1
|
Cheng N, Zhou Q, Jia Z, Mu Y, Zhang S, Wang L, Chen Y. Functionalized biomimetic nanoparticles loaded with salvianolic acid B for synergistic targeted triple-negative breast cancer treatment. Mater Today Bio 2025; 30:101441. [PMID: 39866795 PMCID: PMC11762562 DOI: 10.1016/j.mtbio.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors. PMNP-SAB, which is based on a mixed coating of red blood cell membrane and TAF membrane (named PMNP-SAB@RTM), can simultaneously achieve the dual effects of "immune escape" and "homologous targeting". Under the influence of an external magnetic field (MF), SAB can be targeted and concentrated at the tumor site. The SAB released in tumors can effectively inhibit the production of extracellular matrix (ECM) by TAFs, promote T-cell infiltration, and induce antitumor immune responses. Ultimately, the combination of PMNP-SAB@RTM and BMS-1 (PD-1/PD-L1 inhibitor 1) effectively inhibited tumor growth. Finally, this study presents a precise and effective new strategy for TNBC immunotherapy on the basis of the differentiation of "cold" and "hot" microenvironments.
Collapse
Affiliation(s)
- Nuo Cheng
- Anhui University of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Qianqian Zhou
- Anhui University of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Zongfang Jia
- Anhui University of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Yang Mu
- Anhui University of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Sheng Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- Anhui University of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Yunna Chen
- Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
2
|
Hajra D, Rajmani RS, Chaudhary AD, Gupta SK, Chakravortty D. Salmonella-induced SIRT1 and SIRT3 are crucial for maintaining the metabolic switch in bacteria and host for successful pathogenesis. eLife 2024; 13:RP93125. [PMID: 39693143 PMCID: PMC11655064 DOI: 10.7554/elife.93125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular Salmonella's metabolic switch and pathogenesis establishment. Our study indicated the ability of the live Salmonella Typhimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism in Salmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation of Salmonella in the macrophages. Further, Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2, making it more conducive for the intracellular life of Salmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skew Salmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knockdown of SIRT1/3 attenuated Salmonella proliferation in macrophages, in in vivo mice model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden, which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time that Salmonella modulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.
Collapse
Grants
- SPM-07/079(0293)/2019-EMR-I (CSIR Shyama Prasad Mukherjee Fellowship) Council of Scientific and Industrial Research, India
- DAE00195 Department of Atomic Energy, Government of India
- DBT-IISC Department of Biotechnology, Ministry of Science & Technology, India
- BT/RLF/re-entry/14/2019 Department of Biotechnology, Ministry of Science and Technology, India
- Department of Biotechnology, Ministry of Science & Technology, India
- Indian Council of Medical Research
- Department of Science & Technology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangaloreIndia
| | - Raju S Rajmani
- Centre of Infectious Disease Research, Indian Institute of ScienceBangaloreIndia
| | - Ayushi Devendrasingh Chaudhary
- Pharmacology Division, CSIR-Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangaloreIndia
- Adjunct Faculty, School of Biology, Indian Institute of Science Education and ResearchThiruvananthapuramIndia
| |
Collapse
|
3
|
Liu Q, Wang N, Sun H, Dong H, Li X, Yu X, Huang Y. Up-regulation of MDSCs accumulation and Th2 biased response to co-stimulation of CsESP from Clonorchis sinensis and HBeAg in vitro. Acta Trop 2024; 260:107405. [PMID: 39288888 DOI: 10.1016/j.actatropica.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Co-infection with Clonorchis sinensis (C. sinensis) and Hepatitis B virus (HBV) are commonly observed in endemic areas of Clonorchiasis. Chronic infection of C. sinensis or HBV is more likely to happen. However, the immune mechanisms related to the pathogenesis of co-infection remain unknown. In the present study, Myeloid-derived suppressor cells (MDSCs) accumulation, bone marrow derived dendritic cells (BMDCs) reaction and the consequent effectors on Th1/Th2 polarization to co-incubation of excretory-secretory products from C. sinensis (CsESP) and Hepatitis B e antigen (HBeAg) in vitro were investigated for further understanding the immune response during co-infection. The results indicated that compared with CsESP or HBeAg alone, co-stimulation dominantly promoted MDSCs accumulation. Co-stimulation significantly downregulated the expression of CD80 and CD86, and reduced IL-12p70 release while augmented IL-10 levels of BMDCs. Higher transcription levels of mannose receptor (MR) while lower mRNA level of toll like receptor 4 (TLR-4) were detected among membrane receptors of BMDCs with co-treatment. In addition, after CD4 naïve T cells were stimulated by LPS-treated BMDCs with CsESP and HBeAg, the proportion of CD4+IL-4+ T cells and IL-4 increased, while CD4+INF-γ+ T cells percentage and INF-γ down-regulated. In conclusion, CsESP and HBeAg co-incubation more distinctly suppressed maturation of BMDCs resulting in increase of IL-10 and decrease of IL-12 highly possible by up-regulation of MR and down-regulation of TLR-4 of BMDCs, and successively induce Th2 immune skewing. These findings laid the cornerstone to further clarify immune responses during the co-infection contributing to the better precise treatment and progression assessment of co-infection patients.
Collapse
Affiliation(s)
- Qiannan Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Department of Nutrition, Jiangmen Central Hospital, Jiangmen 529030, Guangdong Province, PR China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Nian Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, PR China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, PR China
| | - Huimin Dong
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, PR China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, PR China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, PR China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, PR China.
| |
Collapse
|
4
|
de Lima J, Leite JA, Basso PJ, Ghirotto B, Martins da Silva E, Menezes-Silva L, Hiyane MI, Goes CP, Coutinho LL, de Andrade Oliveira V, Olsen Saraiva Câmara N. Sirtuin 1 regulates the phenotype and functions of dendritic cells through Ido1 pathway in obesity. Cell Death Dis 2024; 15:757. [PMID: 39424786 PMCID: PMC11489582 DOI: 10.1038/s41419-024-07125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase (HDAC3) that plays a crucial role in regulating the activation and differentiation of dendritic cells (DCs) as well as controlling the polarization and activation of T cells. Obesity, a chronic inflammatory condition, is characterized by the activation of immune cells in various tissues. We hypothesized that SIRT1 might influence the phenotype and functions of DCs through the Ido1 pathway, ultimately leading to the polarization towards pro-inflammatory T cells in obesity. In our study, we observed that SIRT1 activity was reduced in bone marrow-derived DCs (BMDCs) from obese animals. These BMDCs exhibited elevated oxidative phosphorylation (OXPHOS) and increased extracellular acidification rates (ECAR), along with enhanced expression of class II MHC, CD86, and CD40, and elevated secretion of IL-12p40, while the production of TGF-β was reduced. The kynurenine pathway activity was decreased in BMDCs from obese animals, particularly under SIRT1 inhibition. SIRT1 positively regulated the expression of Ido1 in DCs in a PPARγ-dependent manner. To support these findings, ATAC-seq analysis revealed that BMDCs from obese mice had differentially regulated open chromatin regions compared to those from lean mice, with reduced chromatin accessibility at the Sirt1 genomic locus in BMDCs from obese WT mice. Gene Ontology (GO) enrichment analysis indicated that BMDCs from obese animals had disrupted metabolic pathways, including those related to GTPase activity and insulin response. Differential expression analysis showed reduced levels of Pparg and Sirt1 in BMDCs from obese mice, which was challenged and confirmed using BMDCs from mice with conditional knockout of Sirt1 in dendritic cells (SIRT1∆). This study highlights that SIRT1 controls the metabolism and functions of DCs through modulation of the kynurenine pathway, with significant implications for obesity-related inflammation.
Collapse
Affiliation(s)
- Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson Antônio Leite
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloisa Martins da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luisa Menezes-Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Vinicius de Andrade Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil.
| | | |
Collapse
|
5
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Lu Y, Tang X, Wang W, Yang J, Wang S. The role of deacetylase SIRT1 in allergic diseases. Front Immunol 2024; 15:1422541. [PMID: 39081309 PMCID: PMC11286408 DOI: 10.3389/fimmu.2024.1422541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein is an NAD+-dependent class-III lysine deacetylase that serves as an important post-transcriptional modifier targeting lysine acetylation sites to mediate deacetylation modifications of histones and non-histone proteins. SIRT1 has been reported to be involved in several physiological or pathological processes such as aging, inflammation, immune responses, oxidative stress and allergic diseases. In this review, we summarized the regulatory roles of SIRT1 during allergic disorder progression. Furthermore, we highlight the therapeutic effects of targeting SIRT1 in allergic diseases.
Collapse
Affiliation(s)
- Yun Lu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Sun W, Xie S, Liu SF, Hu X, Xing D. Evolving Tumor Characteristics and Smart Nanodrugs for Tumor Immunotherapy. Int J Nanomedicine 2024; 19:3919-3942. [PMID: 38708176 PMCID: PMC11070166 DOI: 10.2147/ijn.s453265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.
Collapse
Affiliation(s)
- Wenshe Sun
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Shi Feng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xiaokun Hu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
9
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Wang Y, Cao Y, Han L, Wang L, Huang Y, Zhao L, Bi Y, Liu G. Deacetylase sirtuin 2 negatively regulates myeloid-derived suppressor cell functions in allograft rejection. Am J Transplant 2023; 23:1845-1857. [PMID: 37633450 DOI: 10.1016/j.ajt.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Although myeloid-derived suppressor cells (MDSCs) are critical for allograft survival, their regulatory mechanism remains unclear. Herein, our results showed that metabolism sensor sirtuin 2 (SIRT2) negatively regulates the functions of MDSCs in inducing allogeneic skin graft rejection. Genetic deletion of SIRT2 in myeloid cells (Sirt2Δmye) increased the number of CD11b+Gr1+ MDSCs in bone marrow, spleens, draining lymph nodes, and allografts, inhibited the production of proinflammatory cytokine tumor necrosis factor ɑ, enhanced the production of anti-inflammatory cytokine interleukin 10, and potentiated the suppressive activation of MDSCs in prolonging allograft skin survival. C-X-C motif chemokine receptor 2 is critical for mediating the recruitment and cytokine production of MDSCs induced by SIRT2. Mechanistically, Sirt2Δmye enhanced NAD+ levels, succinate dehydrogenase subunit A (SDHA) activities, and oxidative phosphorylation (OXPHOS) levels in MDSCs after transplantation. Pharmacologically blocking nicotinamide phosphoribosyltransferase effectively reverses the production of cytokines and suppressive activities of MDSC induced by Sirt2Δmye. Blocking OXPHOS with knockdown of SDHA or pharmacological blocking of SDHA significantly restores Sirt2Δmye-mediated stronger MDSC suppressive activity and inflammatory factor productions. Thus, our findings identify a previously unrecognized interplay between NAD+ and SDH-mediated OXPHOS metabolic pathways in regulating MDSC functions induced by the metabolic sensor SIRT2 in allogeneic transplantation.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Linian Han
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
12
|
Guo W, Cui S, Tang X, Yan Y, Xiong F, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal microbiomics and hepatic metabolomics insights into the potential mechanisms of probiotic Bifidobacterium pseudolongum CCFM1253 preventing acute liver injury in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37099000 DOI: 10.1002/jsfa.12665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bifidobacterium pseudolongum is widely exists in mammal gut and its abundance is associated with human and animal health. The present study aimed to investigate the potential mechanisms of B. pseudolongum CCFM1253 on protecting against lipopolysaccharide (LPS)-induced acute liver injury (ALI) by metagenomic analysis and liver metabolomic profiles. RESULTS Bifidobacterium pseudolongum CCFM1253 preintervention remarkably attenuated the influence of LPS on serum alanine transaminase and aspartate amino transferase activities. B. pseudolongum CCFM1253 preintervention remarkably attenuated the inflammation responses (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and elevated antioxidative enzymes activities [total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase] in ALI mice by intervening in the Nf-kβ and Nrf2 pathways, respectively. Bifidobacterium pseudolongum CCFM1253 treatment elevated the proportion of Alistipes and Bifidobacterium, and decreased the proportion of uncultured Bacteroidales bacterium, Muribaculum, Parasutterella and Ruminococcaceae UCG-010 in ALI mice, which were strongly correlated with the inhibition of inflammation responses and oxidative stress. Untargeted liver metabolomics exhibited that the hepatoprotective efficacy of B. pseudolongum CCFM1253 might be achieved by altering liver metabolites-related riboflavin metabolism, phenylalanine metabolism, alanine, citrate cycle (tricarboxylic acid cycle), and so on. Furthermore, riboflavin exposure could control the contents of malondialdehyde, superoxide dismutase, and catalase in hydrogen peroxide-treated HepG2 cells. CONCLUSION Bifidobacterium pseudolongum CCFM1253 can effectively alleviate inflammatory response and oxidative stress, and regulate the intestinal microbiota composition and liver metabolism, and elevate the liver riboflavin content in LPS-treated mice. Therefore, B. pseudolongum CCFM1253 could serves as a potential probiotic to ameliorate the host health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongqiu Yan
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, China
| | - Feifei Xiong
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Zhang W, Xiao D, Li X, Zhang Y, Rasouli J, Casella G, Boehm A, Hwang D, Ishikawa LL, Thome R, Ciric B, Curtis MT, Rostami A, Zhang GX. SIRT1 inactivation switches reactive astrocytes to an antiinflammatory phenotype in CNS autoimmunity. J Clin Invest 2022; 132:e151803. [PMID: 36136587 PMCID: PMC9663155 DOI: 10.1172/jci151803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
Astrocytes are highly heterogeneous in their phenotype and function, which contributes to CNS disease, repair, and aging; however, the molecular mechanism of their functional states remains largely unknown. Here, we show that activation of sirtuin 1 (SIRT1), a protein deacetylase, played an important role in the detrimental actions of reactive astrocytes, whereas its inactivation conferred these cells with antiinflammatory functions that inhibited the production of proinflammatory mediators by myeloid cells and microglia and promoted the differentiation of oligodendrocyte progenitor cells. Mice with astrocyte-specific Sirt1 knockout (Sirt1-/-) had suppressed progression of experimental autoimmune encephalomyelitis (EAE), an animal model of CNS inflammatory demyelinating disease. Ongoing EAE was also suppressed when Sirt1 expression in astrocytes was diminished by a CRISPR/Cas vector, resulting in reduced demyelination, decreased numbers of T cells, and an increased rate of IL-10-producing macrophages and microglia in the CNS, whereas the peripheral immune response remained unaffected. Mechanistically, Sirt1-/- astrocytes expressed a range of nuclear factor erythroid-derived 2-like 2 (Nfe2l2) target genes, and Nfe2l2 deficiency shifted the beneficial action of Sirt1-/- astrocytes to a detrimental one. These findings identify an approach for switching the functional state of reactive astrocytes that will facilitate the development of astrocyte-targeting therapies for inflammatory neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xing Li
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yuan Zhang
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Hwang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larissa L.W. Ishikawa
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark T. Curtis
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Li Y, Li Y, Xu S, Chen Y, Zhou P, Hu T, Li H, Liu Y, Xu Y, Ren J, Qiu Y, Lu C. N-Acylethanolamine acid amidase (NAAA) exacerbates psoriasis inflammation by enhancing dendritic cell (DCs) maturation. Pharmacol Res 2022; 185:106491. [DOI: 10.1016/j.phrs.2022.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
15
|
Ding T, Ge S. Metabolic regulation of type 2 immune response during tissue repair and regeneration. J Leukoc Biol 2022; 112:1013-1023. [PMID: 35603496 DOI: 10.1002/jlb.3mr0422-665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Type 2 immune responses are mediated by the cytokines interleukin (IL)-4, IL-5, IL-10, and IL-13 and associated cell types, including T helper (Th)2 cells, group 2 innate lymphoid cells (ILC2s), basophils, mast cells, eosinophils, and IL-4- and IL-13-activated macrophages. It can suppress type 1-driven autoimmune diseases, promote antihelminth immunity, maintain cellular metabolic homeostasis, and modulate tissue repair pathways following injury. However, when type 2 immune responses become dysregulated, they can be a significant pathogenesis of many allergic and fibrotic diseases. As such, there is an intense interest in studying the pathways that modulate type 2 immune response so as to identify strategies of targeting and controlling these responses for tissue healing. Herein, we review recent literature on the metabolic regulation of immune cells initiating type 2 immunity and immune cells involved in the effector phase, and talk about how metabolic regulation of immune cell subsets contribute to tissue repair. At last, we discuss whether these findings can provide a novel prospect for regenerative medicine.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
16
|
Labiner HE, Sas KM, Baur JA, Sims CA. Sirtuin 1 deletion increases inflammation and mortality in sepsis. J Trauma Acute Care Surg 2022; 93:672-678. [PMID: 35857031 PMCID: PMC10673225 DOI: 10.1097/ta.0000000000003751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sepsis is a hyperinflammatory response to infection that can lead to multiorgan failure and eventually death. Often, the onset of multiorgan failure is heralded by renal dysfunction. Sirtuin 1 (SIRT1) promotes cellular stress resilience by inhibiting inflammation and promoting mitochondrial function. We hypothesize that SIRT1 plays an important role in limiting the inflammatory responses that drive organ failure in sepsis, predominantly via expression in myeloid cells. METHODS We performed cecal ligation and puncture (CLP) on whole body SIRT1 knockout (S1KO) and myeloid cell-specific S1KO (S1KO-LysMCre) mice on a C57BL/6J background. Serum interleukin (IL)-6 was quantified by enzyme-linked immunosorbent assay. Renal mitochondrial complex activity was measured using Oxygraph-2k (Oroboros Instruments, Innsbruck, Austria). Blood urea nitrogen (BUN) was measured from serum. Survival was monitored for up to 5 days. RESULTS Following CLP, S1KO mice had decreased renal mitochondrial complex I-dependent respiratory capacity (241.7 vs. 418.3 mmolO2/mg/min, p = 0.018) and renal mitochondrial complex II-dependent respiratory capacity (932.3 vs. 1,178.4, p = 0.027), as well as reduced rates of fatty acid oxidation (187.3 vs. 250.3, p = 0.022). Sirtuin 1 knockout mice also had increased BUN (48.0 mg/dL vs. 16.0 mg/dL, p = 0.049). Interleukin-6 levels were elevated in S1KO mice (96.5 ng/mL vs. 45.6 ng/mL, p = 0.028) and S1KO-LysMCre mice (35.8 ng/mL vs. 24.5 ng/mL, p = 0.033) compared with controls 12 hours after surgery. Five-day survival in S1KO (33.3% vs. 83.3%, p = 0.025) and S1KO-LysMCre (60% vs. 100%, p = 0.049) mice was decreased compared with controls. CONCLUSION Sirtuin 1 deletion increases systemic inflammation in sepsis. Renal mitochondrial dysfunction, kidney injury, and mortality following CLP were all exacerbated by SIRT1 deletion. Similar effects on inflammation and survival were seen following myeloid cell-specific SIRT1 deletion, indicating that SIRT1 activity in myeloid cells may be a significant contributor for the protective effects of SIRT1 in sepsis.
Collapse
Affiliation(s)
- Hanna E. Labiner
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| | - Kelli M. Sas
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| | - Joseph A. Baur
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Carrie A. Sims
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
17
|
Kim JK, Silwal P, Jo EK. Sirtuin 1 in Host Defense during Infection. Cells 2022; 11:cells11182921. [PMID: 36139497 PMCID: PMC9496836 DOI: 10.3390/cells11182921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuins (SIRTs) are members of the class III histone deacetylase family and epigenetically control multiple target genes to modulate diverse biological responses in cells. Among the SIRTs, SIRT1 is the most well-studied, with a role in the modulation of immune and inflammatory responses following infection. The functions of SIRT1 include orchestrating immune, inflammatory, metabolic, and autophagic responses, all of which are required in establishing and controlling host defenses during infection. In this review, we summarize recent information on the roles of SIRT1 and its regulatory mechanisms during bacterial, viral, and parasitic infections. We also discuss several SIRT1 modulators, as potential antimicrobial treatments. Understanding the function of SIRT1 in balancing immune homeostasis will contribute to the development of new therapeutics for the treatment of infection and inflammatory disease.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
18
|
Pan J, Zeng W, Jia J, Shi Y, Wang D, Dong J, Fang Z, He J, Yang X, Zhang R, He M, Huang M, Fu B, Zhong B, Liu H. A Novel Therapeutic Tumor Vaccine Targeting MUC1 in Combination with PD-L1 Elicits Specific Anti-Tumor Immunity in Mice. Vaccines (Basel) 2022; 10:vaccines10071092. [PMID: 35891256 PMCID: PMC9325010 DOI: 10.3390/vaccines10071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells (APCs), play a key role in the initiation and regulation of humoral and cellular immunity. DC vaccines loaded with different tumor-associated antigens (TAAs) have been widely used to study their therapeutic effects on cancer. A number of clinical trials have shown that DCs are safe as an antitumor vaccine and can activate certain anti-tumor immune responses; however, the overall clinical efficacy of DC vaccine is not satisfactory, so its efficacy needs to be enhanced. MUC1 is a TAA with great potential, and the immune checkpoint PD-L1 also has great potential for tumor treatment. Both of them are highly expressed on the surface of various tumors. In this study, we generated a novel therapeutic MUC1-Vax tumor vaccine based on the method of PD-L1-Vax vaccine we recently developed; this novel PD-L1-containing MUC1-Vax vaccine demonstrated an elevated persistent anti-PD-L1 antibody production and elicited a much stronger protective cytotoxic T lymphocyte (CTL) response in immunized mice. Furthermore, the MUC1-Vax vaccine exhibited a significant therapeutic anti-tumor effect, which significantly inhibited tumor growth by expressing a high MUC1+ and PD-L1+ level of LLC and Panc02 tumor cells, and prolonged the survival of cancer-bearing animals. Taken together, our study provides a new immunotherapy strategy for improving the cross-presentation ability of therapeutic vaccine, which may be applicable to pancreatic cancer, lung cancer and for targeting other types of solid tumors that highly express MUC1 and PD-L1.
Collapse
Affiliation(s)
- Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Clinical Laboratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
| | - Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Danni Wang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jun Dong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| |
Collapse
|
19
|
Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, Garcia-Arroyo FE, Sánchez-Lozada LG. Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. Am J Physiol Regul Integr Comp Physiol 2022; 322:R347-R359. [PMID: 35271385 PMCID: PMC8993531 DOI: 10.1152/ajpregu.00238.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, Colorado
- Kidney Disease Division, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | | | - Fernando E Garcia-Arroyo
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Laura G Sánchez-Lozada
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| |
Collapse
|
20
|
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022; 13:831168. [PMID: 35359990 PMCID: PMC8962665 DOI: 10.3389/fimmu.2022.831168] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
Collapse
Affiliation(s)
- Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunwei Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongyi Chao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
21
|
Cox SL, O'Siorain JR, Fagan LE, Curtis AM, Carroll RG. Intertwining roles of circadian and metabolic regulation of the innate immune response. Semin Immunopathol 2022; 44:225-237. [PMID: 35022891 DOI: 10.1007/s00281-021-00905-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
It has emerged that an interconnected relationship exists between metabolism, circadian rhythms, and the immune system. The relationship between metabolism and circadian rhythms is not that surprising given the necessity to align rhythms of feeding/fasting with activity/rest. Recently, our understanding of the importance of metabolic pathways in terms of immune function, termed immunometabolism, has grown exponentially. It is now appreciated that the time of day during which the innate immune system is challenged strongly conditions the subsequent response. Recent observations have found that many individual components that make up the circadian clock also control aspects of metabolism in innate immune cells to modulate inflammation. This circadian/metabolic axis may be a key factor driving rhythmicity of immune function and circadian disruption is associated with a range of chronic inflammatory diseases such as atherosclerosis, obesity, and diabetes. The field of "circadian immunometabolism" seeks to reveal undiscovered circadian controlled metabolic pathways that in turn regulate immune responses. The innate immune system has been intricately linked to chronic inflammatory diseases, and within the immune system, individual cell types carry out unique roles in inflammation. Therefore, circadian immunometabolism effects are unique to each innate immune cell.
Collapse
Affiliation(s)
- Shannon L Cox
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lauren E Fagan
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Richard G Carroll
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
22
|
Duan Q, Ding J, Li F, Liu X, Zhao Y, Yu H, Liu Y, Zhang L. Sirtuin 5 is Dispensable for CD8 + T Cell Effector and Memory Differentiation. Front Cell Dev Biol 2021; 9:761193. [PMID: 34966740 PMCID: PMC8710726 DOI: 10.3389/fcell.2021.761193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cell effector and memory differentiation is tightly controlled at multiple levels including transcriptional, metabolic, and epigenetic regulation. Sirtuin 5 (SIRT5) is a protein deacetylase mainly located at mitochondria, but it remains unclear whether SIRT5 plays key roles in regulating CD8+ T cell effector or memory formation. Herein, with adoptive transfer of Sirt5+/+ or Sirt5−/− OT-1 cells and acute Listeria monocytogenes infection model, we demonstrate that SIRT5 deficiency does not affect CD8+ T cell effector function and that SIRT5 is not required for CD8+ T cell memory formation. Moreover, the recall response of SIRT5 deficient memory CD8+ T cells is comparable with Sirt5+/+ memory CD8+ T cells. Together, these observations suggest that SIRT5 is dispensable for the effector function and memory differentiation of CD8+ T cells.
Collapse
Affiliation(s)
- Qianqian Duan
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jiying Ding
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Institute of Biomedical Electromagnetic Engineering, Shenyang University of Technology, Shenyang, China
| | - Xiaowei Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yunan Zhao
- Institute of Biomedical Electromagnetic Engineering, Shenyang University of Technology, Shenyang, China
| | - Hongxiu Yu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Front Immunol 2021; 12:779177. [PMID: 34887866 PMCID: PMC8650132 DOI: 10.3389/fimmu.2021.779177] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The morbidity and mortality of autoimmune diseases (Ads) have been increasing worldwide, and the identification of novel therapeutic strategies for prevention and treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in the progression of several diseases. SIRT1 also regulates inflammation, oxidative stress, mitochondrial function, immune responses, cellular differentiation, proliferation and metabolism, and its altered functions are likely involved in Ads. Several inhibitors and activators have been shown to affect the development of Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small molecules or natural products that modulate the functions of SIRT1 are potential therapeutic agents. In the present review, we summarize current studies of the biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Lin C, Lai SW, Shen CK, Chen CW, Tsai CF, Liu YS, Lu DY, Huang BR. Fenofibrate inhibits hypoxia-inducible factor-1 alpha and carbonic anhydrase expression through activation of AMP-activated protein kinase/HO-1/Sirt1 pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:2551-2561. [PMID: 34520103 DOI: 10.1002/tox.23369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer and its associated conditions have significant impacts on public health at many levels worldwide, and cancer is the leading cause of death among adults. Peroxisome proliferator-activated receptor α (PPARα)-specific agonists, fibrates, have been approved by the Food and Drug Administration for managing hyperlipidemia. PPARα-specific agonists exert anti-cancer effects in many human cancer types, including glioblastoma (GBM). Recently, we have reported that the hypoxic state in GBM stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), thus contributing to tumor escape from immune surveillance by activating the expression of the pH-regulating protein carbonic anhydrase IX (CA9). In this study, we aimed to study the regulatory effects of the PPARα agonist fibrate on the regulation of HIF-1α expression and its downstream target protein in GBM. Our findings showed that fenofibrate is the high potency compound among the various fibrates that inhibit hypoxia-induced HIF-1α and CA9 expression in GBM. Moreover, fenofibrate-inhibited HIF-1α expression is mediated by HO-1 activation in GBM cells through the AMP-activated protein kinase (AMPK) pathway. In addition, fenofibrate-enhanced HO-1 upregulation activates SIRT1 and leads to subsequent accumulation of SIRT1 in the nucleus, which further promotes HIF-1α deacetylation and inhibits CA9 expression. Using a protein synthesis inhibitor, cycloheximide, we also observed that fenofibrate inhibited HIF-1α protein synthesis. In addition, the administration of the proteasome inhibitor MG132 showed that fenofibrate promoted HIF-1α protein degradation in GBM. Hence, our results indicate that fenofibrate is a useful anti-GBM agent that modulates hypoxia-induced HIF-1α expression through multiple cellular pathways.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
25
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Fang H, Huang Y, Luo Y, Tang J, Yu M, Zhang Y, Zhong M. SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis. Cell Immunol 2021; 371:104458. [PMID: 34847407 DOI: 10.1016/j.cellimm.2021.104458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Our previous work suggested that high SIRT1 expression by cancer cells predicted a poor colorectal cancer (CRC) prognosis, but its role in the tumor microenvironment was unclear. Here, we examined tumor-infiltrating lymphocytes (TILs) in CRC expressing different levels of SIRT1. We also established a co-culture system with monocytes, CD8+ T cells and patient-derived tumor organoids (PDOs) to study the relationships between immune cells and cancer cells. The percentage of CD8+ T cells was decreased and the percentage of macrophages was increased in SIRT1-high (SIRT1-hi) CRC. Co-culture results showed that tumor-associated macrophages (TAMs) from SIRT1-hi CRC inhibited the proliferation and anti-tumor activity of CD8+ T cells. Importantly, SIRT1-hi CRC were shown to modulate the migration and the activity of TAMs. RNA sequencing revealed that CD14+ monocytes in SIRT1-hi patients expressed higher levels of CXCR4. Mechanistically, SIRT1 expression was shown to promote CXCL12 expression by inhibiting the acetylation of p53. Our findings indicate that SIRT1 in CRC induces TAM migration through the CXCR4/CXCL12 pathway, and inhibits the proliferation and activity of CD8+ T cells, resulting in promotion of CRC progression.
Collapse
Affiliation(s)
- Hongsheng Fang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
27
|
Gámez-García A, Vazquez BN. Nuclear Sirtuins and the Aging of the Immune System. Genes (Basel) 2021; 12:1856. [PMID: 34946805 PMCID: PMC8701065 DOI: 10.3390/genes12121856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system undergoes major changes with age that result in altered immune populations, persistent inflammation, and a reduced ability to mount effective immune responses against pathogens and cancer cells. Aging-associated changes in the immune system are connected to other age-related diseases, suggesting that immune system rejuvenation may provide a feasible route to improving overall health in the elderly. The Sir2 family of proteins, also called sirtuins, have been broadly implicated in genome homeostasis, cellular metabolism, and aging. Sirtuins are key responders to cellular and environmental stress and, in the case of the nuclear sirtuins, they do so by directing responses to chromatin that include gene expression regulation, retrotransposon repression, enhanced DNA damage repair, and faithful chromosome segregation. In the immune system, sirtuins instruct cellular differentiation from hematopoietic precursors and promote leukocyte polarization and activation. In hematopoietic stem cells, sirtuins safeguard quiescence and stemness to prevent cellular exhaustion. Regulation of cytokine production, which, in many cases, requires NF-κB regulation, is the best-characterized mechanism by which sirtuins control innate immune reactivity. In adaptive immunity, sirtuins promote T cell subset differentiation by controlling master regulators, thereby ensuring an optimal balance of helper (Th) T cell-dependent responses. Sirtuins are very important for immune regulation, but the means by which they regulate immunosenescence are not well understood. This review provides an integrative overview of the changes associated with immune system aging and its potential relationship with the roles of nuclear sirtuins in immune cells and overall organismal aging. Given the anti-aging properties of sirtuins, understanding how they contribute to immune responses is of vital importance and may help us develop novel strategies to improve immune performance in the aging organism.
Collapse
Affiliation(s)
- Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
- Unitat de Citologia i d’Histologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193 Barcelona, Spain
| |
Collapse
|
28
|
Wu YJ, Fang WJ, Pan S, Zhang SS, Li DF, Wang ZF, Chen WG, Yin Q, Zuo J. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis. Int Immunopharmacol 2021; 101:108175. [PMID: 34689102 DOI: 10.1016/j.intimp.2021.108175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease. Synovial hyperplasia and persistent inflammation serve as its typical pathological manifestations, which ultimately lead to joint destruction and function loss. Both clinical observations and metabolomics studies have revealed the prevalence of metabolic disorders in RA. In inflammatory immune microenvironments, energy metabolism is profoundly changed. Increasingly evidences suggest that this abnormality is involved in the occurrence and development of RA-related inflammation. Unsurprisingly, many energy metabolism sensors have been confirmed with immunoregulatory properties. As a representative, silent information regulator type 1 (Sirt1) controls many aspects of immune cells, such as cell lifespan, polarization, and secretion by functioning as a transcriptional regulator. Because of the profound clinical implication, researches on Sirt1 in the regulation of energy metabolism and immune functions under RA conditions have gradually gained momentum. This signaling balances glycolysis, lipid metabolism and insulin secretion orchestrating with other metabolism sensors, and consequently affects immune milieu through a so-called metabolism-immune feedback mechanism. This article reviews the involvement of Sirt1 in RA by discussing its impacts on energy metabolism and immune functions, and specially highlights the potential of Sirt1-targeting anti-rheumatic regimens. It also provides a theoretical basis for clarifying the mystery about the high incidence of metabolic complications in RA patients and identifying new anti-rheumatic reagents.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Wen-Juan Fang
- The Second People's Hospital of Hefei, Heifei, China
| | - Shu Pan
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Sa-Sa Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China; Xin'An Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Dan-Feng Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhong-Fang Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen-Gang Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qin Yin
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.
| |
Collapse
|
29
|
Shen P, Lin W, Ba X, Huang Y, Chen Z, Han L, Qin K, Huang Y, Tu S. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114213. [PMID: 34023442 DOI: 10.1016/j.jep.2021.114213] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba taxilli (HT, Sangjisheng in Chinese), which is composed of the dried stems and leaves of Taxillus chinensis (DC.) Danser, has been commonly used to treat inflammation and arthritis in traditional Chinese medicine (TCM). Quercetin (Que) is a major active flavonoid component isolated from HT and is one of the quality control indexes of HT. In the clinical practice of TCM, formulas containing HT are commonly used to treat rheumatoid arthritis (RA). Recent studies have shown that Que exerts antiarthritic effects. However, the mechanism by which Que treatment affects RA is not fully understood. AIM OF THE STUDY This study aimed to explore the antiarthritic activity of Que in a collagen-induced arthritis (CIA) mouse model and investigate the underlying mechanisms. MATERIALS AND METHODS The antiarthritic activity of Que was evaluated in a CIA mouse model by determining the paw clinical arthritis scores and left ankle thicknesses and by conducting micro-PET imaging and histopathological analysis of ankle joint tissues. The proinflammatory cytokine (IL-6, TNF-α, IL-1β, IL-8, IL-13, IL-17) levels in the serum and ankle joint tissues were measured by ELISA. Mitochondrial oxidative stress was assessed by biochemical methods. Mitochondrial biogenesis was analysed by RT-qPCR. The protein levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), p38, phospho-p38, extracellular signal-regulated kinases (ERK)-1/2, phospho-ERK1/2, p65, and phospho-p65 in ankle joint tissues were detected by Western blot analysis. A total of 30 RA patients were recruited to investigate the relationship between the disease activity score (DAS28) and the SIRT1, PGC-1α, NRF1, and HMGB1 plasma levels. RESULTS Que treatment decreased the clinical score and left ankle thickness of CIA mice, attenuated the synovial inflammation and hyperplasia and bone/cartilage destruction in ankle joints, and decreased the secretion of IL-6, TNF-α, IL-1β, IL-8, IL-13, and IL-17. Mechanistically, Que treatment improved impaired mitochondrial biogenesis and mitochondrial function by regulating the SIRT1/PGC-1α/NRF1/TFAM pathway and inhibited inflammation via the HMGB1/TLR4/p38/ERK1/2/NF-κB p65 pathway. Notably, epidemiological data revealed correlations between abnormal circulating levels of SIRT1, PGC-1α, NRF1, HMGB1 and RA disease activity in patients. CONCLUSIONS Our data suggested a potential role of Que as a dietary therapeutic drug for RA treatment that may act through SIRT1 to target mitochondrial biogenesis. Additionally, the role of impaired mitochondrial biogenesis in RA was evaluated.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Weiji Lin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Yao Huang
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Ying Huang
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| |
Collapse
|
30
|
Sirtuins as Metabolic Regulators of Immune Cells Phenotype and Function. Genes (Basel) 2021; 12:genes12111698. [PMID: 34828304 PMCID: PMC8618532 DOI: 10.3390/genes12111698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Beyond its role on the conversion of nutrients into energy and biomass, cellular metabolism is actively involved in the control of many physiological processes. Among these, it is becoming increasingly evident that specific metabolic pathways are associated with the phenotype of several immune cell types and, importantly, are crucial in controlling their differentiation, proliferation, and effector functions, thus shaping the immune response against pathogens and tumors. In this context, data generated over the last decade have uncovered mammalian sirtuins as important regulators of cellular metabolism, immune cell function, and cancer. Here, we summarize our current knowledge on the roles of this family of protein deacylases on the metabolic control of immune cells and their implications on immune-related diseases and cancer.
Collapse
|
31
|
Aria H, Ghaedrahmati F, Ganjalikhani-Hakemi M. Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236:6168-6189. [PMID: 33561318 DOI: 10.1002/jcp.30303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
A recently proposed term "immunometabolism" points to the functional intracellular metabolic changes that occur within different immune cells. Recent findings suggest that immune responses can be determined by the metabolic status of immune cells and metabolic reprogramming is an important feature of immune cell activation. Metabolic reprogramming is also well known for cancer cells and has been suggested as a major sign of cancer progression. Metabolic reprogramming of immune cells is also seen in the tumor microenvironment. In the past decade, immunometabolism has progressively become an extraordinarily vibrant and productive area of study in immunology because of its importance for immunotherapy. Understanding the immunometabolic situation of T cells and other immune cells along with the metabolic behavior of cancer cells can help us design new therapeutic approaches against cancers. Here, we have the aim to review the cutting-edge findings on the immunometabolic situation in immune and tumor cells. We discuss new findings on signaling pathways during metabolic reprogramming, its regulation, and the participation of reactive oxygen species in these processes.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
32
|
Zhan Y, Yang C, Zhang Q, Yao L. Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. J Biochem 2021; 169:613-620. [PMID: 33481000 DOI: 10.1093/jb/mvaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Silent information regulator type-1 (SIRT1) is crucial during the development of acute respiratory distress syndrome (ARDS). We aimed to explore whether SIRT1 activation could protect against ARDS. SIRT1 was activated by its agonist SRT1720. ARDS was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS). Lung injuries were determined by the lung wet/dry ratio, inflammatory cells in the broncho-alveolar lavage fluid (BALF) and histological analysis. Inflammatory cytokine release was detected by enzyme-linked immunosorbent assay. The accumulation of neutrophils was detected by myeloperoxidase activity. Oxidative stress was evaluated by malondialdehyde, reduced glutathione, superoxide dismutase and catalase activities. The protein expression levels were detected using western blot. SIRT1 activation, either by SRT1720 administration or recombinant SIRT1, expression eliminated high-dose LPS-induced mortality in mice, attenuated lung injury, influenced cytokine release in BALF and decreased oxidative stress in the lung tissues of ARDS mice. Mechanically, SRT1720 administration inhibited p65 phosphorylation in the lung tissues of ARDS mice. SIRT1 ameliorates inflammatory response and oxidative stress in LPS-induced ARDS.
Collapse
Affiliation(s)
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, No. 246 Heping Road, Yaohai District, Hefei 230011, Anhui, China
| | | | - Li Yao
- Department of Intensive Care Unit
| |
Collapse
|
33
|
Ding X, Chang Y, Wang S, Yan D, Yao J, Zhu G. Transcriptomic Analysis of the Effect of GAT-2 Deficiency on Differentiation of Mice Naïve T Cells Into Th1 Cells In Vitro. Front Immunol 2021; 12:667136. [PMID: 34149704 PMCID: PMC8208808 DOI: 10.3389/fimmu.2021.667136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is known to affect the activation and function of immune cells. This study investigated the role of GABA transporter (GAT)-2 in the differentiation of type 1 helper T (Th1) cells. Naïve CD4+ T cells isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice were cultured; Th1 cell differentiation was induced and transcriptome and bioinformatics analyses were carried out. We found that GAT-2 deficiency promoted the differentiation of naïve T cells into Th1 cells. RNA sequencing revealed 2984 differentially expressed genes including 1616 that were up-regulated and 1368 that were down-regulated in GAT-2 KO cells compared to WT cells, which were associated with 950 enriched Gene Ontology terms and 33 enriched Kyoto Encyclopedia of Genes and Genomes pathways. Notably, 4 signal transduction pathways (hypoxia-inducible factor [HIF]-1, Hippo, phospholipase D, and Janus kinase [JAK]/signal transducer and activator of transcription [STAT]) and one metabolic pathway (glycolysis/gluconeogenesis) were significantly enriched by GAT-2 deficiency, suggesting that these pathways mediate the effect of GABA on T cell differentiation. Our results provide evidence for the immunomodulatory function of GABA signaling in T cell-mediated immunity and can guide future studies on the etiology and management of autoimmune diseases.
Collapse
Affiliation(s)
- Xueyan Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yajie Chang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Siquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dong Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiakui Yao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The Role of Sirtuin-1 in Immune Response and Systemic Lupus Erythematosus. Front Immunol 2021; 12:632383. [PMID: 33981300 PMCID: PMC8110204 DOI: 10.3389/fimmu.2021.632383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.
Collapse
Affiliation(s)
- Yueqi Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater 2021; 125:1-28. [PMID: 33639310 DOI: 10.1016/j.actbio.2021.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The past several years have witnessed the blooming of emerging immunotherapy, as well as their therapeutic potential in remodeling the immune system. Nevertheless, with the development of biological mechanisms in oncology, it has been demonstrated that hypoxic tumor microenvironment (TME) seriously impairs the therapeutic outcomes of immunotherapy. Hypoxia, caused by Warburg effect and insufficient oxygen delivery, has been considered as a primary construction element of TME and drawn tremendous attention in cancer therapy. Multiple hypoxia-modulatory theranostic agents have been facing many obstacles and challenges while offering initial therapeutic effect. Inspired by versatile nanomaterials, great efforts have been devoted to design hypoxia-based nanoplatforms to preserve drug activity, reduce systemic toxicity, provide adequate oxygenation, and eventually ameliorate hypoxic-tumor management. Besides these, recently, some curative and innovative hypoxia-related nanoplatforms have been applied in synergistic immunotherapy, especially in combination with immune checkpoint blockade (ICB), immunomodulatory therapeutics, cancer vaccine therapy and immunogenic cell death (ICD) effect. Herein, the paramount impact of hypoxia on tumor immune escape was initially described and discussed, followed by a comprehensive overview on the design tactics of multimodal nanoplatforms based on hypoxia-enabled theranostic agents. A variety of nanocarriers for relieving tumor hypoxic microenvironment were also summarized. On this basis, we presented the latest progress in the use of hypoxia-modulatory nanomaterials for synergistic immunotherapy and highlighted current challenges and plausible promises in this area in the near future. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy, emerging as a novel treatment to eradicate malignant tumors, has achieved a measure of success in clinical popularity and transition. However, over the last decades, hypoxia-induced tumor immune escape has attracted enormous attention in cancer treatment. Limitations of free targeting agents have paved the path for the development of multiple nanomaterials with the hope of boosting immunotherapy. In this review, the innovative design tactics and multifunctional nanocarriers for hypoxia alleviation are summarized, and the smart nanomaterial-assisted hypoxia-modulatory therapeutics for synergistic immunotherapy and versatile biomedical applications are especially highlighted. In addition, the challenges and prospects of clinical transformation are further discussed.
Collapse
|
36
|
Pardo R, Velilla M, Herrero L, Cervela L, Ribeiro ML, Simó R, Villena JA. Calorie Restriction and SIRT1 Overexpression Induce Different Gene Expression Profiles in White Adipose Tissue in Association with Metabolic Improvement. Mol Nutr Food Res 2021; 65:e2000672. [PMID: 33686759 DOI: 10.1002/mnfr.202000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Calorie restriction (CR) exerts multiple effects on health, including the amelioration of systemic insulin resistance. Although the precise mechanisms by which CR improves glucose homeostasis remain poorly defined, SIRT1 has been suggested to act as a central mediator of the cellular responses to CR. Here, we aim at identifying the mechanisms by which CR and SIRT1 modulate white adipose tissue (WAT) function, a key tissue in the control of glucose homeostasis. MATERIAL AND METHODS A gene expression profiling study using DNA microarrays is conducted in WAT of control and SIRT1 transgenic mice fed ad libitum (AL) and mice subjected to 40% CR. RESULTS Gene expression profiling reveals a relatively low degree of overlap between the transcriptional programs regulated by SIRT1 and CR. Gene networks related to extracellular matrix appear commonly downregulated by SIRT1/CR, whereas mitochondrial biogenesis is enhanced exclusively by CR. Moreover, WAT inflammation is reduced by CR and SIRT1, although their anti-inflammatory effects appeared to be achieved by regulating different gene networks related to the immune system. CONCLUDING REMARKS In WAT, SIRT1 does not mediate most of the effects of CR on gene expression. Still, gene networks differentially regulated by SIRT1 and CR converge to reduce WAT inflammation.
Collapse
Affiliation(s)
- Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Marc Velilla
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain.,CIBEROBN, CIBER on Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Luis Cervela
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Marcelo L Ribeiro
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Rafael Simó
- Group of Diabetes and Metabolism, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
37
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
38
|
The kinase AKT1 potentiates the suppressive functions of myeloid-derived suppressor cells in inflammation and cancer. Cell Mol Immunol 2021; 18:1074-1076. [PMID: 33462382 DOI: 10.1038/s41423-020-00610-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
|
39
|
Zhao L, Wu Q, Wang X, Wang S, Shi X, Shan Z, Teng W. Reversal of Abnormal CD4+ T Cell Metabolism Alleviates Thyroiditis by Deactivating the mTOR/HIF1a/Glycolysis Pathway. Front Endocrinol (Lausanne) 2021; 12:659738. [PMID: 34149615 PMCID: PMC8211914 DOI: 10.3389/fendo.2021.659738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an autoimmune disease that features activation of thyroid antigen-specific helper T cells. HT patients have increased Th1 and Th17 T cell subsets. Glycolysis supports chronic activation of Th1 and Th17 T cells, but how this contributes to HT remains unknown. METHODS The metabolism of CD4+ T cells from 30 HT patients and 30 healthy controls was evaluated by determining the extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR). Mice in a subacute thyroiditis (SAT) model were treated with 2DG, metformin, or combination. Metrics of mTOR/HIF-1α/HK2/glycolysis were measured by western blot and Seahorse assay methods. The severity of SAT was measured by flow cytometry and HE staining. RESULTS CD4+ T cells from HT patients had enhanced ECAR and OCR. Levels of Glut1, HK2, PKM2, and LDHA in cultured HT CD4+ T cells were elevated. The expression of HK2 and PKM2 in cultured SAT CD4+ T cells was elevated compared with the control group. Activation of the mTOR and HIF-1α pathways was significant in SAT mice, and expression of HIF-1α in the 2DG treated group was reduced. Treatment with 2DG and/or metformin significantly decreased the ratio of Th17 and Th1 T cells. CONCLUSIONS Thyroiditis results in elevation of the mTOR/HIF-1α/HK2/glycolysis pathway in CD4+ T cells. The activation of this pathway is reduced by treatment with 2DG and metformin, which also reverted imbalances in CD4+ T cell differentiation.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Shiqi Wang
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoguang Shi
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaoguang Shi,
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
41
|
Dong L, He Y, Cao Y, Wang Y, Jia A, Wang Y, Yang Q, Li W, Bi Y, Liu G. Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology 2020; 163:19-32. [PMID: 33128768 DOI: 10.1111/imm.13282] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular T helper (TFH ) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B-cell lymphoma 6 (Bcl-6), chemokine (C-X-C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD-1) and inducible T-cell costimulator (ICOS), the cytokine IL-21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune-associated diseases, including infections, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
42
|
Lee K, Han MR, Yeon JW, Kim B, Kim TH. Whole Transcriptome Analysis of Myeloid Dendritic Cells Reveals Distinct Genetic Regulation in Patients with Allergies. Int J Mol Sci 2020; 21:ijms21228640. [PMID: 33207814 PMCID: PMC7697962 DOI: 10.3390/ijms21228640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in atopic diseases, orchestrating both innate and adaptive immune systems. Nevertheless, limited information is available regarding the mechanism through which DCs induce hyperresponsiveness in patients with allergies. This study aims to reveal novel genetic alterations and future therapeutic target molecules in the DCs from patients with allergies using whole transcriptome sequencing. Transcriptome sequencing of human BDCA-3+/CD11c+ DCs sorted from peripheral blood monocytes obtained from six patients with allergies and four healthy controls was conducted. Gene expression profile data were analyzed, and an ingenuity pathway analysis was performed. A total of 1638 differentially expressed genes were identified at p-values < 0.05, with 11 genes showing a log2-fold change ≥1.5. The top gene network was associated with cell death/survival and organismal injury/abnormality. In validation experiments, amphiregulin (AREG) showed consistent results with transcriptome sequencing data, with increased mRNA expression in THP-1-derived DCs after Der p 1 stimulation and higher protein expression in myeloid DCs obtained from patients with allergies. This study suggests an alteration in the expression of DCs in patients with allergies, proposing related altered functions and intracellular mechanisms. Notably, AREG might play a crucial role in DCs by inducing the Th2 immune response.
Collapse
Affiliation(s)
- Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Ji Woo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.W.Y.); (B.K.)
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
43
|
Astragaloside IV Exerts Anti-tumor Effect on Murine Colorectal Cancer by Re-educating Tumor-Associated Macrophage. Arch Immunol Ther Exp (Warsz) 2020; 68:33. [PMID: 33095374 DOI: 10.1007/s00005-020-00598-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023]
Abstract
Astragaloside IV (AS-IV) has shown anti-tumorigenic properties in certain cancers for its effect of boosting the body's immune system, but its role in colorectal cancer (CRC) remains unclear. In this study, we investigated the therapeutic effect of AS-IV in CRC and explored its underlying mechanism. CT26 colon cancer cells and mouse model by injection of CT26 cells subcutaneously were used as in vitro and in vivo model. M1 and M2 macrophage-associated markers, mRNA and protein expression levels were analyzed after AS-IV treatment. Inflammatory factors and cytokines in the tumors from mouse model were detected. Repolarization effect of AS-IV in vitro on bone-marrow-derived macrophages was also detected. In vitro, AS-IV inhibited the proliferation of CT26 cells and induced cell apoptosis dose-dependently, and significantly reduced M2 macrophages and increased M1 macrophages. In mouse model, it suppressed tumor growth and decreased the production of anti-inflammatory factors such as TGF-β, IL-10 and VEGF-A, while increased the production of pro-inflammatory factors like IFN-γ, IL-12 and TNF-α in tumor. Combination of AS-IV and checkpoint inhibitor aPD-1 exhibited synergistic antitumor effect by inhibiting tumor growth and increasing T cell infiltration. AS-IV could induce M2 macrophages polarization to the M1 phenotype. Its combination with immune checkpoint inhibitors could be expected to become a potential new strategy for the treatment of CRC.
Collapse
|
44
|
The Role of HIF in Immunity and Inflammation. Cell Metab 2020; 32:524-536. [PMID: 32853548 DOI: 10.1016/j.cmet.2020.08.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
HIF is a transcription factor that plays an essential role in the cellular response to low oxygen, orchestrating a metabolic switch that allows cells to survive in this environment. In immunity, infected and inflamed tissues are often hypoxic, and HIF helps immune cells adapt. HIF-α stabilization can also occur under normoxia during immunity and inflammation, where it regulates metabolism but in addition can directly regulate expression of immune genes. Here we review the role of HIF in immunity, including its role in macrophages, dendritic cells, neutrophils, T cells, and B cells. Its role in immunity is as essential for cellular responses as it is in its original role in hypoxia, with HIF being implicated in multiple inflammatory diseases and in immunosuppression in tumors.
Collapse
|
45
|
Hu A, Yang LY, Liang J, Lu D, Zhang JL, Cao FF, Fu JY, Dai WJ, Zhang JF. SIRT2 modulates VEGFD-associated lymphangiogenesis by deacetylating EPAS1 in human head and neck cancer. Mol Carcinog 2020; 59:1280-1291. [PMID: 32965071 DOI: 10.1002/mc.23256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Sirtuin 2 (SIRT2) is one of seven mammalian homologs of silent information regulator 2 (Sir2) and an NAD+ -dependent deacetylase; however, its critical role in lymphangiogenesis remains to be explored. We investigate SIRT2 mediated regulation of vascular endothelial growth factor D (VEGFD) expression and lymphangiogenesis by deacetylating endothelial PAS domain protein 1 (EPAS1) in head and neck cancer (HNC) in vitro and in vivo. In this study, we report that SIRT2, rather than other members of the Sir2 family, reduces the expression of VEGFD and lymphangiogenesis in hypoxia-induced HNC cells and transplanted HNC mice models by reducing EPAS1 acetylation at Lys674 and decreasing the transcriptional activity of EPAS1 target genes. The expression of SIRT2 was closely related to the expression of VEGFD, lymphangiogenesis in subcutaneously transplanted mice models, and lymphangiogenesis in patients with HNC. Our results suggest that SIRT2 plays a central role in tumor lymphangiogenesis via deacetylating EPAS1 protein. Reagents targeting the NAD+ -dependent deacetylase activity of SIRT2 would be beneficial for inhibiting tumor lymphangiogenesis and treating other hypoxia-related diseases.
Collapse
Affiliation(s)
- An Hu
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Li-Yun Yang
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Jia Liang
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Dan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Li Zhang
- Department of Otolaryngology, Jinqiao Community Health Service Center, Shanghai, China
| | - Fan-Fan Cao
- Department of Sino-French Cooperative Central Lab, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Jia-Ying Fu
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Jun Dai
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Jing-Fei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity. J Immunol Res 2020; 2020:3792409. [PMID: 32953892 PMCID: PMC7481950 DOI: 10.1155/2020/3792409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past several years, SIRT5 has attracted considerable attention in metabolic regulation. However, the function of SIRT5 in tumorigenesis by regulating tumor microenvironment is poorly understood. In this work, we found that Sirt5 knockout mice were resistant to AOM and DSS-induced colitis-associated colorectal tumorigenesis and the level of IFN-γ in their tumor microenvironment was higher. Additionally, proteome and network analysis revealed that SIRT5 was important in the T cell receptor signaling pathway. Furthermore, we determined that a deficiency of Sirt5 induced stronger T cell activation and demonstrated that SIRT5 played a pivotal role in regulating the differentiation of CD4+ regulatory T (Treg) cells and T helper 1 (Th1) cells. An imbalance in the lineages of immunosuppressive Treg cells and the inflammatory Th1 subsets of helper T cells leads to the development of colon cancer. Our results revealed a regulatory role of SIRT5 in T cell activation and colorectal tumorigenesis.
Collapse
|
47
|
Clinical laboratory features of Meigs' syndrome: a retrospective study from 2009 to 2018. Front Med 2020; 15:116-124. [PMID: 32651935 DOI: 10.1007/s11684-019-0732-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/31/2019] [Indexed: 10/23/2022]
Abstract
Meigs' syndrome (MS), a rare complication of benign ovarian tumors, is easily misdiagnosed as ovarian cancer (OC). We retrospectively reviewed the clinical laboratory data of patients diagnosed with MS from 2009 to 2018. Serum carbohydrate antigen 125 and HE4 levels were higher in the MS group than in the ovarian thecoma-fibroma (OTF) and healthy control groups (all P < 0.05). However, the serum HE4 levels were lower in the MS group than in the OC group (P < 0.001). A routine blood test showed that the absolute counts and percentages of lymphocytes were significantly lower in the MS group than in the OTF and control groups (all P < 0.05). However, these variables were higher in the MS group than in the OC group (both P < 0.05). The neutrophil-to-lymphocyte ratio (NLR) was also significantly lower, whereas the lymphocyte-to-monocyte ratio was higher in the MS group than in the OC group (both P < 0.05). The NLR, platelet-to-lymphocyte ratio, and systemic immune index were significantly higher in the MS group than in the OTF and control groups (all P < 0.05). The hypoxia-inducible factor-1 mRNA levels were also significantly higher, whereas the glucose transporter 1, lactate dehydrogenase, and enolase 1 mRNA levels were lower in peripheral CD4+ T cells obtained preoperatively in a patient with MS than those in patients with OTF, patients with OC, and controls (all P < 0.05). The expression of these four glucose metabolism genes was preferentially restored to normal levels after the tumor resection of MS (P < 0.001). These clinical laboratory features can be useful in improving the preoperative diagnostic accuracy of MS.
Collapse
|
48
|
Niu Y, Wang J, Li Z, Yao K, Wang L, Song J. HIF1α Deficiency in Dendritic Cells Attenuates Symptoms and Inflammatory Indicators of Allergic Rhinitis in a SIRT1-Dependent Manner. Int Arch Allergy Immunol 2020; 181:585-593. [PMID: 32541149 DOI: 10.1159/000506862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Allergic rhinitis is the most prevalent atopic disorder worldwide. Inflammation is believed to participate in allergic rhinitis. Previous studies indicate that hypoxia-inducible factor (HIF) promotes the development of allergic rhinitis, and dendritic cells are also involved in allergic rhinitis. METHODS We explored the consequences of HIF1α deficiency in dendritic cells on allergic rhinitis. Allergic rhinitis in mice was induced by ovalbumin (OVA). The levels of IgE, leukotriene C4 (LTC4), eosinophil cationic protein (ECP), prostaglandin D2 (PGD2), IFN-γ, IL-2, IL-4, IL-5, IL-10, and IL-13 in serum or nasal lavage fluid (NLF) were detected by ELISA. Inflammatory cells in NLF were counted by hemocytometer. The protein levels of p-ERK1/2, p-p38, p-JNK2, SIRT1, p-IκBα, and p65 were determined by Western blot. RESULTS HIF1α deficiency in dendritic cells (HIF1αCD11c-/-) decreased sneezing and nasal rubbing, the production of OVA-specific IgE, LTC4, and ECP in serum and NLF, and the numbers of leukocytes, eosinophils, lymphocytes, and neutrophils in NLF. Th1 cytokines increased, while Th2 cytokines decreased in HIF1aCD11c-/- mice. SIRT1/NF-κB signaling was inhibited in HIF1αCD11c-/- mice, while SIRT1 inhibitor administration in HIF1αCD11c-/- mice attenuated the symptoms and inflammatory indicators of allergic rhinitis. CONCLUSION HIF1α deficiency in dendritic cells attenuates symptoms and inflammatory indicators of allergic rhinitis in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Yanliu Niu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jianquan Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Zhen Li
- Department of Clinical Laboratory, Dongchangfu Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Keqing Yao
- Department of ENT, Liaocheng People's Hospital, Liaocheng, China
| | - Liangliang Wang
- Department of Ultrasonography, Liaocheng People's Hospital, Liaocheng, China
| | - Jingjing Song
- Department of ENT, Brain Hospital Liaocheng People's Hospital, Liaocheng, China,
| |
Collapse
|
49
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y, Liu G. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol 2020; 10:287. [PMID: 32596169 PMCID: PMC7303283 DOI: 10.3389/fcimb.2020.00287] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Macrophages differentiated into a classically activated (M1) or alternatively activated phenotype (M2) in infection and tumor, but the precise effects of glycolysis and oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on macrophage polarizations were investigated using a pharmacological approach in mice. 2-Deoxy-D-glucose (2-DG) treatments, which blocks the key enzyme hexokinase of glycolysis, efficiently inhibits a specific switch to M1 lineage, decreasing the secretion of pro-inflammatory cytokines and expressions of co-stimulatory molecules associated with relieving infectious inflammation in vitro and in vivo. Glycolytic activation through the hypoxia-inducible factor-1α (HIF-1α) pathway was required for differentiation to the M1 phenotype, which conferred protection against infection. Dimethyl malonate (DMM) treatment, which blocks the key element succinate of OXPHOS, efficiently inhibits a specific switch to M2 lineage when macrophages receiving M2 stimulation, decreasing the secretion of anti-inflammatory cytokine and CD206 expressions. Mitochondrial dynamic alterations including mitochondrial mass, mitochondrial membrane potential (Dym) and ROS productions were critically for differentiation to the M2 phenotype, which conferred protection against anti-tumor immunity. Glycolysis is also required for macrophage M2 differentiation. Thus, these data provide a basis for a comprehensively understanding the role of glycolysis and OXPHOS in macrophage differentiation during anti-infection and anti-tumor inflammation.
Collapse
Affiliation(s)
- Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
50
|
Li J, Wang B, Luo Y, Zhang Q, Bian Y, Wang R. Resveratrol-mediated SIRT1 activation attenuates ovalbumin-induced allergic rhinitis in mice. Mol Immunol 2020; 122:156-162. [PMID: 32361418 DOI: 10.1016/j.molimm.2020.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
Resveratrol (RSV) is one kind of polyphenol that possesses anti-inflammatory effect. The effect of RSV in allergic rhinitis (AR) remains unclear. In this study, we investigated the protective effect of RSV against AR and explored the related signaling pathways. AR mouse model was successfully established by intraperitoneal injection with Ovalbumin (OVA). RSV administration was performed in a diet with different doses (5, 30, 50 mg/kg). Allergic symptoms were indicated by sneezing and nasal rubbing. Cytokines in serum and nasal lavage fluid (NLF) were determined by ELISA. mRNA and protein levels were detected by RT-PCR and Western blot. Our results show that RSV treatment attenuated sneezing and nasal rubbing in AR mice. It decreased histamine release, OVA-specific IgE, IgG1, IL-4 and LTC4, inflammatory cell numbers (leucocytes, eosinophils, lymphocytes, and neutrophils), and inflammatory cytokines secretion (TNF-α, IL-6, IL-10, IL-5, IL-13, and IL-17). Mechanically, RSV treatment suppressed HMGB1 and TLR4 expression and promoted SIRT1 expression in the nasal mucosa. In conclusion, RSV is able to attenuate OVA-induced AR in mice.
Collapse
Affiliation(s)
- Jian Li
- Departments of Otorhinolaryngology and Geriatrics, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Bin Wang
- Departments of Otorhinolaryngology and Geriatrics, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China.
| | - Yingying Luo
- Departments of Pediatric Bone Oncology, Cangzhou Combine Traditional Chinese and Western Medicine Hospital, No.31 Huanghe West Road, Cangzhou 061000, Hebei, China
| | - Qin Zhang
- Departments of Pediatric Bone Oncology, Cangzhou Combine Traditional Chinese and Western Medicine Hospital, No.31 Huanghe West Road, Cangzhou 061000, Hebei, China
| | - Yajie Bian
- Department of Dermatology, Langfang City Dacheng County Traditional Chinese Medicine Hospital, Cultural street in Xincheng District, Dacheng County, Langfang 065900, Hebei, China
| | - Ruipei Wang
- Departments of Otorhinolaryngology and Geriatrics, Langfang City Dacheng County Hospital, No. 47 Xinhua East Street, Dacheng County, Langfang 065900, Hebei, China
| |
Collapse
|