1
|
Veeraballi S, Bandaru SS, Kiwan C, Chan KH, Shaaban HS. A multifaceted role of bisphosphonates from palliative care to anti-cancer therapy in solid tumors. J Oncol Pharm Pract 2025; 31:107-118. [PMID: 39056232 DOI: 10.1177/10781552241265304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Bisphosphonates (P-C-Ps) also called diphosphonates are the structural analogs of naturally occurring pyrophosphates. Bisphosphonates are traditionally used and shown to provide long-term success in the treatment and prevention of osteoporosis and other bone loss pathologies. Furthermore, bisphosphonates are gaining popularity in the present era of cancer therapeutics and prevention. The usage of bisphosphonates as adjuvant or neoadjuvant therapy, either as a single agent or combined with other chemotherapy, has been studied in different solid tumors. This review aims to present the various roles of bisphosphonates in solid tumors. DATA SOURCES Articles in MEDLINE/PubMed and the National Institutes of Health Clinical Trials Registry (http://www. Clinicaltrials.gov) between 1 January 2011 and 1 February 2022 were extracted using MeSH terms "bisphosphonates/diphosphosphonates and mechanism," "bisphosphonates and breast cancer," "bisphosphonates and prostate cancer," "bisphosphonates and lung cancer," "bisphosphonates and cancer risk," and "bisphosphonates and adverse events." Manual searches of some major oncology journals were also conducted. DISCUSSION This review article focuses on the antitumor activity of bisphosphonates, safety profile, and the role of bisphosphonates as preventive, neoadjuvant, and adjuvant chemotherapy. A significant improvement in overall survival and cancer-specific survival and recurrence-free survival with the usage of bisphosphonates is noted in breast cancer patients, particularly in post-menopausal women. Though great progress has been achieved in over 20 years, further research is needed to identify the subgroup of patients that are most likely to benefit from adjuvant bisphosphonate therapy and to determine regimens with greater efficacy and better safety profile.
Collapse
Affiliation(s)
| | | | - Chrystina Kiwan
- Saint Michael's Medical Center, Internal Medicine Residency, Newark, NJ, USA
| | - Kok Hoe Chan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Hamid S Shaaban
- Saint Michael's Medical Center, Hematology Oncology, Newark, NJ, USA
| |
Collapse
|
2
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Adchariyasakulchai P, Sakunrangsit N, Chokyakorn S, Suksanong C, Ketchart W. Anticancer effect of zoledronic acid in endocrine-resistant breast cancer cells via HER-2 signaling. Biomed Pharmacother 2024; 171:116142. [PMID: 38198953 DOI: 10.1016/j.biopha.2024.116142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
HER-2 overexpression is a major mechanism involved in endocrine-resistant breast cancer, which has very limited treatment options. Zoledronic acid (ZA) is a drug in the bisphosphonate group used to treat osteoporosis. ZA was reported to exhibit activity in various cancers, with higher efficacy associated with estrogen-deprivation states. ZA inhibits cell proliferation in lung cancer through the epidermal growth factor receptor signaling pathway. Because endocrine-resistant breast cancer cells overexpress HER-2 and grow independently without estrogen, ZA may exert anticancer effects in these cell types. The inhibitory effects and mechanisms of ZA in endocrine-resistant cells through HER-2 signaling were investigated. The efficacy of ZA was higher in the endocrine-resistant breast cancer cells when compared with the wild-type cells. ZA also exhibited a synergistic effect with fulvestrant and may circumvent fulvestrant resistance. ZA decreased phosphorylated ERK (pERK) levels in resistant cell lines and attenuated HER-2 signaling in tamoxifen- and fulvestrant-resistant cells. ZA significantly decreased HER-2 levels and its downstream signaling molecules, including pAKT and pNF-κB in fulvestrant-resistant breast cancer cells. This inhibitory effect may explain the lower IC50 values of ZA in fulvestrant-resistant cells compared with tamoxifen-resistant cells. Moreover, ZA inhibited the migration and invasion in the resistant cell lines, suggesting an ability to inhibit tumor metastasis. The results indicate that ZA has potential for repurposing as an adjuvant treatment for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
| | - Nithidol Sakunrangsit
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarun Chokyakorn
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayanin Suksanong
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannarasmi Ketchart
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Zaluzec EK, Sempere LF. Systemic and Local Strategies for Primary Prevention of Breast Cancer. Cancers (Basel) 2024; 16:248. [PMID: 38254741 PMCID: PMC10814018 DOI: 10.3390/cancers16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
One in eight women will develop breast cancer in the US. For women with moderate (15-20%) to average (12.5%) risk of breast cancer, there are few options available for risk reduction. For high-risk (>20%) women, such as BRCA mutation carriers, primary prevention strategies are limited to evidence-based surgical removal of breasts and/or ovaries and anti-estrogen treatment. Despite their effectiveness in risk reduction, not many high-risk individuals opt for surgical or hormonal interventions due to severe side effects and potentially life-changing outcomes as key deterrents. Thus, better communication about the benefits of existing strategies and the development of new strategies with minimal side effects are needed to offer women adequate risk-reducing interventions. We extensively review and discuss innovative investigational strategies for primary prevention. Most of these investigational strategies are at the pre-clinical stage, but some are already being evaluated in clinical trials and others are expected to lead to first-in-human clinical trials within 5 years. Likely, these strategies would be initially tested in high-risk individuals but may be applicable to lower-risk women, if shown to decrease risk at a similar rate to existing strategies, but with minimal side effects.
Collapse
Affiliation(s)
- Erin K. Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology & Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorenzo F. Sempere
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
6
|
Wang R, Zhang W, Ma H, Zou D, Zhang Z, Wang S. Structural insights into the binding of zoledronic acid with RANKL via computational simulations. Front Mol Biosci 2022; 9:992473. [PMID: 36200071 PMCID: PMC9527314 DOI: 10.3389/fmolb.2022.992473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Zoledronic acid (ZOL) inhibits receptor activator of nuclear factor-κB ligand (RANKL) and reduces bone turnover. This plays an important role in the development of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Previous reports have shown that ZOL binds to the enzyme farnesyl pyrophosphate synthase (FPPS) to block its activity. However, the mechanism of action of ZOL and its interaction with RANKL is still unclear. In this study, we confirmed that ZOL significantly suppressed the bone remodeling in ZOL-treated rats, investigated whether ZOL could bind to RANKL and examined the interactions between these molecules at the atomic level. Surface plasmon resonance (SPR) assay was performed to validate that ZOL could directly bind to RANKL in a dose dependent manner, and the equilibrium constant was calculated (KD = 2.28 × 10−4 M). Then, we used molecular docking simulation to predict the binding site and analyze the binding characteristics of ZOL and RANKL. Through molecular dynamics simulation, we confirmed the stable binding between ZOL and RANKL and observed their dynamic interactions over time. Binding free energy calculations and its decomposition were conducted to obtain the binding free energy −70.67 ± 2.62 kJ/mol for the RANKL–ZOL complex. We identified the key residues of RANKL in the binding region, and these included Tyr217(A), Val277(A), Gly278(A), Val277(B), Gly278(B), and Tyr215(C). Taken together, our results demonstrated the direct interaction between ZOL and RANKL, indicating that the pharmacological action of ZOL might be closely related to RANKL. The design of novel small molecules targeting RANKL might reduce the occurrence of BRONJ.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Ma
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhiyuan Zhang, ; Shaoyi Wang,
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiyuan Zhang, ; Shaoyi Wang,
| |
Collapse
|
7
|
Jain P, Jain SK, Jain M. Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Curr Mol Med 2021; 21:111-132. [PMID: 32560606 DOI: 10.2174/1566524020666200619125404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traditional drug discovery is time consuming, costly, and risky process. Owing to the large investment, excessive attrition, and declined output, drug repurposing has become a blooming approach for the identification and development of new therapeutics. The method has gained momentum in the past few years and has resulted in many excellent discoveries. Industries are resurrecting the failed and shelved drugs to save time and cost. The process accounts for approximately 30% of the new US Food and Drug Administration approved drugs and vaccines in recent years. METHODS A systematic literature search using appropriate keywords were made to identify articles discussing the different strategies being adopted for repurposing and various drugs that have been/are being repurposed. RESULTS This review aims to describe the comprehensive data about the various strategies (Blinded search, computational approaches, and experimental approaches) used for the repurposing along with success case studies (treatment for orphan diseases, neglected tropical disease, neurodegenerative diseases, and drugs for pediatric population). It also inculcates an elaborated list of more than 100 drugs that have been repositioned, approaches adopted, and their present clinical status. We have also attempted to incorporate the different databases used for computational repurposing. CONCLUSION The data presented is proof that drug repurposing is a prolific approach circumventing the issues poised by conventional drug discovery approaches. It is a highly promising approach and when combined with sophisticated computational tools, it also carries high precision. The review would help researches in prioritizing the drugrepositioning method much needed to flourish the drug discovery research.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry and Computational Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule (425405) Maharashtra, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Munendra Jain
- SVKM's Department of Sciences, Narsee Monjee Institute of Management Studies, Indore, Madhya Pradesh, India
| |
Collapse
|
8
|
Luo Y, Yang Y, Peng P, Zhan J, Wang Z, Zhu Z, Zhang Z, Liu L, Fang W, Zhang L. Cholesterol synthesis disruption combined with a molecule-targeted drug is a promising metabolic therapy for EGFR mutant non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:128-142. [PMID: 33569299 PMCID: PMC7867776 DOI: 10.21037/tlcr-20-812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Acquired resistance is a challenge for epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer. Here, we propose a novel treatment strategy based on recent lipid metabolism work. Methods We applied a variety of experimental methods such as immunoblotting, MTT, si-RNA, and animal models, to demonstrate the relationship between EGFR and low-density lipoprotein receptor (LDLR) and the effects of statin monotherapy, and TKI monotherapy, and their combination on cell proliferation at the cell level and animal level. Results LDLR has a positive correlation with EGFR, EGFR signaling upregulates LDLR expression through the SREBP-1 dependent pathway, EGFR mutation cells count on lipids to survive and grow. Combined with a molecule-targeted drug, atorvastatin not only enhances the treatment effect in vitro, but also mitigates the growth of NSCLC in vivo. In this animal experiment, the combination medicine (atorvastatin with TKI) has a better tumor suppression effect on NSCLC. In HCC827 cell line, the average tumor shrinkage is about 68% in Gefitinib group, and about 49% in atorvastatin group, but about 89% in combination group. In H1975 cell line, the average tumor shrinkage is about 18% in Osimertinib group, and about 8% in atorvastatin group, but about 44% in combination group. Conclusions the combination of an EGFR-TKI and a statin for EGFR mutant NSCLC may be a novel tumor inhibiting treatment.
Collapse
Affiliation(s)
- Youli Luo
- Department of Medical Oncology, Center for Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peijian Peng
- Department of Medical Oncology, Center for Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhihui Wang
- Department of Medical Oncology, Center for Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhiquan Zhu
- Department of Medical Oncology, Center for Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Liu
- Department of Medical Oncology, Center for Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Li YY, Gao LJ, Zhang YX, Liu SJ, Cheng S, Liu YP, Jia CX. Bisphosphonates and risk of cancers: a systematic review and meta-analysis. Br J Cancer 2020; 123:1570-1581. [PMID: 32901134 PMCID: PMC7652831 DOI: 10.1038/s41416-020-01043-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023] Open
Abstract
Background It is unclear whether bisphosphonates are associated with risk of cancers. Therefore, this meta-analysis aimed to evaluate the effect of bisphosphonates on overall cancers. Methods A search in Pubmed, Embase, Cochrane Library and Web of Science databases was conducted, from the inception date of each resource to September 26, 2019. The summarised effect estimates with 95% CIs were calculated using a random-effect model. Heterogeneity and publication bias were explored. Results Thirty-four articles were included in this study (4,508,261 participants; 403,196 cases). The results revealed that bisphosphonates significantly decreased the risk of colorectal cancer (RR = 0.89, 95% CI: 0.81–0.98), breast cancer (RR = 0.87, 95% CI: 0.82–0.93) and endometrial cancer (RR = 0.75, 95% CI: 0.61–0.94), but no significant association was observed in all-cause cancer. Furthermore, nitrogen-containing bisphosphonates only had protective effects both on breast cancer (RR = 0.94, 95% CI: 0.90–0.99) and endometrial cancer (RR = 0.70, 95% CI: 0.54–0.92). Non-nitrogen-containing bisphosphonates tended to increase the risk of liver cancer (RR = 2.14, 95% CI: 1.23–3.72) and pancreas cancer (RR = 1.75, 95% CI: 1.32–2.33). Conclusion Bisphosphonates are significantly associated with risk reduction of colorectal, breast and endometrial cancer, especially nitrogen-containing bisphosphonates. It should be noted that non-nitrogen-containing bisphosphonates might increase the risk of liver and pancreas cancer. Large prospective cohort studies are needed to find the causal association between bisphosphonates and risk of cancers.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-Jie Gao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Xue Zhang
- Department of Preventive Medicine, Public Health School, Harbin Medical University, Harbin, China
| | - Shu-Juan Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuo Cheng
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Peng Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Cun-Xian Jia
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Zaidi M, Lizneva D, Gera S, Taneja C, Korkmaz F, Gumerova A, Ievleva K, Ahmad N, Ryu V, Sun L, Kim S, New MI, Haider S, Iqbal J, Rosen C, Yuen T. Beyond bone biology: Lessons from team science. J Orthop Res 2020; 38:2331-2338. [PMID: 32519816 PMCID: PMC7722176 DOI: 10.1002/jor.24771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Today, research in biomedicine often requires the knowledge and technologies in diverse fields. Therefore, there is an increasing need for collaborative team science that crosses traditional disciplines. Here, we discuss our own lessons from both interdisciplinary and transdisciplinary teams, which ultimately ushered us to expand our research realm beyond bone biology.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charit Taneja
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kseniia Ievleva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Federal State Public Scientific Institution, Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Naseer Ahmad
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se–Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shozeb Haider
- School of Pharmacy, University College London, London, UK
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Direct Enamido C(sp2)−H Diphosphorylation Enabled by a PCET‐Triggered Double Radical Relay: Access togem‐Bisphosphonates. Chemistry 2020; 26:5515-5521. [DOI: 10.1002/chem.202000517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/25/2022]
|
12
|
Madka V, Kumar G, Pathuri G, Zhang Y, Lightfoot S, Asch AS, Mohammed A, Steele VE, Rao CV. Bisphosphonates Zometa and Fosamax Synergize with Metformin to Prevent AOM-Induced Colon Cancer in F344 Rat Model. Cancer Prev Res (Phila) 2020; 13:185-194. [PMID: 31699708 PMCID: PMC7007371 DOI: 10.1158/1940-6207.capr-19-0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Recent observational studies suggest that bisphosphonates (BP) and antidiabetic drugs are associated with colorectal cancer risk reduction. Hence, we evaluated the colorectal cancer preventive effects of BPs (zometa and fosamax), individually and when combined with metformin, in azoxymethane-induced rat colon cancer model. Rat (30/group) were randomized and treated subcutaneously with azoxymethane to induce colorectal cancer. Dietary intervention with zometa or fosamax (0, 20, or 100 ppm) or metformin (1,000 ppm) or the combinations (zometa/fosamax 20 ppm plus metformin 1,000 ppm) began 4 weeks after azoxymethane treatment, at premalignant lesions stage. Rats were killed 40 weeks post drug intervention to assess colorectal cancer preventive efficacy. Dietary zometa (20 ppm) inhibited noninvasive adenocarcinomas multiplicity by 37% (P < 0.03) when compared with control diet fed group. Fosamax at 20 ppm and 100 ppm significantly reduced adenocarcinoma incidence (P < 0.005) and inhibited the noninvasive adenocarcinoma multiplicities by 43.8% (P < 0.009) and 60.8% (P < 0.004), respectively, compared with the group fed control diet. At 1,000 ppm dose, metformin failed to suppress colon adenocarcinoma formation. However, the lower dose combinations of zometa or fosamax with metformin resulted in significant inhibition of noninvasive adenocarcinoma by 48% (P < 0.006) and 64% (P < 0.0002), and invasive adenocarcinoma by 49% (P < 0.0005) and 38% (P < 0.006), respectively. Biomarker analysis of combination drug-treated tumors showed a decrease in cell proliferation with increased apoptosis when compared with untreated tumors. Overall, our results suggest that the combination of low doses of zometa or fosamax with metformin showed synergistic effect and significantly inhibited colon adenocarcinoma incidence and multiplicity.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Adam S Asch
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
13
|
Baranyi M, Rittler D, Molnár E, Shirasawa S, Jalsovszky I, Varga IK, Hegedűs L, Németh A, Dank M, Aigner C, Tóvári J, Tímár J, Hegedűs B, Garay T. Next Generation Lipophilic Bisphosphonate Shows Antitumor Effect in Colorectal Cancer In Vitro and In Vivo. Pathol Oncol Res 2020; 26:1957-1969. [PMID: 31902117 DOI: 10.1007/s12253-019-00789-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Bisphosphonates, despite proven antitumor effect in vitro in many tumor types, are currently used only for treatment of osteoporosis and bone metastasis. Colorectal cancer is the third most commonly diagnosed type of cancer and lacks targeted therapy for RAS or RAF mutation carrying cases. A new lipophilic bisphosphonate showed promising results in lung cancer models, but their effect on colorectal cancer cells was not investigated excessively. Antitumor effects and impact on RAS-related signalization of zoledronic acid (ZA) and a lipophilic bisphosphonate (BPH1222) were investigated on 7 human colorectal cancer cell lines in vitro and in vivo. Furthermore, mutant KRAS dependent effect of prenylation inhibition was investigated using isogeneic cell lines. Both bisphosphonates reduced cell viability in vitro in a dose-dependent manner. Both compounds changed cell cycle distribution similarly by increasing the proportion of cells either in the S or in the subG1 phase or both. However, BPH1222 exerted higher inhibitory effect on spheroid growth than ZA. Interestingly, we found profound alterations in phosphorylation level of Erk and S6 proteins upon ZA or BPH1222 treatment. Furthermore, investigation of a mutant KRAS isogeneic model system suggests that the drugs interfere also with the mutant KRAS proteins. In vivo experiments with KRAS mutant xenograft model also revealed growth inhibitory potential of bisphosphonate treatment. Our results show that lipophilic bisphosphonates might extend the therapeutic spectrum of bisphosphonate drugs and could be considered as additional treatment approaches in colorectal cancer.
Collapse
Affiliation(s)
- Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Dominika Rittler
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - István Jalsovszky
- Faculty of Science, Institute of Chemistry, Department of Organic Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imre Károly Varga
- Faculty of Science, Institute of Chemistry, Department of Organic Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany
| | - Afrodíté Németh
- Oncology Center, Semmelweis University, Budapest, H-1091, Hungary
| | - Magdolna Dank
- Oncology Center, Semmelweis University, Budapest, H-1091, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, H-1122, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary
| | - Balázs Hegedűs
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary. .,Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239, Essen, Germany.
| | - Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, H-1091, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, H-1122, Hungary.,Pázmány Péter Catholic University Faculty of Information Technology and Bionics, Budapest, H-1083, Hungary.,HAS Postdoctoral Fellowship Program Hungarian Academy of Sciences, Budapest, H-1051, Hungary
| |
Collapse
|
14
|
Tao MH, Chen S, Freudenheim JL, Cauley JA, Johnson KC, Mai X, Sarto GE, Wakelee H, Boffetta P, Wactawski-Wende J. Oral bisphosphonate use and lung cancer incidence among postmenopausal women. Ann Oncol 2019; 29:1476-1485. [PMID: 29617712 PMCID: PMC6005043 DOI: 10.1093/annonc/mdy097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Bisphosphonates are common medications for the treatment of osteoporosis in older populations. Several studies, including the Women’s Health Initiative (WHI), have found inverse associations of bisphosphonate use with risk of breast and endometrial cancer, but little is known about its association with other common malignancies. The objective of this study was to evaluate the association of bisphosphonate use on the incidence of lung cancer in the WHI. Patients and methods The association between oral bisphosphonate use and lung cancer risk was examined in 151 432 postmenopausal women enrolled into the WHI in 1993–1998. At baseline and during follow-up, participants completed an inventory of regularly used medications including bisphosphonates. Results After a mean follow-up of 13.3 years, 2511 women were diagnosed with incident lung cancer. There was no evidence of a difference in lung cancer incidence between oral bisphosphonate users and never users (adjusted hazard ratio = 0.91; 95% confidence intervals, 0.80–1.04; P = 0.16). However, an inverse association was observed among those who were never smokers (hazard ratio = 0.57, 95% confidence interval, 0.39–0.84; P < 0.01). Conclusion In this large prospective cohort of postmenopausal women, oral bisphosphonate use was associated with significantly lower lung cancer risk among never smokers, suggesting bisphosphonates may have a protective effect against lung cancer. Additional studies are needed to confirm our findings.
Collapse
Affiliation(s)
- M H Tao
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, USA.
| | - S Chen
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, USA
| | - J L Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, USA
| | - J A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, USA
| | - K C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - X Mai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, USA
| | - G E Sarto
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, USA
| | - H Wakelee
- Division of Oncology, Department of Medicine, Stanford University and Stanford Cancer Institute, Stanford, USA
| | - P Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - J Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, USA
| |
Collapse
|
15
|
Cui X, Li S, Gu J, Lin Z, Lai B, Huang L, Feng J, Liu B, Zhou Y. Retrospective study on the efficacy of bisphosphonates in tyrosine kinase inhibitor-treated patients with non-small cell lung cancer exhibiting bone metastasis. Oncol Lett 2019; 18:5437-5447. [PMID: 31612052 PMCID: PMC6781563 DOI: 10.3892/ol.2019.10870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
Bisphosphonates (Bps) inhibit the maturation of osteoclasts and suppress the adhesion of cancer cells to the bone matrix. They are recommended as the standard treatment for tumors exhibiting bone metastasis (BM). However, whether Bps can improve the prognosis of patients with tyrosine kinase inhibitor (TKI)-treated non-small cell lung cancer (NSCLC) exhibiting BM remains unclear. A total of 129 patients with NSCLC initially diagnosed with BM at The First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China) between January 2005 and December 2017 were analyzed in the present retrospective study. Median progression free survival (mPFS) time, median bone metastasis overall survival (mBM-OS) time and bone-associated progression-free survival were analyzed. Among the 129 patients, patients treated with Bps experienced significantly prolonged PFS time [mPFS: 7.1 vs. 5.1 months; hazard ratio (HR), 0.51; confidence interval (CI), 0.30-0.87; P=0.0114] in comparison with patients not treated with Bps. Of the 49 patients treated with frontline TKIs (EGFR TKIs or ALK TKI), 32 received Bps at the same time, while 17 patients received TKIs alone. The results revealed that mPFS time was significantly greater in the TKIs plus Bps group than in the TKIs alone group (mPFS: 11.2 vs. 6.9 months; HR, 0.13; CI, 0.05-0.35; P<0.0001). Significantly prolonged BM-OS time was also observed in the combination group in comparison with the TKIs alone group (mBM-OS: 31 vs. 22 months; HR, 0.31; CI, 0.10-0.96; P=0.0413). The present study demonstrated that among the patients who received TKIs (EGFR TKIs or ALK TKIs), those who also received Bps experienced significantly longer PFS time and tended to exhibit significantly improved BM-OS time, which indicated that Bps should be added to the treatment regimen of patients with NSCLC exhibiting genetic mutations and bone metastasis who have been prescribed TKIs (EGFR TKIs or ALK TKIs).
Collapse
Affiliation(s)
- Xiaoxian Cui
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoli Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jincui Gu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ziying Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bipeng Lai
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lixia Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinlun Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baomo Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanbin Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
Dai X, Xia H, Zhou S, Tang Q, Bi F. Zoledronic acid enhances the efficacy of the MEK inhibitor trametinib in KRAS mutant cancers. Cancer Lett 2018; 442:202-212. [PMID: 30429107 DOI: 10.1016/j.canlet.2018.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023]
Abstract
KRAS mutation is the most common type of mutation in human cancers. However, the direct pharmacological inhibition of KRAS has not been clinically successful. Trametinib (GSK1120212, Tram), a newer MEK inhibitor, inhibits RAS signaling through mitogen-activated protein kinase (MAPK) cascade suppression. The effectiveness of Tram in clinical practice is limited in KRAS mutant tumors compared to that in BRAF mutant tumors. Here, we found that Tram treatment provoked feedback activation of upstream RAS, thus causing an induction of phosphorylated MEK (pMEK) and phosphorylated ERK (pERK) rebound in KRAS mutant tumors. This failure of persistent ERK inhibition led to drug resistance. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, disrupts the biological activity of RAS by inhibiting its isoprenylation. Surprisingly, ZA overcame Tram resistance, and augmented antitumor activity was observed in KRAS mutant tumors both in vitro and in vivo. Furthermore, ZA enhanced the effect of Tram partially through the mevalonate pathway. In summary, the combination of the two FDA-approved drugs Tram and ZA may represent a novel therapeutic strategy for the treatment of KRAS mutant cancers.
Collapse
Affiliation(s)
- Xinyu Dai
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China.
| | - Sheng Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China.
| |
Collapse
|
17
|
Kobayashi Y, Banno K, Kunitomi H, Tominaga E, Aoki D. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol 2018; 30:e10. [PMID: 30479094 PMCID: PMC6304407 DOI: 10.3802/jgo.2019.30.e10] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the seventh most common cancer and the eighth most common cause of cancer mortality in women. Although standard chemotherapy is the established treatment for ovarian cancer, the prognosis remains poor, and it is highly anticipated that new drugs will be developed. New drugs, such as humanized anti-vascular endothelial growth factor monoclonal antibodies and poly ADP-ribose polymerase inhibitors, are expected to improve clinical outcomes of ovarian cancer. However, long-term, costly research is required to develop such new drugs, and soaring national healthcare costs are becoming a concern worldwide. In this social context, drug repositioning, wherein existing drugs are used to develop drugs with new indications for other diseases, has recently gained attention. Because trials have already confirmed the safety in humans and the pharmacokinetics of such drugs, the development period is shorter than the conventional development of a new drug, thereby reducing costs. This review discusses the available basic experimental and clinical data on drugs used for other types of cancer for which drug repositioning is anticipated to repurpose the drug for the treatment of ovarian cancer. These include statins, which are used to treat dyslipidemia; bisphosphonate, which is used to treat osteoporosis; metformin, which is used to treat diabetes; non-steroidal anti-inflammatory drugs; ivermectin, an antiparasitic agent; and itraconazole, an anti-fungal agent. These drugs will play an important role in future drug repositioning strategies for ovarian cancer. Furthermore, drug repositioning is anticipated to extend not only to ovarian cancer treatment but also to ovarian cancer prevention.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Haruko Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Zaidi M, Yuen T, Sun L, Rosen CJ. Regulation of Skeletal Homeostasis. Endocr Rev 2018; 39:701-718. [PMID: 29897433 PMCID: PMC6173473 DOI: 10.1210/er.2018-00050] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Landmark advances in skeletal biology have arisen mainly from the identification of disease-causing mutations and the advent of rapid and selective gene-targeting technologies to phenocopy human disease in mice. Here, we discuss work on newly identified mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, and crosstalk between bone and vital organs as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tony Yuen
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Sun
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
19
|
Malwal SR, O'Dowd B, Feng X, Turhanen P, Shin C, Yao J, Kim BK, Baig N, Zhou T, Bansal S, Khade RL, Zhang Y, Oldfield E. Bisphosphonate-Generated ATP-Analogs Inhibit Cell Signaling Pathways. J Am Chem Soc 2018; 140:7568-7578. [PMID: 29787268 PMCID: PMC6022752 DOI: 10.1021/jacs.8b02363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bisphosphonates are a major class of drugs used to treat osteoporosis, Paget's disease, and cancer. They have been proposed to act by inhibiting one or more targets including protein prenylation, the epidermal growth factor receptor, or the adenine nucleotide translocase. Inhibition of the latter is due to formation in cells of analogs of ATP: the isopentenyl ester of ATP (ApppI) or an AppXp-type analog of ATP, such as AMP-clodronate (AppCCl2p). We screened both ApppI as well as AppCCl2p against a panel of 369 kinases finding potent inhibition of some tyrosine kinases by AppCCl2p, attributable to formation of a strong hydrogen bond between tyrosine and the terminal phosphonate. We then synthesized bisphosphonate preprodrugs that are converted in cells to other ATP-analogs, finding low nM kinase inhibitors that inhibited cell signaling pathways. These results help clarify our understanding of the mechanisms of action of bisphosphonates, potentially opening up new routes to the development of bone resorption, anticancer, and anti-inflammatory drug leads.
Collapse
Affiliation(s)
- Satish R Malwal
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Bing O'Dowd
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Xinxin Feng
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Petri Turhanen
- School of Pharmacy, Biocenter Kuopio , University of Eastern Finland , PO Box 1627, FIN-70211 Kuopio , Finland
| | - Christopher Shin
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jiaqi Yao
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Boo Kyung Kim
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Noman Baig
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Tianhui Zhou
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sandhya Bansal
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , 1 Castle Point Terrace , Hoboken , New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , 1 Castle Point Terrace , Hoboken , New Jersey 07030, United States
| | - Eric Oldfield
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
20
|
Cuyàs E, Corominas-Faja B, Martín MMS, Martin-Castillo B, Lupu R, Brunet J, Bosch-Barrera J, Menendez JA. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget 2018; 8:35019-35032. [PMID: 28388533 PMCID: PMC5471031 DOI: 10.18632/oncotarget.16558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), might be a novel preventative therapy for BRCA1-mutation carriers at high risk of developing breast cancer. Beyond its well-recognized bone-targeted activity impeding osteoclastogenesis, denosumab has been proposed to interfere with the cross-talk between RANKL-producing sensor cells and cancer-initiating RANK+ responder cells that reside within premalignant tissues of BRCA1-mutation carriers. We herein tested the alternative but not mutually exclusive hypothesis that BRCA1 deficiency might cell-autonomously activate RANKL expression to generate cellular states with cancer stem cell (CSC)-like properties. Using isogenic pairs of normal-like human breast epithelial cells in which the inactivation of a single BRCA1 allele results in genomic instability, we assessed the impact of BRCA1 haploinsufficiency on the expression status of RANK and RANKL. RANK expression remained unaltered but RANKL was dramatically up-regulated in BRCA1mut/+ haploinsufficient cells relative to isogenic BRCA1+/+ parental cells. Neutralizing RANKL with denosumab significantly abrogated the ability of BRCA1 haploinsufficient cells to survive and proliferate as floating microtumors or "mammospheres" under non-adherent/non-differentiating conditions, an accepted surrogate of the relative proportion and survival of CSCs. Intriguingly, CSC-like states driven by epithelial-to-mesenchymal transition or HER2 overexpression traits responded to some extent to denosumab. We propose that breast epithelium-specific mono-allelic inactivation of BRCA1 might suffice to cell-autonomously generate RANKL-addicted, denosumab-responsive CSC-like states. The convergent addiction to a hyperactive RANKL/RANK axis of CSC-like states from genetically diverse breast cancer subtypes might inaugurate a new era of cancer prevention and treatment based on denosumab as a CSC-targeted agent.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bruna Corominas-Faja
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - María Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Joan Brunet
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Joaquim Bosch-Barrera
- Deparment of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
21
|
In Silico-Based Repositioning of Phosphinothricin as a Novel Technetium-99m Imaging Probe with Potential Anti-Cancer Activity. Molecules 2018; 23:molecules23020496. [PMID: 29473879 PMCID: PMC6017358 DOI: 10.3390/molecules23020496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
l-Phosphinothricin (glufosinate or 2-amino-4-((hydroxy(methyl) phosphinyl) butyric acid ammonium salt (AHPB)), which is a structural analog of glutamate, is a recognized herbicide that acts on weeds through inhibition of glutamine synthetase. Due to the structural similarity between phosphinothricin and some bisphosphonates (BPs), this study focuses on investigating the possibility of repurposing phosphinothricin as a bisphosphonate analogue, particularly in two medicine-related activities: image probing and as an anti-cancer drug. As BP is a competitive inhibitor of human farnesyl pyrophosphate synthase (HFPPS), in silico molecular docking and dynamic simulations studies were established to evaluate the binding and stability of phosphinothricin with HFPPS, while the results showed good binding and stability in the active site of the enzyme in relation to alendronate. For the purpose of inspecting bone-tissue accumulation of phosphinothricin, a technetium (99mTc)–phosphinothricin complex was developed and its stability and tissue distribution were scrutinized. The radioactive complex showed rapid, high and sustained uptake into bone tissues. Finally, the cytotoxic activity of phosphinothricin was tested against breast and lung cancer cells, with the results indicating cytotoxic activity in relation to alendronate. All the above results provide support for the use of phosphinothricin as a potential anti-cancer drug and of its technetium complex as an imaging probe.
Collapse
|
22
|
Kenessey I, Kói K, Horváth O, Cserepes M, Molnár D, Izsák V, Dobos J, Hegedűs B, Tóvári J, Tímár J. KRAS-mutation status dependent effect of zoledronic acid in human non-small cell cancer preclinical models. Oncotarget 2018; 7:79503-79514. [PMID: 27780929 PMCID: PMC5346731 DOI: 10.18632/oncotarget.12806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy.
Collapse
Affiliation(s)
- István Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,National Cancer Registry, National Institute of Oncology, Budapest, Hungary
| | - Krisztina Kói
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Orsolya Horváth
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Vera Izsák
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | | | - Balázs Hegedűs
- Hungarian Academy of Sciences-Semmelweis University Molecular Oncology Research Group, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Hungarian Academy of Sciences-Semmelweis University Molecular Oncology Research Group, Budapest, Hungary
| |
Collapse
|
23
|
Ou YJ, Chiu HF, Wong YH, Yang CC, Yang YH. Bisphosphonate use and the risk of breast cancer: a meta-analysis of observational studies. Pharmacoepidemiol Drug Saf 2017; 26:1286-1295. [PMID: 28857419 DOI: 10.1002/pds.4302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To summarize current evidence of the association of bisphosphonate use with breast cancer risk, we used a systematic review and meta-analysis of observational studies to explore this issue. METHODS A comprehensive search was conducted on PubMed, EMBASE, and the Cochrane Library. Pooled relative risk (RR) estimates and 95% confidence intervals (CIs) were calculated using the random effects model. RESULTS Bisphosphonate use was associated with a 16% lower breast cancer risk (pool RR0.84, 95%CI 0.77-0.90, n = 8). A protective effect of bisphosphonate was found in cohort studies (RR 0.85, 95%CI 0.80-0.90, n = 4) and case-control studies (RR 0.78, 95%CI 0.64-0.96, n = 4).We also found that the use of bisphosphonate resulted in a statistically significant reduction in all breast cancer risk (RR 0.87, 95%CI 0.81-0.93) and greater reduction in invasive breast cancer risk (RR 0.78, 95%CI 0.68-0.91) and contralateral breast cancer risk (RR, 0.41; 95% CI, 0.20-0.84).With respect to the type of bisphosphonate, we found that alendronate and etidronate resulted significant reduction in breast cancer risk. The short-term use of bisphosphonate (<1 y) led to nonsignificant change (RR 0.93, 95%CI 0.86-1.00), but a significant 26% reduction of breast cancer risk was noted with long-term use (>1 y) (RR 0.74, 95%CI 0.66-0.83). CONCLUSIONS Our results supported bisphosphonate as being effective in preventing breast cancer, including invasive and contralateral breast cancer. Furthermore, the long-term use (>1 y) of bisphosphonate was more significant in lowering breast cancer risk.
Collapse
Affiliation(s)
- Ying-Ju Ou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Fen Chiu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Hong Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chien Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Yi-Hsin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Boulmier A, Feng X, Oms O, Mialane P, Rivière E, Shin CJ, Yao J, Kubo T, Furuta T, Oldfield E, Dolbecq A. Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results. Inorg Chem 2017; 56:7558-7565. [PMID: 28631925 PMCID: PMC5535315 DOI: 10.1021/acs.inorgchem.7b01114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized a series of polyoxometalate-bisphosphonate complexes containing MoVIO6 octahedra, zoledronate, or an N-alkyl (n-C6 or n-C8) zoledronate analogue, and in two cases, Mn as a heterometal. Mo6L2 (L = Zol, ZolC6, ZolC8) and Mo4L2Mn (L = Zol, ZolC8) were characterized by using single-crystal X-ray crystallography and/or IR spectroscopy, elemental and energy dispersive X-ray analysis and 31P NMR. We found promising activity against human nonsmall cell lung cancer (NCI-H460) cells with IC50 values for growth inhibition of ∼5 μM per bisphosphonate ligand. The effects of bisphosphonate complexation on IC50 decreased with increasing bisphosphonate chain length: C0 ≈ 6.1×, C6 ≈ 3.4×, and C8 ≈ 1.1×. We then determined the activity of one of the most potent compounds in the series, Mo4Zol2Mn(III), against SK-ES-1 sarcoma cells in a mouse xenograft system finding a ∼5× decrease in tumor volume than found with the parent compound zoledronate at the same compound dosing (5 μg/mouse). Overall, the results are of interest since we show for the first time that heteropolyoxomolybdate-bisphosphonate hybrids kill tumor cells in vitro and significantly decrease tumor growth, in vivo, opening up new possibilities for targeting both Ras as well as epidermal growth factor receptor driven cancers.
Collapse
Affiliation(s)
- Amandine Boulmier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Xinxin Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Olivier Oms
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Christopher J. Shin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Jiaqi Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Tadahiko Kubo
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Taisuke Furuta
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, USA
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
25
|
FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness. Proc Natl Acad Sci U S A 2017; 114:7683-7688. [PMID: 28674022 DOI: 10.1073/pnas.1621486114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibrous sheath interacting protein 1 (FSIP1), a spermatogenesis-related testicular antigen, is expressed in abundance in breast cancers, particularly in those overexpressing human epidermal growth factor receptor 2 (HER2); however, little is known about its role in regulating the growth and metastasis of breast cancer cells. We and others have shown previously that FSIP1 expression in breast cancer correlates positively with HER2-positivity, recurrence, and metastases and negatively with survival. Here, using coimmunoprecipitation and microscale thermophoresis, we find that FSIP1 binds to the intracellular domain of HER2 directly. We further show that shRNA-induced FSIP1 knockdown in SKBR3 and MCF-7 breast cancer cells inhibits proliferation, stimulates apoptosis, attenuates epithelial-mesenchymal transition, and impairs migration and invasiveness. Consistent with reduced proliferation and enhanced apoptosis, xenotransplantation of SKBR3 cells stably transfected with sh-FSIP1 into nu/nu mice results in reduced tumor volumes compared with sh-NC transplants. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping using sh-FSIP1 gene signature yielded associations with extracellular matrix protein pathways, and a reduction in SNAI2 protein expression was confirmed on Western blot analysis. Complementarily, interrogation of the Connectivity Map using the same gene signature yielded, as top hits, chemicals known to inhibit epithelial-mesenchymal transition, including rapamycin, 17-N-allylamino-17-demethoxygeldanamycin, and LY294002. These compounds phenocopy the effects of sh-FSIP1 on SKBR3 cell viability. Thus, FSIP1 suppression limits oncogenesis and invasiveness in breast cancer cells and, considering its absence in most other tissues, including normal breast, may become a potential target for breast cancer therapy.
Collapse
|
26
|
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate-Functionalized Imaging Agents, Anti-Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Adv Healthc Mater 2017; 6. [PMID: 28207199 DOI: 10.1002/adhm.201601119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality. Bisphosphonates are a well-established class of drugs, which are increasingly applied in the treatment of bone cancers owing to their effective inhibition of tumor cells and suppression of bone metastases. The increased understanding of the mechanism of action of bisphosphonates on bone and tumor cells has prompted the development of novel bisphosphonate-functionalized imaging and therapeutic agents. This review provides an update on the preclinical efficacy of bisphosphonate-functionalized fluorophore, anti-tumor agents and nanocarriers for the treatment of bone metastases. After an overview of the general characteristics of bisphosphonates and their mechanisms of action, an outline is provided on the various conjugation strategies that have become available to functionalize imaging agents, anti-tumor agents and nanocarriers with bisphosphonates. Finally, the efficacy of these bisphosphonate-modified agents and carriers in preclinical studies is evaluated by reviewing their potential to target tumors and inhibit tumor growth in clinically relevant animal models for the treatment of bone cancer.
Collapse
Affiliation(s)
- Robin A. Nadar
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Nicola Margiotta
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via E. Orabona 4 70125 Bari Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC); National Research Council (CNR); Via Granarolo 64 48018 Faenza Italy
| | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Geert Grooteplein Zuid 10 6525 AG Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
27
|
Matsumoto K, Hayashi K, Murata-Hirai K, Iwasaki M, Okamura H, Minato N, Morita CT, Tanaka Y. Targeting Cancer Cells with a Bisphosphonate Prodrug. ChemMedChem 2016; 11:2656-2663. [PMID: 27786425 PMCID: PMC5605902 DOI: 10.1002/cmdc.201600465] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Nitrogen-containing bisphosphonates have antitumor activity in certain breast cancer and myeloma patients. However, these drugs have limited oral absorption, tumor cell entry and activity, and cause bone side effects. The potencies of phosphorylated antiviral drugs have been increased by administering them as prodrugs, in which the negative charges on the phosphate moieties are masked to make them lipophilic. We synthesized heterocyclic bisphosphonate (BP) prodrugs in which the phosphonate moieties are derivatized with pivaloyloxymethyl (pivoxil) groups and that lack the hydroxy "bone hook" on the geminal carbon. When the lipophilic BP prodrugs enter tumor cells, they are converted into their active forms by intracellular esterases. The most active BP prodrug, tetrakispivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (7), was found to potently inhibit the in vitro growth of a variety of tumor cell lines, especially hematopoietic cells, at nanomolar concentrations. Consistent with this fact, compound 7 inhibited the prenylation of the RAP1A small GTPase signaling protein at concentrations as low as 1-10 nm. In preclinical studies, 7 slowed the growth of human bladder cancer cells in an immunodeficient mouse model. Thus, 7 is significantly more active than zoledronic acid, the most active FDA-approved BP, and a potential anticancer therapeutic.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kosuke Hayashi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaoru Murata-Hirai
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Haruki Okamura
- Department of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Nagahiro Minato
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Craig T Morita
- Department of Internal Medicine and the Interdisciplinary GraduateProgram in Immunology, University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Health Care System, 601 Highway 6 West, Research (151), Iowa City, IA, 52246, USA
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Department of Immunology and Cell Biology, Graduate School ofMedicine, Kyoto University, Kyoto, 606-8501, Japan
- Center for Bioinformatics and Molecular Medicine, Graduate School ofBiomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
28
|
Li H, Hu J, Wu S, Wang L, Cao X, Zhang X, Dai B, Cao M, Shao R, Zhang R, Majidi M, Ji L, Heymach JV, Wang M, Pan S, Minna J, Mehran RJ, Swisher SG, Roth JA, Fang B. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget 2016; 7:3548-58. [PMID: 26657290 PMCID: PMC4823126 DOI: 10.18632/oncotarget.6516] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Jilin Province Cancer Hospital, Changchun, Jilin, China
| | - Jing Hu
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaobo Cao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingbing Dai
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mengru Cao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruping Shao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Minna
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Bertaina A, Zorzoli A, Petretto A, Barbarito G, Inglese E, Merli P, Lavarello C, Brescia LP, De Angelis B, Tripodi G, Moretta L, Locatelli F, Airoldi I. Zoledronic acid boosts γδ T-cell activity in children receiving αβ + T and CD19 + cell-depleted grafts from an HLA-haplo-identical donor. Oncoimmunology 2016; 6:e1216291. [PMID: 28344861 DOI: 10.1080/2162402x.2016.1216291] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ+ T cells and CD19+ B cells are endowed with the capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, p = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients.
Collapse
Affiliation(s)
- A Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - A Zorzoli
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - A Petretto
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - G Barbarito
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - E Inglese
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - P Merli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - C Lavarello
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - L P Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - B De Angelis
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - G Tripodi
- Dipartimento Ricerca Traslazionale, Medicina di Laboratorio, Diagnostica e Servizi, Istituto Giannina Gaslini , Genova, Italy
| | - L Moretta
- Area di Ricerca Immunologica, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy; Department of Pediatric Science, Università di Pavia, Pavia, Italy
| | - I Airoldi
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| |
Collapse
|
30
|
Ou YJ, Chiu HF, Wong YH, Yang YH. Bisphosphonate use and the risk of endometrial cancer: a meta-analysis of observational studies. Pharmacoepidemiol Drug Saf 2016; 25:1107-1115. [DOI: 10.1002/pds.4075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Ying-Ju Ou
- School of Pharmacy, College of Pharmacy; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Pharmacy; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Hui-Fen Chiu
- Graduate Institute of Medicine; College of Medicine, Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Pharmacology; College of Medicine, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Yun-Hong Wong
- Graduate Institute of Medicine; College of Medicine, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Yi-Hsin Yang
- School of Pharmacy, College of Pharmacy; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
31
|
Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget 2016; 6:25076-92. [PMID: 26312765 PMCID: PMC4694816 DOI: 10.18632/oncotarget.4725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.
Collapse
Affiliation(s)
| | | | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | | |
Collapse
|
32
|
Abstract
Background:
Bisphosphonates are drugs commonly used for the medication and prevention of diseases caused by decreased mineral density. Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents.
Objective:
To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine and agriculture.
Method:
Critical review of recent literature data.
Results:
Comprehensive review of activities revealed by bisphosphonates.
Conclusion:
although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been fully evaluated yet. Literature data considering enzyme inhibition suggest possibilities of far more wide application of these compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical entities overcoming this shortage are carried out.
Collapse
|
33
|
Schulman RC, Moshier EL, Rho L, Casey MF, Godbold JH, Zaidi M, Mechanick JI. INTRAVENOUS PAMIDRONATE IS ASSOCIATED WITH REDUCED MORTALITY IN PATIENTS WITH CHRONIC CRITICAL ILLNESS. Endocr Pract 2016; 22:799-808. [PMID: 26919649 DOI: 10.4158/ep151050.or] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Chronic critical illness (CCI), characterized by prolonged mechanical ventilation and tracheostomy, commonly manifests with elevated bone resorption, which has previously been shown to abate after treatment with intravenous (IV) bisphosphonates. Our study assessed the impact of pamidronate administration on clinical outcomes in a CCI cohort. METHODS A retrospective case series was performed on 148 patients admitted to The Mount Sinai Hospital Respiratory Care Unit (RCU) from 2009-2010. We identified patients with CCI who did (n = 30) or did not (n = 118) receive IV pamidronate (30 to 90 mg). Both groups included patients with normal and abnormal renal function. Pamidronate was administered for elevated urine or serum N-telopeptide, hypercalciuria, or hypercalcemia. RESULTS RCU and 1-year mortality were significantly lower in the pamidronate group (0 and 20%, respectively) compared to nonreceivers (19 and 56%, respectively) (P = .0077 and P = .0004, respectively). After adjusting for differences in baseline creatinine, estimated glomerular filtration rate, and serum calcium, the association with reduced mortality remained significant at 1 year (P = .0132) and with borderline significance for RCU mortality (P = .0911). Creatinine was significantly lower 7 days following pamidronate administration (P = .0025), with no significant difference at 14 days compared to baseline. Pamidronate receivers showed a greater increase in albumin during the RCU stay (2.49 to 3.23 g/dL), compared to nonreceivers (2.43 to 2.64 g/dL) (P = .0007). Pamidronate administration was associated with a significantly reduced rate of hypoglycemia compared to RCU patients not receiving pamidronate (0.09 versus 0.12; P = .0071). CONCLUSION Pamidronate use in a CCI population is associated with reduced mortality, lower hypoglycemia rates, improved albumin, and stable renal function. ABBREVIATIONS BMI = body mass index CCI = chronic critical illness CI = confidence interval CKD = chronic kidney disease CTx = C-telopeptide eGFR = estimated glomerular filtration rate ICU = intensive care unit IV = intravenous NTx = N-telopeptide PMV = prolonged mechanical ventilation RCU = respiratory care unit.
Collapse
|
34
|
Ang C, Doyle E, Branch A. Bisphosphonates as potential adjuvants for patients with cancers of the digestive system. World J Gastroenterol 2016; 22:906-916. [PMID: 26811636 PMCID: PMC4716044 DOI: 10.3748/wjg.v22.i3.906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Best known for their anti-resorptive activity in bone, bisphosphonates (BPs) have generated interest as potential antineoplastic agents given their pleiotropic biological effects which include antiproliferative, antiangiogenic and immune-modulating properties. Clinical studies in multiple malignancies suggest that BPs may be active in the prevention or treatment of cancer. Digestive tract malignancies represent a large and heterogeneous disease group, and the activity of BPs in these cancers has not been extensively studied. Recent data showing that some BPs inhibit human epidermal growth factor receptor (HER) signaling highlight a potential therapeutic opportunity in digestive cancers, many of which have alterations in the HER axis. Herein, we review the available evidence providing a rationale for the repurposing of BPs as a therapeutic adjunct in the treatment of digestive malignancies, especially in HER-driven subgroups.
Collapse
|
35
|
Huang CH, Chang PMH, Hsu CW, Huang CYF, Ng KL. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory. BMC Bioinformatics 2016; 17 Suppl 1:2. [PMID: 26817825 PMCID: PMC4895785 DOI: 10.1186/s12859-015-0845-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects. Results This work integrates two approaches - machine learning algorithms and topological parameter-based classification - to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets, enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of 7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC, respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according to IC50 measurements. Conclusions With the novel pipeline of drug repositioning, the discovery of enriched pathways and potential drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC. Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding pipeline is effective for repositioning drugs.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Hu-Wei, 63205, Taiwan.
| | - Peter Mu-Hsin Chang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital; Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
| | - Chia-Wei Hsu
- Department of Computer Science and Information Engineering, National Formosa University, Hu-Wei, 63205, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
36
|
Liu W, Zhang T, Guo L, Yang Y. Lipophilic bisphosphonates plus rapamycin: a deadly combination for KRAS-mutated lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:289. [PMID: 26697449 DOI: 10.3978/j.issn.2305-5839.2015.09.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Liu
- 1 Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA ; 2 Department of Respiratory, the Second Affiliated Hospital, the Fourth Military Medical University, Xi'an 710038, China ; 3 Department of Biochemistry and Molecular Biology, 4 Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ting Zhang
- 1 Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA ; 2 Department of Respiratory, the Second Affiliated Hospital, the Fourth Military Medical University, Xi'an 710038, China ; 3 Department of Biochemistry and Molecular Biology, 4 Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Lixia Guo
- 1 Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA ; 2 Department of Respiratory, the Second Affiliated Hospital, the Fourth Military Medical University, Xi'an 710038, China ; 3 Department of Biochemistry and Molecular Biology, 4 Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Yanan Yang
- 1 Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA ; 2 Department of Respiratory, the Second Affiliated Hospital, the Fourth Military Medical University, Xi'an 710038, China ; 3 Department of Biochemistry and Molecular Biology, 4 Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther 2015; 158:24-40. [PMID: 26617219 DOI: 10.1016/j.pharmthera.2015.11.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of evidence points toward an important anti-cancer effect of bisphosphonates, a group of inexpensive, safe, potent, and long-term stable pharmacologicals that are widely used as osteoporosis drugs. To date, they are already used in the prevention of complications of bone metastases. Because the bisphosphonates can also reduce mortality in among other multiple myeloma, breast, and prostate cancer patients, they are now thoroughly studied in oncology. In particular, the more potent nitrogen-containing bisphosphonates have the potential to improve prognosis. The first part of this review will elaborate on the direct and indirect anti-tumoral effects of bisphosphonates, including induction of tumor cell apoptosis, inhibition of tumor cell adhesion and invasion, anti-angiogenesis, synergism with anti-neoplastic drugs, and enhancement of immune surveillance (e.g., through activation of γδ T cells and targeting macrophages). In the second part, we shed light on the current clinical position of bisphosphonates in the treatment of hematological and solid malignancies, as well as on ongoing and completed clinical trials investigating the therapeutic effect of bisphosphonates in cancer. Based on these recent data, the role of bisphosphonates is expected to further expand in the near future outside the field of osteoporosis and to open up new avenues in the treatment of malignancies.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690721. [PMID: 26581653 PMCID: PMC4637082 DOI: 10.1155/2015/690721] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
In the present pilot study, we examined the presence of serglycin in lung, breast, prostate, and colon cancer and evaluated its expression in cell lines and tissues. We found that serglycin was expressed and constitutively secreted in culture medium in high levels in more aggressive cancer cells. It is worth noticing that aggressive cancer cells that harbor KRAS or EGFR mutations secreted serglycin constitutively in elevated levels. Furthermore, we detected the transcription of an alternative splice variant of serglycin lacking exon 2 in specific cell lines. In a limited number of tissue samples analyzed, serglycin was detected in normal epithelium but was also expressed in higher levels in advanced grade tumors as shown by immunohistochemistry. Serglycin staining was diffuse, granular, and mainly cytoplasmic. In some cancer cells serglycin also exhibited membrane and/or nuclear immunolocalization. Interestingly, the stromal cells of the reactive tumor stroma were positive for serglycin, suggesting an enhanced biosynthesis for this proteoglycan in activated tumor microenvironment. Our study investigated for first time the distribution of serglycin in normal epithelial and cancerous lesions in most common cancer types. The elevated levels of serglycin in aggressive cancer and stromal cells may suggest a key role for serglycin in disease progression.
Collapse
|
39
|
Affiliation(s)
- Jacques Robert
- Inserm unité 916, Institut Bergonié,Université de Bordeaux, France.
| | | |
Collapse
|
40
|
Saad A, Zhu W, Rousseau G, Mialane P, Marrot J, Haouas M, Taulelle F, Dessapt R, Serier-Brault H, Rivière E, Kubo T, Oldfield E, Dolbecq A. Polyoxomolybdate Bisphosphonate Heterometallic Complexes: Synthesis, Structure, and Activity on a Breast Cancer Cell Line. Chemistry 2015; 21:10537-47. [DOI: 10.1002/chem.201406565] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/12/2015] [Indexed: 01/15/2023]
|
41
|
Russell RGG. Pharmacological diversity among drugs that inhibit bone resorption. Curr Opin Pharmacol 2015; 22:115-30. [DOI: 10.1016/j.coph.2015.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 02/08/2023]
|
42
|
Bria E, Pilotto S, Amato E, Fassan M, Novello S, Peretti U, Vavalà T, Kinspergher S, Righi L, Santo A, Brunelli M, Corbo V, Giglioli E, Sperduti I, Milella M, Chilosi M, Scarpa A, Tortora G. Molecular heterogeneity assessment by next-generation sequencing and response to gefitinib of EGFR mutant advanced lung adenocarcinoma. Oncotarget 2015; 6:12783-12795. [PMID: 25904052 PMCID: PMC4494974 DOI: 10.18632/oncotarget.3727] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cancer molecular heterogeneity might explain the variable response of EGFR mutant lung adenocarcinomas to tyrosine kinase inhibitors (TKIs). We assessed the mutational status of 22 cancer genes by next-generation sequencing (NGS) in poor, intermediate or good responders to first-line gefitinib. Clinical outcome was correlated with Additional Coexisting Mutations (ACMs) and the EGFR Proportion of Mutated Alleles (PMA). Thirteen ACMs were found in 10/17 patients: TP53 (n=6), KRAS (n=2), CTNNB1 (n=2), PIK3CA, SMAD4 and MET (n=1 each). TP53 mutations were exclusive of poor/intermediate responders (66.7% versus 0, p=0.009). Presence of ACMs significantly affected both PFS (median 3.0 versus 12.3 months, p=0.03) and survival (3.6 months versus not reached, p=0.03). TP53 mutation was the strongest negative modifier (median PFS 4.0 versus 14.0 months). Higher EGFR PMA was present in good versus poor/intermediate responders. Median PFS and survival were longer in patients with EGFR PMA ≥0.36 (12.0 versus 4.0 months, p=0.31; not reached versus 18.0 months, p=0.59). Patients with an EGFR PMA ≥0.36 and no ACMs fared significantly better (p=0.03), with a trend towards increased survival (p=0.06). Our exploratory data suggest that a quantitative (PMA) and qualitative (ACMs) molecular heterogeneity assessment using NGS might be useful for a better selection of patients.
Collapse
Affiliation(s)
- Emilio Bria
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Pilotto
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Eliana Amato
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Fassan
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, A.O.U. San Luigi, Orbassano, Torino, Italy
| | - Umberto Peretti
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Tiziana Vavalà
- Department of Oncology, University of Torino, A.O.U. San Luigi, Orbassano, Torino, Italy
| | - Stefania Kinspergher
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, A.O.U. San Luigi, Orbassano, Torino, Italy
| | - Antonio Santo
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Eliana Giglioli
- Department of Pathology and Diagnostics, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Michele Milella
- Medical Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Chilosi
- Department of Pathology and Diagnostics, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Center for Applied Research on Cancer, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Department of Pathology and Diagnostics, University and Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giampaolo Tortora
- Department of Medicine, Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
43
|
Ottanelli S. Prevention and treatment of bone fragility in cancer patient. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2015; 12:116-29. [PMID: 26604936 PMCID: PMC4625767 DOI: 10.11138/ccmbm/2015.12.2.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is well known that fractures increase the risk of morbidity and mortality. The various mechanisms responsible for bone loss in cancer patients may have a different impact depending on the characteristics of the clinical case and correlates with the therapies used, or caused by the therapies used against cancer. Some hormonal treatments cause hypogonadism, event which contributes to the progressive loss of bone mass. This is detectable in patients with breast cancer receiving determines that estrogen-deprivation and in men with prostate cancer with therapies that determine androgen deprivation. Chemotherapy treatments used in cancer patients have reduced bone mass. In addition, low bone mass is detectable in patients with lymphoma treated with corticosteroids or radiation or alkylating agents. In premenopausal patients suffering from breast cancer, treatment with cytotoxic therapy or ablation of ovarian function, can lead to an 8% reduction in bone mineral density at the spine and 4% in the femur. With a chemotherapy regimen in CMF, the reduction of BMD is 6.5%; this bone loss is not recovered after discontinuation of therapy. Tamoxifen given for five years reduces bone remodeling and cause a 32% increase in the risk of osteoporotic fractures when used in premenopausal. After menopause, tamoxifen has a protective effect on bone mass, with a reduced risk of new fractures. Aromatase inhibitors in post-menopausal women, depending on the formulation can cause different effects on the reduction of BMD and fracture risk. We have in fact steroids, exemestane and nonsteroidal, letrozole and anastrozole. Patients at increased risk of fragility fractures should undergo preventive therapies as soon as possible after tests performed for the study of bone health. They can be used DEXA and the FRAX algorithm, which can define a secondary osteoporosis. Prevention and treatment of the increased risk of osteoporotic fracture is to maintain adequate levels of calcium and vitamin D. Bisphosphonates and denosumab are used for the management of bone remodeling and bone loss induced by cancer treatments. Bisphosphonates also have anti-tumor effects per se, which are expressed in potentially prevent the development of bone metastases. In men with metastatic prostate cancer and which is induced androgen deprivation, it is usefully used denosumab 120 mg monthly or zoledronic acid 4 mg monthly.
Collapse
Affiliation(s)
- Silva Ottanelli
- Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Garay T, Kenessey I, Molnár E, Juhász É, Réti A, László V, Rózsás A, Dobos J, Döme B, Berger W, Klepetko W, Tóvári J, Tímár J, Hegedűs B. Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells. PLoS One 2015; 10:e0117021. [PMID: 25646931 PMCID: PMC4315579 DOI: 10.1371/journal.pone.0117021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - István Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Éva Juhász
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andrea Réti
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Viktória László
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anita Rózsás
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Judit Dobos
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Balázs Döme
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Hegedűs
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
45
|
Abstract
Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers.
Collapse
|