction of attention is guided by visual stimuli received from the images of nearby fish. Our model reproduces a branching phenomenon where a fish selectively follows a specific individual as the distance between two or three nearby fish increases. Furthermore, our model replicates various patterns of collective motion in a group of agents, such as vortex, polarized school, swarm, and turning. We also discuss the topological nature of the visual interaction, as well as the positional distribution of nearby fish and the map of pairwise and three-body interactions induced by them. Through a comprehensive comparison with existing experimental results, we clarify the roles of visual interactions and issues to be resolved by other forms of interactions.
Collapse
Affiliation(s)
- Susumu Ito
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - Nariya Uchida
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Xiao Y, Lei X, Zheng Z, Xiang Y, Liu YY, Peng X. Perception of motion salience shapes the emergence of collective motions. Nat Commun 2024; 15:4779. [PMID: 38839782 PMCID: PMC11153630 DOI: 10.1038/s41467-024-49151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.
Collapse
Affiliation(s)
- Yandong Xiao
- College of System Engineering, National University of Defense Technology, Changsha, Hunan, China.
| | - Xiaokang Lei
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zhicheng Zheng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Amichay G, Li L, Nagy M, Couzin ID. Revealing the mechanism and function underlying pairwise temporal coupling in collective motion. Nat Commun 2024; 15:4356. [PMID: 38778073 PMCID: PMC11111445 DOI: 10.1038/s41467-024-48458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Coordinated motion in animal groups has predominantly been studied with a focus on spatial interactions, such as how individuals position and orient themselves relative to one another. Temporal aspects have, by contrast, received much less attention. Here, by studying pairwise interactions in juvenile zebrafish (Danio rerio)-including using immersive volumetric virtual reality (VR) with which we can directly test models of social interactions in situ-we reveal that there exists a rhythmic out-of-phase (i.e., an alternating) temporal coordination dynamic. We find that reciprocal (bi-directional) feedback is both necessary and sufficient to explain this emergent coupling. Beyond a mechanistic understanding, we find, both from VR experiments and analysis of freely swimming pairs, that temporal coordination considerably improves spatial responsiveness, such as to changes in the direction of motion of a partner. Our findings highlight the synergistic role of spatial and temporal coupling in facilitating effective communication between individuals on the move.
Collapse
Affiliation(s)
- Guy Amichay
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
| | - Liang Li
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Máté Nagy
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- MTA-ELTE Lendület Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- ELTE Eötvös Loránd University, Department of Biological Physics, Budapest, Hungary.
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
20
|
Puy A, Gimeno E, Torrents J, Bartashevich P, Miguel MC, Pastor-Satorras R, Romanczuk P. Selective social interactions and speed-induced leadership in schooling fish. Proc Natl Acad Sci U S A 2024; 121:e2309733121. [PMID: 38662546 PMCID: PMC11067465 DOI: 10.1073/pnas.2309733121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.
Collapse
Affiliation(s)
- Andreu Puy
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
| | - Elisabet Gimeno
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
| | - Jordi Torrents
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
| | - Palina Bartashevich
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin10587, Germany
| | - M. Carmen Miguel
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona08028, Spain
| | | | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin10587, Germany
- Bernstein Center for Computational Neuroscience, Berlin10115, Germany
| |
Collapse
|
21
|
Rodriguez-Pinto II, Rieucau G, Handegard NO, Boswell KM, Theobald JC. Environmental impact on visual perception modulates behavioral responses of schooling fish to looming predators. J Exp Biol 2024; 227:jeb246665. [PMID: 38186295 DOI: 10.1242/jeb.246665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Aggregation in social fishes has evolved to improve safety from predators. The individual interaction mechanisms that govern collective behavior are determined by the sensory systems that translate environmental information into behavior. In dynamic environments, shifts in conditions impede effective visual sensory perception in fish schools, and may induce changes in the collective response. Here, we consider whether environmental conditions that affect visual contrast modulate the collective response of schools to looming predators. By using a virtual environment to simulate four contrast levels, we tested whether the collective state of minnow fish schools was modified in response to a looming optical stimulus. Our results indicate that fish swam slower and were less polarized in lower contrast conditions. Additionally, schooling metrics known to be regulated by non-visual sensory systems tended to correlate better when contrast decreased. Over the course of the escape response, schools remained tightly formed and retained the capability of transferring social information. We propose that when visual perception is compromised, the interaction rules governing collective behavior are likely to be modified to prioritize ancillary sensory information crucial to maximizing chance of escape. Our results imply that multiple sensory systems can integrate to control collective behavior in environments with unreliable visual information.
Collapse
Affiliation(s)
- Ivan I Rodriguez-Pinto
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| | | | | | - Kevin M Boswell
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| | - Jamie C Theobald
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33172, USA
| |
Collapse
|
22
|
Tung A, Sperry MM, Clawson W, Pavuluri A, Bulatao S, Yue M, Flores RM, Pai VP, McMillen P, Kuchling F, Levin M. Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nat Commun 2024; 15:535. [PMID: 38233424 PMCID: PMC10794468 DOI: 10.1038/s41467-023-44522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.
Collapse
Affiliation(s)
- Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Wesley Clawson
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Ananya Pavuluri
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Sydney Bulatao
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michelle Yue
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ramses Martinez Flores
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Franz Kuchling
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Krongauz DL, Ayali A, Kaminka GA. Vision-based collective motion: A locust-inspired reductionist model. PLoS Comput Biol 2024; 20:e1011796. [PMID: 38285716 PMCID: PMC10852344 DOI: 10.1371/journal.pcbi.1011796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/08/2024] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
Naturally occurring collective motion is a fascinating phenomenon in which swarming individuals aggregate and coordinate their motion. Many theoretical models of swarming assume idealized, perfect perceptual capabilities, and ignore the underlying perception processes, particularly for agents relying on visual perception. Specifically, biological vision in many swarming animals, such as locusts, utilizes monocular non-stereoscopic vision, which prevents perfect acquisition of distances and velocities. Moreover, swarming peers can visually occlude each other, further introducing estimation errors. In this study, we explore necessary conditions for the emergence of ordered collective motion under restricted conditions, using non-stereoscopic, monocular vision. We present a model of vision-based collective motion for locust-like agents: elongated shape, omni-directional visual sensor parallel to the horizontal plane, and lacking stereoscopic depth perception. The model addresses (i) the non-stereoscopic estimation of distance and velocity, (ii) the presence of occlusions in the visual field. We consider and compare three strategies that an agent may use to interpret partially-occluded visual information at the cost of the computational complexity required for the visual perception processes. Computer-simulated experiments conducted in various geometrical environments (toroidal, corridor, and ring-shaped arenas) demonstrate that the models can result in an ordered or near-ordered state. At the same time, they differ in the rate at which order is achieved. Moreover, the results are sensitive to the elongation of the agents. Experiments in geometrically constrained environments reveal differences between the models and elucidate possible tradeoffs in using them to control swarming agents. These suggest avenues for further study in biology and robotics.
Collapse
Affiliation(s)
| | - Amir Ayali
- School of Zoology and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Gal A. Kaminka
- Computer Science Department, Bar-Ilan Univeristy, Israel
| |
Collapse
|
24
|
Shirado H, Kasahara S, Christakis NA. Emergence and collapse of reciprocity in semiautomatic driving coordination experiments with humans. Proc Natl Acad Sci U S A 2023; 120:e2307804120. [PMID: 38079552 PMCID: PMC10743379 DOI: 10.1073/pnas.2307804120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Forms of both simple and complex machine intelligence are increasingly acting within human groups in order to affect collective outcomes. Considering the nature of collective action problems, however, such involvement could paradoxically and unintentionally suppress existing beneficial social norms in humans, such as those involving cooperation. Here, we test theoretical predictions about such an effect using a unique cyber-physical lab experiment where online participants (N = 300 in 150 dyads) drive robotic vehicles remotely in a coordination game. We show that autobraking assistance increases human altruism, such as giving way to others, and that communication helps people to make mutual concessions. On the other hand, autosteering assistance completely inhibits the emergence of reciprocity between people in favor of self-interest maximization. The negative social repercussions persist even after the assistance system is deactivated. Furthermore, adding communication capabilities does not relieve this inhibition of reciprocity because people rarely communicate in the presence of autosteering assistance. Our findings suggest that active safety assistance (a form of simple AI support) can alter the dynamics of social coordination between people, including by affecting the trade-off between individual safety and social reciprocity. The difference between autobraking and autosteering assistance appears to relate to whether the assistive technology supports or replaces human agency in social coordination dilemmas. Humans have developed norms of reciprocity to address collective challenges, but such tacit understandings could break down in situations where machine intelligence is involved in human decision-making without having any normative commitments.
Collapse
Affiliation(s)
- Hirokazu Shirado
- Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15206
| | - Shunichi Kasahara
- Sony Computer Science Laboratoires, Inc., Tokyo 141-0022, Japan
- Okinawa Institute of Science and Technology Graduate University, Onna son, Okinawa 904-0412, Japan
| | - Nicholas A Christakis
- Yale Institute for Network Science, Yale University, New Haven, CT 06520
- Department of Sociology, Yale University, New Haven, CT 06520
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520
| |
Collapse
|
25
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
26
|
Zada D, Schulze L, Yu JH, Tarabishi P, Napoli JL, Lovett-Barron M. Development of neural circuits for social motion perception in schooling fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563839. [PMID: 37961196 PMCID: PMC10634817 DOI: 10.1101/2023.10.25.563839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Many animals move in groups, where collective behavior emerges from the interactions amongst individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually-based schooling behavior of the micro glassfish Danionella cerebrum, here we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners. This social maturation was accompanied by the development of neural populations in the midbrain and forebrain that were preferentially driven by visual stimuli that resemble the shape and movements of schooling fish. The development of these neural circuits enables the social coordination required for collective movement.
Collapse
Affiliation(s)
- David Zada
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Lisanne Schulze
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Princess Tarabishi
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences. University of California, San Diego. La Jolla, CA, USA 92093
| |
Collapse
|
27
|
Hansen MJ, Domenici P, Bartashevich P, Burns A, Krause J. Mechanisms of group-hunting in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1687-1711. [PMID: 37199232 DOI: 10.1111/brv.12973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Group-hunting is ubiquitous across animal taxa and has received considerable attention in the context of its functions. By contrast much less is known about the mechanisms by which grouping predators hunt their prey. This is primarily due to a lack of experimental manipulation alongside logistical difficulties quantifying the behaviour of multiple predators at high spatiotemporal resolution as they search, select, and capture wild prey. However, the use of new remote-sensing technologies and a broadening of the focal taxa beyond apex predators provides researchers with a great opportunity to discern accurately how multiple predators hunt together and not just whether doing so provides hunters with a per capita benefit. We incorporate many ideas from collective behaviour and locomotion throughout this review to make testable predictions for future researchers and pay particular attention to the role that computer simulation can play in a feedback loop with empirical data collection. Our review of the literature showed that the breadth of predator:prey size ratios among the taxa that can be considered to hunt as a group is very large (<100 to >102 ). We therefore synthesised the literature with respect to these predator:prey ratios and found that they promoted different hunting mechanisms. Additionally, these different hunting mechanisms are also related to particular stages of the hunt (search, selection, capture) and thus we structure our review in accordance with these two factors (stage of the hunt and predator:prey size ratio). We identify several novel group-hunting mechanisms which are largely untested, particularly under field conditions, and we also highlight a range of potential study organisms that are amenable to experimental testing of these mechanisms in connection with tracking technology. We believe that a combination of new hypotheses, study systems and methodological approaches should help push the field of group-hunting in new directions.
Collapse
Affiliation(s)
- Matthew J Hansen
- Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Paolo Domenici
- IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi No. 1, Pisa, 56124, Italy
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170, Italy
| | - Palina Bartashevich
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| | - Alicia Burns
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| | - Jens Krause
- Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Cluster of Excellence "Science of Intelligence," Technical University of Berlin, Marchstr. 23, Berlin, 10587, Germany
| |
Collapse
|
28
|
Mudaliar RK, Schaerf TM. An examination of force maps targeted at orientation interactions in moving groups. PLoS One 2023; 18:e0286810. [PMID: 37676869 PMCID: PMC10484433 DOI: 10.1371/journal.pone.0286810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/23/2023] [Indexed: 09/09/2023] Open
Abstract
Force mapping is an established method for inferring the underlying interaction rules thought to govern collective motion from trajectory data. Here we examine the ability of force maps to reconstruct interactions that govern individual's tendency to orient, or align, their heading within a moving group, one of the primary factors thought to drive collective motion, using data from three established general collective motion models. Specifically, our force maps extract how individuals adjust their direction of motion on average as a function of the distance to neighbours and relative alignment in heading with these neighbours, or in more detail as a function of the relative coordinates and relative headings of neighbours. We also examine the association between plots of local alignment and underlying alignment rules. We find that the simpler force maps that examined changes in heading as a function of neighbour distances and differences in heading can qualitatively reconstruct the form of orientation interactions, but also overestimate the spatial range over which these interactions apply. More complex force maps that examine heading changes as a function of the relative coordinates of neighbours (in two spatial dimensions), can also reveal underlying orientation interactions in some cases, but are relatively harder to interpret. Responses to neighbours in both the simpler and more complex force maps are affected by group-level patterns of motion. We also find a correlation between the sizes of regions of high alignment in local alignment plots and the size of the region over which alignment rules apply when only an alignment interaction rule is in action. However, when data derived from more complex models is analysed, the shapes of regions of high alignment are clearly influenced by emergent patterns of motion, and these regions of high alignment can appear even when there is no explicit direct mechanism that governs alignment.
Collapse
Affiliation(s)
- Rajnesh K. Mudaliar
- School of Mathematical and Computing Science, Fiji National University, Ba, Fiji
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Timothy M. Schaerf
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
29
|
Nagy M, Naik H, Kano F, Carlson NV, Koblitz JC, Wikelski M, Couzin ID. SMART-BARN: Scalable multimodal arena for real-time tracking behavior of animals in large numbers. SCIENCE ADVANCES 2023; 9:eadf8068. [PMID: 37656798 PMCID: PMC10854427 DOI: 10.1126/sciadv.adf8068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- MTA-ELTE Lendület Collective Behavior Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Hemal Naik
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max-Planck Institute of Animal Behavior, Konstanz, Germany
| | - Fumihiro Kano
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nora V. Carlson
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Zoology, Faculty of Science/Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jens C. Koblitz
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Iain D. Couzin
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
Pertzelan A, Ariel G, Kiflawi M. Schooling of light reflecting fish. PLoS One 2023; 18:e0289026. [PMID: 37478091 PMCID: PMC10361475 DOI: 10.1371/journal.pone.0289026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
One of the hallmarks of the collective movement of large schools of pelagic fish are waves of shimmering flashes that propagate across the school, usually following an attack by a predator. Such flashes arise when sunlight is reflected off the specular (mirror-like) skin that characterizes many pelagic fishes, where it is otherwise thought to offer a means for camouflage in open waters. While it has been suggested that these 'shimmering waves' are a visual manifestation of the synchronized escape response of the fish, the phenomenon has been regarded only as an artifact of esthetic curiosity. In this study we apply agent-based simulations and deep learning techniques to show that, in fact, shimmering waves contain information on the behavioral dynamics of the school. Our analyses are based on a model that combines basic rules of collective motion and the propagation of light beams in the ocean, as they hit and reflect off the moving fish. We use the resulting reflection patterns to infer the essential dynamics and inter-individual interactions which are necessary to generate shimmering waves. Moreover, we show that light flashes observed by the school members themselves may extend the range at which information can be communicated across the school. Assuming that fish pay heed to this information, for example by entering an apprehensive state of reduced response-time, our analysis suggests that it can speed up the propagation of information across the school. Further still, we use an artificial neural network to show that light flashes are, on their own, indicative of the state and dynamics of the school, and are sufficient to infer the direction of attack and the shape of the school with high accuracy.
Collapse
Affiliation(s)
- Assaf Pertzelan
- Faculty of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Eilat, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Kiflawi
- Faculty of Life Sciences, Ben Gurion University, Beer-Sheva, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Eilat, Israel
| |
Collapse
|
31
|
Min B, San Miguel M. Threshold Cascade Dynamics in Coevolving Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:929. [PMID: 37372273 DOI: 10.3390/e25060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
We study the coevolutionary dynamics of network topology and social complex contagion using a threshold cascade model. Our coevolving threshold model incorporates two mechanisms: the threshold mechanism for the spreading of a minority state such as a new opinion, idea, or innovation and the network plasticity, implemented as the rewiring of links to cut the connections between nodes in different states. Using numerical simulations and a mean-field theoretical analysis, we demonstrate that the coevolutionary dynamics can significantly affect the cascade dynamics. The domain of parameters, i.e., the threshold and mean degree, for which global cascades occur shrinks with an increasing network plasticity, indicating that the rewiring process suppresses the onset of global cascades. We also found that during evolution, non-adopting nodes form denser connections, resulting in a wider degree distribution and a non-monotonous dependence of cascades sizes on plasticity.
Collapse
Affiliation(s)
- Byungjoon Min
- Department of Physics, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Maxi San Miguel
- IFISC (CSIC-UIB), Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat Illes Balears, E-07122 Palma, Spain
| |
Collapse
|
32
|
Shelton DS, Dinges ZM, Khemka A, Sykes DJ, Suriyampola PS, Shelton DEP, Boyd P, Kelly JR, Bower M, Amro H, Glaholt SP, Latta MB, Perkins HL, Shaw JR, Martins EP. A pair of cadmium-exposed zebrafish affect social behavior of the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104119. [PMID: 37028532 PMCID: PMC10423439 DOI: 10.1016/j.etap.2023.104119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 06/15/2023]
Abstract
To account for global contamination events, we must identify direct and indirect pollutant effects. Although pollutants can have direct effects on individuals, it is unknown how a few contaminated individuals affect groups, a widespread social organization. We show environmentally relevant levels of cadmium (Cd) can have indirect social effects revealed in the social context of a larger group. Cd-contaminated individuals had poor vision and more aggressive responses, but no other behavioral effects. The presence of experienced Cd-exposed pairs in the groups had an indirect effect on the un-exposed individual's social interactions leading to the shoal becoming bolder and moving closer to a novel object than control groups. Because a few directly affected individuals could indirectly affect social behavior of the un-exposed majority, we believe that such acute but potentially important heavy metal toxicity could inform reliable predictions about the consequences of their use in a changing world.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33134, USA.
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Anuj Khemka
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Delawrence J Sykes
- Department of Biology, Berry College, 2277 Martha Berry Hwy NW, Mount Berry, GA 30149, USA
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| | | | - Ploypenmas Boyd
- Biochemistry and Molecular Biology, Oregon State University, 128 Kidder Hall, Corvallis 97331, OR, USA
| | - Jeffrey R Kelly
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Myra Bower
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Halima Amro
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Stephen P Glaholt
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Mitchell B Latta
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Hannah L Perkins
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| |
Collapse
|
33
|
Beck KB, Sheldon BC, Firth JA. Social learning mechanisms shape transmission pathways through replicate local social networks of wild birds. eLife 2023; 12:85703. [PMID: 37128701 PMCID: PMC10154030 DOI: 10.7554/elife.85703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
The emergence and spread of novel behaviours via social learning can lead to rapid population-level changes whereby the social connections between individuals shape information flow. However, behaviours can spread via different mechanisms and little is known about how information flow depends on the underlying learning rule individuals employ. Here, comparing four different learning mechanisms, we simulated behavioural spread on replicate empirical social networks of wild great tits and explored the relationship between individual sociality and the order of behavioural acquisition. Our results reveal that, for learning rules dependent on the sum and strength of social connections to informed individuals, social connectivity was related to the order of acquisition, with individuals with increased social connectivity and reduced social clustering adopting new behaviours faster. However, when behavioural adoption depends on the ratio of an individuals' social connections to informed versus uninformed individuals, social connectivity was not related to the order of acquisition. Finally, we show how specific learning mechanisms may limit behavioural spread within networks. These findings have important implications for understanding whether and how behaviours are likely to spread across social systems, the relationship between individuals' sociality and behavioural acquisition, and therefore for the costs and benefits of sociality.
Collapse
Affiliation(s)
- Kristina B Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben C Sheldon
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Josh A Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Franke L, Peter C. Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding. J Chem Theory Comput 2023; 19:2985-2995. [PMID: 37122117 DOI: 10.1021/acs.jctc.2c01228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Characterizing the structural dynamics of proteins with heterogeneous conformational landscapes is crucial to understanding complex biomolecular processes. To this end, dimensionality reduction algorithms are used to produce low-dimensional embeddings of the high-dimensional conformational phase space. However, identifying a compact and informative set of input features for the embedding remains an ongoing challenge. Here, we propose to harness the power of Residue Interaction Networks (RINs) and their centrality measures, established tools to provide a graph theoretical view on molecular structure. Specifically, we combine the closeness centrality, which captures global features of the protein conformation at residue-wise resolution, with EncoderMap, a hybrid neural-network autoencoder/multidimensional-scaling like dimensionality reduction algorithm. We find that the resulting low-dimensional embedding is a meaningful visualization of the residue interaction landscape that resolves structural details of the protein behavior while retaining global interpretability. This feature-based graph embedding of temporal protein graphs makes it possible to apply the general descriptive power of RIN formalisms to the analysis of protein simulations of complex processes such as protein folding and multidomain interactions requiring no protein-specific input. We demonstrate this on simulations of the fast folding protein Trp-Cage and the multidomain signaling protein FAT10. Due to its generality and modularity, the presented approach can easily be transferred to other protein systems.
Collapse
Affiliation(s)
- Leon Franke
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
35
|
Romero-Ferrero F, Heras FJH, Rance D, de Polavieja GG. A study of transfer of information in animal collectives using deep learning tools. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220073. [PMID: 36802786 PMCID: PMC9939271 DOI: 10.1098/rstb.2022.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
We studied how the interactions among animals in a collective allow for the transfer of information. We performed laboratory experiments to study how zebrafish in a collective follow a subset of trained animals that move towards a light when it turns on because they expect food at that location. We built some deep learning tools to distinguish from video which are the trained and the naïve animals and to detect when each animal reacts to the light turning on. These tools gave us the data to build a model of interactions that we designed to have a balance between transparency and accuracy. The model finds a low-dimensional function that describes how a naïve animal weights neighbours depending on focal and neighbour variables. According to this low-dimensional function, neighbour speed plays an important role in the interactions. Specifically, a naïve animal weights more a neighbour in front than to the sides or behind, and more so the faster the neighbour is moving; and if the neighbour moves fast enough, the differences coming from the neighbour's relative position largely disappear. From the lens of decision-making, neighbour speed acts as confidence measure about where to go. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | | | - Dean Rance
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | | |
Collapse
|
36
|
Sridhar VH, Davidson JD, Twomey CR, Sosna MMG, Nagy M, Couzin ID. Inferring social influence in animal groups across multiple timescales. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220062. [PMID: 36802787 PMCID: PMC9939267 DOI: 10.1098/rstb.2022.0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Many animal behaviours exhibit complex temporal dynamics, suggesting there are multiple timescales at which they should be studied. However, researchers often focus on behaviours that occur over relatively restricted temporal scales, typically ones that are more accessible to human observation. The situation becomes even more complex when considering multiple animals interacting, where behavioural coupling can introduce new timescales of importance. Here, we present a technique to study the time-varying nature of social influence in mobile animal groups across multiple temporal scales. As case studies, we analyse golden shiner fish and homing pigeons, which move in different media. By analysing pairwise interactions among individuals, we show that predictive power of the factors affecting social influence depends on the timescale of analysis. Over short timescales the relative position of a neighbour best predicts its influence and the distribution of influence across group members is relatively linear, with a small slope. At longer timescales, however, both relative position and kinematics are found to predict influence, and nonlinearity in the influence distribution increases, with a small number of individuals being disproportionately influential. Our results demonstrate that different interpretations of social influence arise from analysing behaviour at different timescales, highlighting the importance of considering its multiscale nature. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Vivek H. Sridhar
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany
| | - Jacob D. Davidson
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA,Mind Center for Outreach, Research, and Education, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Máté Nagy
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest 1117, Hungary,MTA-ELTE ‘Lendület’ Collective Behaviour Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary,Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1A, Budapest 1117, Hungary
| | - Iain D. Couzin
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
37
|
Collet J, Morford J, Lewin P, Bonnet-Lebrun AS, Sasaki T, Biro D. Mechanisms of collective learning: how can animal groups improve collective performance when repeating a task? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220060. [PMID: 36802785 PMCID: PMC9939276 DOI: 10.1098/rstb.2022.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 02/21/2023] Open
Abstract
Learning is ubiquitous in animals: individuals can use their experience to fine-tune behaviour and thus to better adapt to the environment during their lifetime. Observations have accumulated that, at the collective level, groups can also use their experience to improve collective performance. Yet, despite apparent simplicity, the links between individual learning capacities and a collective's performance can be extremely complex. Here we propose a centralized and broadly applicable framework to begin classifying this complexity. Focusing principally on groups with stable composition, we first identify three distinct ways through which groups can improve their collective performance when repeating a task: each member learning to better solve the task on its own, members learning about each other to better respond to one another and members learning to improve their complementarity. We show through selected empirical examples, simulations and theoretical treatments that these three categories identify distinct mechanisms with distinct consequences and predictions. These mechanisms extend well beyond current social learning and collective decision-making theories in explaining collective learning. Finally, our approach, definitions and categories help generate new empirical and theoretical research avenues, including charting the expected distribution of collective learning capacities across taxa and its links to social stability and evolution. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Julien Collet
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
- Department of Zoology, Marine Apex Predator Research Unit, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth-Gqeberha 6031, South Africa
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers en Bois, France
| | - Joe Morford
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Patrick Lewin
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Anne-Sophie Bonnet-Lebrun
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers en Bois, France
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Dora Biro
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
38
|
Fahimipour AK, Gil MA, Celis MR, Hein GF, Martin BT, Hein AM. Wild animals suppress the spread of socially transmitted misinformation. Proc Natl Acad Sci U S A 2023; 120:e2215428120. [PMID: 36976767 PMCID: PMC10083541 DOI: 10.1073/pnas.2215428120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.
Collapse
Affiliation(s)
- Ashkaan K. Fahimipour
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL33431
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | - Michael A. Gil
- Department of Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
| | - Maria Rosa Celis
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA95060
| | | | - Benjamin T. Martin
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Andrew M. Hein
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| |
Collapse
|
39
|
Xiao R, Li W, Zhao D, Sun Y. Directional switches in network-organized swarming systems with delay. CHAOS (WOODBURY, N.Y.) 2023; 33:043143. [PMID: 37114988 DOI: 10.1063/5.0142917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Coordinated directional switches can emerge between members of moving biological groups. Previous studies have shown that the self-propelled particles model can well reproduce directional switching behaviors, but it neglects the impact of social interactions. Thus, we focus on the influence of social interactions on the ordered directional switching motion of swarming systems, in which homogeneous Erdös-Rényi networks, heterogeneous scale-free networks, networks with community structures, and real-world animal social networks have been considered. The theoretical estimation of mean switching time is obtained, and the results show that the interplay between social and delayed interactions plays an important role in regulating directional switching behavior. To be specific, for homogeneous Erdös-Rényi networks, the increase in mean degree may suppress the directional switching behaviors if the delay is sufficiently small. However, when the delay is large, the large mean degree may promote the directional switching behavior. For heterogeneous scale-free networks, the increase of degree heterogeneity can reduce the mean switching time if the delay is sufficiently small, while the increasing degree heterogeneity may suppress the ordered directional switches if the delay is large. For networks with community structures, higher communities can promote directional switches for small delays, while for large delays, it may inhibit directional switching behavior. For dolphin social networks, delay can promote the directional switching behavior. Our results bring to light the role of social and delayed interactions in the ordered directional switching motion.
Collapse
Affiliation(s)
- Rui Xiao
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Wang Li
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Donghua Zhao
- School of Mathematical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongzheng Sun
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| |
Collapse
|
40
|
Quera V, Beltran FS, Gimeno E, Dolado R. Motion leadership and local interaction in two species of freshwater fish (Danio rerio and Hyphessobrycon herbertaxelrodi). JOURNAL OF FISH BIOLOGY 2023; 102:856-869. [PMID: 36647918 DOI: 10.1111/jfb.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The authors studied momentary motion leadership in small groups of black neon tetra (Hyphessobrycon herbertaxelrodi) and zebrafish (Danio rerio), its relationship with local interaction parameters, such as the acceleration and turning angle of the individuals, and the relative locations of the individuals within the group. The purpose was to know whether leadership tended to be monopolised by certain individuals or whether it was equitably shared between them and if there were differences in leadership sharing between these two species, which are known to have different degrees of cohesion and polarisation. The authors filmed groups of two, three, four and eight fishes of each species and tracked their individual motion by image analysis and trajectory extraction. In both species, motion leadership was not monopolized but egalitarian and very short lived, with leadership shifts distributed randomly over time. The duration of leadership episodes decreased as group size increased and was longer in black neon tetra than in zebrafish. Momentary leaders did not tend to be in the front positions, but closer to the centre of the group. Acceleration and turning angle were more extreme in zebrafish than in black neon tetra and in the momentary leaders than the followers in both species. In general, these differences between species and between leaders/followers were qualitatively similar with some differences in detail, indicating that the relationship between motion leadership and local interaction parameters is likely to conform to a general physical law.
Collapse
Affiliation(s)
- Vicenç Quera
- Institute of Neurosciences (NeuroUB), Quantitative Psychology Unit, University of Barcelona, Barcelona, Spain
| | - Francesc S Beltran
- Institute of Neurosciences (NeuroUB), Quantitative Psychology Unit, University of Barcelona, Barcelona, Spain
| | - Elisabet Gimeno
- Institute of Neurosciences (NeuroUB), Quantitative Psychology Unit, University of Barcelona, Barcelona, Spain
| | - Ruth Dolado
- Institute of Neurosciences (NeuroUB), Quantitative Psychology Unit, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Tiwari A, Devasia S, Riley JJ. Low-distortion information propagation with noise suppression in swarm networks. Proc Natl Acad Sci U S A 2023; 120:e2219948120. [PMID: 36897967 PMCID: PMC10089222 DOI: 10.1073/pnas.2219948120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023] Open
Abstract
A method for low-distortion (low-dissipation, low-dispersion) information propagation in swarm-type networks with suppression of high-frequency noise is presented. Information propagation in current neighbor-based networks, where each agent seeks to achieve a consensus with its neighbors, is diffusion-like, dissipative, and dispersive and does not reflect the wave-like (superfluidic) behavior seen in nature. However, pure wave-like neighbor-based networks have two challenges: i) It requires additional communication for sharing information about time derivatives and ii) it can lead to information decoherence through noise at high frequencies. The main contribution of this work is to show that delayed self-reinforcement (DSR) by the agents using prior information (e.g., using short-term memory) can lead to the wave-like information propagation at low-frequencies as seen in nature without the need for additional information sharing between the agents. Moreover, it is shown that the DSR can be designed to enable suppression of high-frequency noise transmission while limiting the dissipation and dispersion of (lower-frequency) information content leading to similar (cohesive) behavior of agents. In addition to explaining noise-suppressed wave-like information transfer in natural systems, the result impacts the design of noise-suppressing cohesive algorithms for engineered networks.
Collapse
Affiliation(s)
- Anuj Tiwari
- Mechanical Engineering Department, University of Washington, Seattle, WA98195
| | - Santosh Devasia
- Mechanical Engineering Department, University of Washington, Seattle, WA98195
| | - James J. Riley
- Mechanical Engineering Department, University of Washington, Seattle, WA98195
| |
Collapse
|
42
|
Rands SA, Ioannou CC. Personality variation is eroded by simple social behaviours in collective foragers. PLoS Comput Biol 2023; 19:e1010908. [PMID: 36862622 PMCID: PMC9980820 DOI: 10.1371/journal.pcbi.1010908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The movement of groups can be heavily influenced by 'leader' individuals who differ from the others in some way. A major source of differences between individuals is the repeatability and consistency of their behaviour, commonly considered as their 'personality', which can influence both position within a group as well as the tendency to lead. However, links between personality and behaviour may also depend upon the immediate social environment of the individual; individuals who behave consistently in one way when alone may not express the same behaviour socially, when they may be conforming with the behaviour of others. Experimental evidence shows that personality differences can be eroded in social situations, but there is currently a lack of theory to identify the conditions where we would expect personality to be suppressed. Here, we develop a simple individual-based framework considering a small group of individuals with differing tendencies to perform risky behaviours when travelling away from a safe home site towards a foraging site, and compare the group behaviours when the individuals follow differing rules for aggregation behaviour determining how much attention they pay to the actions of their fellow group-members. We find that if individuals pay attention to the other members of the group, the group will tend to remain at the safe site for longer, but then travel faster towards the foraging site. This demonstrates that simple social behaviours can result in the repression of consistent inter-individual differences in behaviour, giving the first theoretical consideration of the social mechanisms behind personality suppression.
Collapse
Affiliation(s)
- Sean A. Rands
- School of Biological Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
43
|
Abella D, San Miguel M, Ramasco JJ. Aging in binary-state models: The Threshold model for complex contagion. Phys Rev E 2023; 107:024101. [PMID: 36932591 DOI: 10.1103/physreve.107.024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 02/04/2023]
Abstract
We study the non-Markovian effects associated with aging for binary-state dynamics in complex networks. Aging is considered as the property of the agents to be less prone to change their state the longer they have been in the current state, which gives rise to heterogeneous activity patterns. In particular, we analyze aging in the Threshold model, which has been proposed to explain the process of adoption of new technologies. Our analytical approximations give a good description of extensive Monte Carlo simulations in Erdős-Rényi, random-regular and Barabási-Albert networks. While aging does not modify the cascade condition, it slows down the cascade dynamics towards the full-adoption state: the exponential increase of adopters in time from the original model is replaced by a stretched exponential or power law, depending on the aging mechanism. Under several approximations, we give analytical expressions for the cascade condition and for the exponents of the adopters' density growth laws. Beyond random networks, we also describe by Monte Carlo simulations the effects of aging for the Threshold model in a two-dimensional lattice.
Collapse
Affiliation(s)
- David Abella
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - Maxi San Miguel
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - José J Ramasco
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| |
Collapse
|
44
|
Gray L, Webster MM. False alarms and information transmission in grouping animals. Biol Rev Camb Philos Soc 2023; 98:833-848. [PMID: 36653332 DOI: 10.1111/brv.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
A key benefit of grouping in prey species is access to social information, including information about the presence of predators. Larger groups of prey animals respond both sooner and at greater distances from predators, increasing the likelihood that group members will successfully avoid capture. However, identifying predators in complex environments is a difficult task, and false alarms (alarm behaviours without genuine threat) appear surprisingly frequent across a range of taxa including insects, amphibians, fish, mammals, and birds. In some bird flocks, false alarms have been recorded to substantially outnumber true alarms. False alarms can be costly in terms of both the energetic costs of producing alarm behaviours as well as lost opportunity costs (e.g. abandoning a feeding patch which was in fact safe, losing sleep if an animal is resting/roosting, or losing mating opportunities). Models have shown that false alarms may be a substantial but underappreciated cost of group living, introducing an inherent risk to using social information and a vulnerability to the propagation of false information. This review will focus on false alarms, introducing a two-stage framework to categorise the different factors hypothesised to influence the propensity of animal groups to produce false alarms. A number of factors may affect false alarm rate, and this new framework splits these factors into two core processing stages: (i) individual perception and response; and (ii) group processing of predator information. In the first stage, individuals in the group monitor the environment for predator cues and respond. The factors highlighted in this stage influence the likelihood that an individual will misclassify stimuli and produce a false alarm (e.g. lower light levels can make predator identification more difficult and false alarms more common). In the second stage, alarm information from individuals is processed by the group. The factors highlighted in this stage influence the likelihood of alarm information being copied by group members and propagated through the group (e.g. some animals implement group processing mechanisms that regulate the spread of behavioural responses such as consensus decision making through the quorum response). This review follows the structure of this new framework, focussing on the causes of false alarms, factors that influence false alarm rate, the transmission of alarm information through animal groups, mechanisms to mitigate the spread of false alarms, and the consequences of false alarms.
Collapse
Affiliation(s)
- Leah Gray
- Centre for Biological Diversity, Sir Harold Mitchell Building & Dyers Brae, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.,Zoology Building, Tillydrone Avenue, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mike M Webster
- Centre for Biological Diversity, Sir Harold Mitchell Building & Dyers Brae, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| |
Collapse
|
45
|
Krongauz DL, Lazebnik T. Collective evolution learning model for vision-based collective motion with collision avoidance. PLoS One 2023; 18:e0270318. [PMID: 37163523 PMCID: PMC10171646 DOI: 10.1371/journal.pone.0270318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/09/2023] [Indexed: 05/12/2023] Open
Abstract
Collective motion (CM) takes many forms in nature; schools of fish, flocks of birds, and swarms of locusts to name a few. Commonly, during CM the individuals of the group avoid collisions. These CM and collision avoidance (CA) behaviors are based on input from the environment such as smell, air pressure, and vision, all of which are processed by the individual and defined action. In this work, a novel vision-based CM with CA model (i.e., VCMCA) simulating the collective evolution learning process is proposed. In this setting, a learning agent obtains a visual signal about its environment, and throughout trial-and-error over multiple attempts, the individual learns to perform a local CM with CA which emerges into a global CM with CA dynamics. The proposed algorithm was evaluated in the case of locusts' swarms, showing the evolution of these behaviors in a swarm from the learning process of the individual in the swarm. Thus, this work proposes a biologically-inspired learning process to obtain multi-agent multi-objective dynamics.
Collapse
Affiliation(s)
- David L Krongauz
- Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
| | - Teddy Lazebnik
- Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
46
|
Kano F, Naik H, Keskin G, Couzin ID, Nagy M. Head-tracking of freely-behaving pigeons in a motion-capture system reveals the selective use of visual field regions. Sci Rep 2022; 12:19113. [PMID: 36352049 PMCID: PMC9646700 DOI: 10.1038/s41598-022-21931-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Using a motion-capture system and custom head-calibration methods, we reconstructed the head-centric view of freely behaving pigeons and examined how they orient their head when presented with various types of attention-getting objects at various relative locations. Pigeons predominantly employed their retinal specializations to view a visual target, namely their foveas projecting laterally (at an azimuth of ± 75°) into the horizon, and their visually-sensitive "red areas" projecting broadly into the lower-frontal visual field. Pigeons used their foveas to view any distant object while they used their red areas to view a nearby object on the ground (< 50 cm). Pigeons "fixated" a visual target with their foveas; the intervals between head-saccades were longer when the visual target was viewed by birds' foveas compared to when it was viewed by any other region. Furthermore, pigeons showed a weak preference to use their right eye to examine small objects distinctive in detailed features and their left eye to view threat-related or social stimuli. Despite the known difficulty in identifying where a bird is attending, we show that it is possible to estimate the visual attention of freely-behaving birds by tracking the projections of their retinal specializations in their visual field with cutting-edge methods.
Collapse
Affiliation(s)
- Fumihiro Kano
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
| | - Hemal Naik
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Ecology of Animal Societies, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Computer Aided Medical Procedures, Teschnische Universiät Munchen, Munich, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göksel Keskin
- MTA-ELTE Lendület Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Máté Nagy
- Department of Collective Behaviour, Max-Planck Institute of Animal Behavior, Konstanz, Germany.
- MTA-ELTE Lendület Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
47
|
Centola D. The network science of collective intelligence. Trends Cogn Sci 2022; 26:923-941. [PMID: 36180361 DOI: 10.1016/j.tics.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
In the last few years, breakthroughs in computational and experimental techniques have produced several key discoveries in the science of networks and human collective intelligence. This review presents the latest scientific findings from two key fields of research: collective problem-solving and the wisdom of the crowd. I demonstrate the core theoretical tensions separating these research traditions and show how recent findings offer a new synthesis for understanding how network dynamics alter collective intelligence, both positively and negatively. I conclude by highlighting current theoretical problems at the forefront of research on networked collective intelligence, as well as vital public policy challenges that require new research efforts.
Collapse
Affiliation(s)
- Damon Centola
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Sociology, University of Pennsylvania, Philadelphia, PA 19104, USA; Network Dynamics Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Kuruvilla M, Dell A, Olson AR, Knouft J, Grady JM, Forbes J, Berdahl AM. The effect of temperature on fish swimming and schooling is context dependent. OIKOS 2022. [DOI: 10.1111/oik.09202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Kuruvilla
- Quantitative Ecology and Resource Management Program, Univ. of Washington Seattle WA USA
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| | - Anthony Dell
- National Great Rivers Research and Education Center, One Confluence Way East Alton IL USA
- Dept of Biology, Saint Louis Univ. St. Louis MO USA
- Dept of Biology, Washington University in St. Louis St. Louis MO USA
| | - Ashley R. Olson
- School of Science, Psychology and Sport, Federation Univ. Australia Churchill VIC Australia
| | - Jason Knouft
- Dept of Biology, Saint Louis Univ. St. Louis MO USA
| | - John M. Grady
- National Great Rivers Research and Education Center, One Confluence Way East Alton IL USA
| | - Jacob Forbes
- National Great Rivers Research and Education Center, One Confluence Way East Alton IL USA
- Dept of Biological Sciences, Southern Illinois Univ. Edwardsville Edwardsville IL USA
| | - Andrew M. Berdahl
- Quantitative Ecology and Resource Management Program, Univ. of Washington Seattle WA USA
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| |
Collapse
|
49
|
Sankey DWE. 'Selfish herders' finish last in mobile animal groups. Proc Biol Sci 2022; 289:20221653. [PMID: 36285496 PMCID: PMC9597400 DOI: 10.1098/rspb.2022.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Predation is a powerful selective pressure and probably a driver of why many animal species live in groups. One key explanation for the evolution of sociality is the 'selfish herd' model, which describes how individuals who stay close to others effectively put neighbours between themselves and a predator to survive incoming attacks. This model is often illustrated with reference to herds of ungulates, schools of fish or flocks of birds. Yet in nature, when a predator strikes, herds are often found fleeing cohesively in the same direction, not jostling for position in the centre of the group. This paper highlights a critical assumption of the original model, namely that prey do not move in response to position of their predator. In this model, I relax this assumption and find that individuals who adopt 'selfish herd' behaviour are often more likely to be captured, because they end up at the back of a fleeing herd. By contrast, individuals that adopt a rule of 'neighbour to neighbour alignment' are able to avoid rearmost positions in a moving herd. Alignment is more successful than selfish herding across much of the parameter space, which may explain why highly aligned fleeing behaviour is commonly observed in nature.
Collapse
Affiliation(s)
- Daniel W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
50
|
He P, Klarevas‐Irby JA, Papageorgiou D, Christensen C, Strauss ED, Farine DR. A guide to sampling design for
GPS
‐based studies of animal societies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Biology University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - James A. Klarevas‐Irby
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Biology University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
- Mpala Research Centre Nanyuki Kenya
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - Charlotte Christensen
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Mpala Research Centre Nanyuki Kenya
| | - Eli D. Strauss
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australia
- Department of Ornithology National Museums of Kenya Nairobi Kenya
| |
Collapse
|