1
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
2
|
Nakamura K, Kusama K, Hori M, Imakawa K. Global analyses and potential effects of extracellular vesicles on the establishment of conceptus implantation during the peri-implantation period. J Reprod Dev 2023; 69:246-253. [PMID: 37495510 PMCID: PMC10602766 DOI: 10.1262/jrd.2023-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Intrauterine extracellular vesicles (EVs) are involved in establishing proper conceptus-endometrial communication, which is essential for conceptus implantation and subsequent successful placentation. Despite several studies on intrauterine EVs, the composition and quantitative changes in conceptus and endometrial EVs, as well as the effects of intrauterine EVs on endometrial epithelial cells (EECs) during the peri-implantation period, have not been well characterized. To elucidate global changes in proteins in EVs extracted from uterine flushings (UFs) during the pre-implantation (P17), just-implantation (P20), and post-implantation (P22) periods, the datasets of the proteome iTRAQ analysis were compared among P17, P20, and P22 EVs. These analyses revealed that the composition and function of proteins in the EVs changed dramatically during peri-implantation in cattle. Notably, intrauterine P17 EVs affected the high expression of "Developmental Biology" and "morphogenesis of an endothelium" compared with those in P20 and P22 EVs. Furthermore, P20 EVs had the functions of the high expression of "mitochondrial calcium ion homeostasis" and "Viral mRNA Translation" compared with those in P17 EVs. Transcripts extracted from EECs treated with P17, P20, or P22 EVs were subjected to RNA-seq analysis. These analyses identified 60 transcripts in EECs commonly induced by intrauterine EVs recovered from P17, P20, and P22, a large number of which were associated with "type I interferon signaling pathway". Collectively, these findings reveal the presence and multiple functions of EVs that are potentially implicated in facilitating conceptus implantation into the uterine epithelium during the peri-implantation period.
Collapse
Affiliation(s)
- Keigo Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Masatoshi Hori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| |
Collapse
|
3
|
Luo Q, Liu Y, Shi K, Shen X, Yang Y, Liang X, Lu L, Qiao W, Chen A, Hong D, Sun Y, Xu Q. An autonomous activation of interleukin-17 receptor signaling sustains inflammation and promotes disease progression. Immunity 2023; 56:2006-2020.e6. [PMID: 37473759 DOI: 10.1016/j.immuni.2023.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Anti-interleukin-17 (IL-17) therapy has been used in various autoimmune diseases. However, the efficacy is unexpectedly limited in several IL-17-associated diseases, and the mechanism of limited efficacy remains unclear. Here, we show that a molecular complex containing the adaptor molecule Act1 and tyrosine phosphatase SHP2 mediated autonomous IL-17R signaling that accelerated and sustained inflammation. SHP2, aberrantly augmented in various autoimmune diseases, was induced by IL-17A itself in astrocytes and keratinocytes, sustaining chemokine production even upon anti-IL-17 therapies. Mechanistically, SHP2 directly interacted with and dephosphorylated Act1, which replaced Act1-TRAF5 complexes and induced IL-17-independent activation of IL-17R signaling. Genetic or pharmacologic inactivation of SHP2, or blocking Act1-SHP2 interaction, paralyzed both IL-17-induced and IL-17-independent signaling and attenuated primary or relapsing experimental autoimmune encephalomyelitis. Therefore, Act1-SHP2 complexes mediate an alternative pathway for autonomous activation of IL-17R signaling, targeting which could be a therapeutic option for IL-17-related diseases in addition to current antibody therapies.
Collapse
Affiliation(s)
- Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yijun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuecheng Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yaqi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuejiao Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wenxuan Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Airu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Dongmei Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
4
|
Pathak JL, Fang Y, Chen Y, Ye Z, Guo X, Yan Y, Zha J, Liang D, Ke X, Yang L, Zhong W, Wang L, Wang L. Downregulation of Macrophage-Specific Act-1 Intensifies Periodontitis and Alveolar Bone Loss Possibly via TNF/NF-κB Signaling. Front Cell Dev Biol 2021; 9:628139. [PMID: 33748112 PMCID: PMC7969798 DOI: 10.3389/fcell.2021.628139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects almost half of the adult population. NF-κB activator 1 (Act1) is mainly expressed in immune cells, including macrophages, and modulates immune cells' function to regulate inflammation in inflammatory diseases. Macrophages play a vital role in the pathophysiology of periodontitis. However, the effect of macrophage-specific Act1 on periodontitis has not been investigated yet. This study aims to unravel the role of macrophage-specific Act1 on the pathophysiology of periodontitis. The expression of Act1 in healthy and periodontitis periodontal tissue was confirmed by immunohistochemistry. Macrophage-specific Act1 expression downregulated (anti-Act1) mice were developed by inserting anti-Act1 antisense oligonucleotides after the CD68 promoter of C57BL/6 mice. Ligature-induced periodontitis (LIP) was induced in anti-Act1 mice and wildtype mice. Micro-CT, histology, and TRAP staining analyzed the periodontal tissue status, alveolar bone loss, and osteoclast numbers. Immunohistochemistry, RT-qPCR, and ELISA analyzed the inflammatory cells infiltration, expression of inflammatory cytokines, and M1/M2 macrophage polarization. mRNA sequencing of in vitro bacterial lipopolysaccharide (LPS)-treated peritoneal macrophages analyzed the differentially expressed genes in anti-Act1 mice during inflammation. Anti-Act1 mice showed aggravated periodontitis and alveolar bone loss compared to wildtype. Periodontitis-affected periodontal tissue (PAPT) of anti-Act1 mice showed a higher degree of macrophage infiltration, and M1 macrophage polarization compared to wildtype. Levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and macrophage activity-related factors (CCL2, CCL3, and CCL4) were robustly high in PAPT of anti-Act1 mice compared to wildtype. mRNA sequencing and KEGG analysis showed activated TNF/NF-κB signaling in LPS-treated macrophages from anti-Act1 mice. In vitro studies on LPS-treated peritoneal macrophages from anti-act1 mice showed a higher degree of cell migration and expression of inflammatory cytokines, macrophage activity-related factors, M1 macrophage-related factors, and TNF/NF-κB signaling related P-p65 protein. In conclusion, downregulation of macrophage-specific Act1 aggravated periodontitis, alveolar bone loss, macrophage infiltration, inflammation, and M1 macrophage polarization. Furthermore, LPS-treated macrophages from anti-Act1 mice activated TNF/NF-κB signaling. These results indicate the distinct role of macrophage-specific Act1 on the pathophysiology of periodontitis possibly via TNF/NF-κB signaling.
Collapse
Affiliation(s)
- Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Fang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Chen
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhitong Ye
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqi Guo
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongyong Yan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zha
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongliang Liang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuxian Ke
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchao Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments. Oncogene 2019; 39:2275-2289. [PMID: 31827233 PMCID: PMC7071973 DOI: 10.1038/s41388-019-1141-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the second leading cause of cancer related deaths for women, due mainly to metastatic disease. Invasive tumors exhibit aberrations in recruitment and activity of immune cells, including decreased cytotoxic T cells. Restoring the levels and activity of cytotoxic T cells is a promising anti-cancer strategy; but its success is tumor type-dependent. The mechanisms that coordinate recruitment and activity of immune cells and other stromal cells in breast cancer remain poorly understood. Using the MMTV-PyVmT/FVB mammary tumor model, we demonstrate a novel role for CCL2/CCR2 chemokine signaling in tumor progression by altering the microenvironment. Selective targeting of CCR2 in the PyVmT mammary epithelium inhibited tumor growth and invasion, elevated CD8+ T cells, decreased M2 macrophages and decreased angiogenesis. Co-culture models demonstrated these stromal cell responses were mediated by tumor derived CCL2 and CCR2-mediated suppression of the T cell activating cytokine, CD154. Co-culture analysis indicated that CCR2-induced stromal reactivity was important for tumor cell proliferation and invasion. In breast tumor tissues, CD154 expression inversely correlated with CCR2 expression and correlated with relapse free survival. Targeting the CCL2/CCR2 signaling pathway may reprogram the immune angiogenic and microenvironments and enhance effectiveness of targeted and immuno-therapies.
Collapse
|
6
|
Velichko S, Zhou X, Zhu L, Anderson JD, Wu R, Chen Y. A Novel Nuclear Function for the Interleukin-17 Signaling Adaptor Protein Act1. PLoS One 2016; 11:e0163323. [PMID: 27723765 PMCID: PMC5056742 DOI: 10.1371/journal.pone.0163323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
In the context of the human airway, interleukin-17A (IL-17A) signaling is associated with severe inflammation, as well as protection against pathogenic infection, particularly at mucosal surfaces such as the airway. The intracellular molecule Act1 has been demonstrated to be an essential mediator of IL-17A signaling. In the cytoplasm, it serves as an adaptor protein, binding to both the intracellular domain of the IL-17 receptor as well as members of the canonical nuclear factor kappa B (NF-κB) pathway. It also has enzymatic activity, and serves as an E3 ubiquitin ligase. In the context of airway epithelial cells, we demonstrate for the first time that Act1 is also present in the nucleus, especially after IL-17A stimulation. Ectopic Act1 expression can also increase the nuclear localization of Act1. Act1 can up-regulate the expression and promoter activity of a subset of IL-17A target genes in the absence of IL-17A signaling in a manner that is dependent on its N- and C-terminal domains, but is NF-κB independent. Finally, we show that nuclear Act1 can bind to both distal and proximal promoter regions of DEFB4, one of the IL-17A responsive genes. This transcriptional regulatory activity represents a novel function for Act1. Taken together, this is the first report to describe a non-adaptor function of Act1 by directly binding to the promoter region of IL-17A responsive genes and directly regulate their transcription.
Collapse
Affiliation(s)
- Sharlene Velichko
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Johnathon David Anderson
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Reen Wu
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Gulan F, Cayatte C, Chen Y, Blumenschein WM, Judo M, Ayanoglu G, McClanahan TK, Li X, Cua DJ. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity 2015; 43:727-38. [PMID: 26431948 DOI: 10.1016/j.immuni.2015.09.003] [Citation(s) in RCA: 575] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
Whether interleukin-17A (IL-17A) has pathogenic and/or protective roles in the gut mucosa is controversial and few studies have analyzed specific cell populations for protective functions within the inflamed colonic tissue. Here we have provided evidence for IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury that limits excessive permeability and maintains barrier integrity. Analysis of epithelial cells showed that in the absence of signaling via the IL-17 receptor adaptor protein Act-1, the protective effect of IL-17A was abrogated and inflammation was enhanced. We have demonstrated that after acute intestinal injury, IL-23R(+) γδ T cells in the colonic lamina propria were the primary producers of early, gut-protective IL-17A, and this production of IL-17A was IL-23 independent, leaving protective IL-17 intact in the absence of IL-23. These results suggest that IL-17-producing γδ T cells are important for the maintenance and protection of epithelial barriers in the intestinal mucosa.
Collapse
Affiliation(s)
- Jacob S Lee
- Merck Research Laboratories, Palo Alto, CA 94304, USA
| | | | | | | | - Fatih Gulan
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | - Yi Chen
- Merck Research Laboratories, Palo Alto, CA 94304, USA
| | | | - Michael Judo
- Merck Research Laboratories, Palo Alto, CA 94304, USA
| | | | | | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Daniel J Cua
- Merck Research Laboratories, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Yi H, Bai Y, Zhu X, lin L, Zhao L, Wu X, Buch S, Wang L, Chao J, Yao H. IL-17A Induces MIP-1α Expression in Primary Astrocytes via Src/MAPK/PI3K/NF-kB Pathways: Implications for Multiple Sclerosis. J Neuroimmune Pharmacol 2014; 9:629-41. [DOI: 10.1007/s11481-014-9553-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/26/2014] [Indexed: 02/01/2023]
|
9
|
Weil R. Does antigen masking by ubiquitin chains protect from the development of autoimmune diseases? Front Immunol 2014; 5:262. [PMID: 24917867 PMCID: PMC4042494 DOI: 10.3389/fimmu.2014.00262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are characterized by the production of antibodies against self-antigens and generally arise from a failure of central or peripheral tolerance. However, these diseases may develop when newly appearing antigens are not recognized as self by the immune system. The mechanism by which some antigens are “invisible” to the immune system is not completely understood. Apoptotic and complement system defects or autophagy imbalance can generate this antigenic autoreactivity. Under particular circumstances, cellular debris containing autoreactive antigens can be recognized by innate immune receptors or other sensors and can eventually lead to autoimmunity. Ubiquitination may be one of the mechanisms protecting autoreactive antigens from the immune system that, if disrupted, can lead to autoimmunity. Ubiquitination is an essential post-translational modification used by cells to target proteins for degradation or to regulate other intracellular processes. The level of ubiquitination is regulated during T cell tolerance and apoptosis and E3 ligases have emerged as a crucial signaling pathway for the regulation of T cell tolerance toward self-antigens. I propose here that an unrecognized role of ubiquitin and ubiquitin-like proteins could be to render intracellular or foreign antigens (present in cellular debris resulting from apoptosis, complement system, or autophagy defects) invisible to the immune system in order to prevent the development of autoimmunity.
Collapse
Affiliation(s)
- Robert Weil
- Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, Institut Pasteur , Paris , France
| |
Collapse
|
10
|
Lv F, Song LJ, Wang XH, Qiu F, Li XF. The role of Act1, a NF-κB-activating protein, in IL-6 and IL-8 levels induced by IL-17 stimulation in SW982 cells. PHARMACEUTICAL BIOLOGY 2013; 51:1444-1450. [PMID: 23862741 DOI: 10.3109/13880209.2013.798668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation in the synovial membrane of affected joints. It has been shown that several kinds of cytokine were increased in synovial fluid, while the underlying mechanism remains poorly understood. OBJECTIVES NF-κB activator 1 (Act1) is a recently identified protein binding to the IκB kinase complex. Our study aimed to investigate the expression of Act1 induced by cytokine IL-17 stimulation in SW982 cells. MATERIALS AND METHODS The human synovial sarcoma cell line SW982 and primary cultured RA fibroblast-like synovial cells were used. RT-PCR and Western blot assays were selected to investigate the genetic and protein expression of Act1. Additionally, four independent Act1 small interfering RNA (siRNA) oligonucleotides were designed and obtained according to the GenBank cDNA, the sequence of Act1 (Traf3ip2). Finally, enzyme-linked immunosorbent assay (ELISA) double antibody sandwich was used to assay supernatant IL-6 and IL-8 concentrations. RESULTS The Act1 mRNA expression level increased significantly after stimulation with IL-17 (5-100 ng/ml) in SW982 cells. Additionally, the level of Act1 mRNA expression correlated positively with the concentration of IL-17 (p < 0.01). IL-17 induced IL-6 and IL-8 in SW982 cells was in a concentration- and time-dependent way. Furthermore, ELISA assay revealed that IL-17 (20 ng/ml) significantly increased IL-6 (1927.4 ± 288.77 versus 786.5 ± 172.42 ng/ml, p < 0.01) and IL-8 levels (984.8 ± 95.09 ng/ml versus 307.1 ± 90.83 ng/ml, p < 0.01) compared with control group after stimulation for 24 h. However, transfection of Traf3ip2 siRNA markedly decreased IL-6 (995.9 ± 115.30 ng/ml versus 1816.1 ± 273.27 ng/ml, p < 0.01) and IL-8 levels (575.6 ± 65.96 ng/ml versus 929.4 ± 124.39 ng/ml, p < 0.01) compared to transfection negative control. These findings suggested that IL-6 and IL-8 level induced by IL-17 in SW982 cells could be reversed by down-regulation of Act1 expression level with Traf3ip2 siRNA. CONCLUSION Our results suggested that Act1 might play a key role in the pathophysiology and the treatment of RA.
Collapse
Affiliation(s)
- Fang Lv
- Department of Rheumatology, Qilu Hospital of Shandong University , Jinan , China
| | | | | | | | | |
Collapse
|
11
|
Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci 2013; 16:1401-8. [PMID: 23995070 DOI: 10.1038/nn.3505] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022]
Abstract
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. We previously reported that deletion of NF-κB activator 1 (Act1), the key transducer of IL-17 receptor signaling, from the neuroectodermal lineage in mice (neurons, oligodendrocytes and astrocytes) results in attenuated severity of experimental autoimmune encephalomyelitis (EAE). Here we examined the cellular basis of this observation. EAE disease course was unaffected by deletion of Act1 in neurons or mature oligodendrocytes, and Act1 deletion in astrocytes only modestly affected disease course. Deletion of Act1 in NG2(+) glia resulted in markedly reduced EAE severity. Furthermore, IL-17 induced characteristic inflammatory mediator expression in NG2(+) glial cells. IL-17 also exhibited strong inhibitory effects on the maturation of oligodendrocyte lineage cells in vitro and reduced their survival. These data identify NG2(+) glia as the major CNS cellular target of IL-17 in EAE. The sensitivity of oligodendrocyte lineage cells to IL-17-mediated toxicity further suggests a direct link between inflammation and neurodegeneration in multiple sclerosis.
Collapse
|
12
|
Song X, Qian Y. The activation and regulation of IL-17 receptor mediated signaling. Cytokine 2013; 62:175-82. [PMID: 23557798 DOI: 10.1016/j.cyto.2013.03.014] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 03/08/2013] [Indexed: 12/19/2022]
Abstract
Interleukin-17 (IL-17), the signature cytokine produced by T helper 17 (Th17) cells, plays pivotal roles in host defense responses against microbial invasion, as well as in the pathogenesis of autoimmune diseases and allergic syndromes. IL-17 activates several downstream signaling pathways including NF-κB, MAPKs and C/EBPs to induce gene expression of antibacterial peptides, proinflammatory chemokines and cytokines and matrix metalloproteinases (MMPs). IL-17 can also stabilize mRNAs of genes induced by TNFα. Although the physiological and pathological functions of IL-17 have been studied for many years, the landscape of its signaling transduction has not been described until recently. The cytosolic adaptor molecule Act1 (also known as CIKS) is considered as the master mediator of IL-17 signaling. In this review, we will summarize recent progress on activation and regulation of IL-17 mediated signal transduction, especially on Act1 mediated regulation of the signaling.
Collapse
Affiliation(s)
- Xinyang Song
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
13
|
Roescher N, Vosters JL, Lai Z, Uede T, Tak PP, Chiorini JA. Local administration of soluble CD40:Fc to the salivary glands of non-obese diabetic mice does not ameliorate autoimmune inflammation. PLoS One 2012; 7:e51375. [PMID: 23300544 PMCID: PMC3530540 DOI: 10.1371/journal.pone.0051375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023] Open
Abstract
Objective CD40–CD154 (CD40 ligand) interaction in the co-stimulatory pathway is involved in many (auto)immune processes and both molecules are upregulated in salivary glands of Sjögren’s syndrome (SS) patients. Interference within the CD40 pathway has ameliorated (auto)inflammation in a number of disease models. To test the potential role of the CD40 pathway in loss of gland function and inflammation in SS, an inhibitor of CD40-CD154 interaction was overexpressed in the salivary glands (SGs) of a spontaneous murine model of SS; the Non-Obese Diabetic (NOD) mouse. Materials and Methods At different disease stages an adeno associated viral vector encoding CD40 coupled to a human Fc domain (CD40:Fc) was injected locally into the SGs of NOD mice. Delivery was confirmed by PCR. The overall effect on local inflammation was determined by assessment of the focus score (FS), quantification of infiltrating cell types, immunoglobulin levels, and microarray analysis. The effect on SG function was determined by measuring stimulated salivary flow. Results CD40:Fc was stably expressed in the SG of NOD mice, and the protein was secreted into the blood stream. Microarray analysis revealed that expression of CD40:Fc affected the expression of many genes involved in regulation of the immune response. However, FS, infiltrating cell types, immunoglobulin levels, and salivary gland output were similar for treated and control mice. Discussion Although endogenous CD40 is expressed in SG inflammatory foci in the SG of NOD mice, the expression of soluble CD40:Fc did not lead to reduced overall inflammation and/or improved salivary gland function. These data indicate possible redundancy of the CD40 pathway in the SG and suggests that targeting CD40 alone may not be sufficient to alter the disease phenotype.
Collapse
Affiliation(s)
- Nienke Roescher
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Jelle L. Vosters
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Zhenan Lai
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Paul P. Tak
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- GlaxoSmithKline, London, United Kingdom
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Doyle MS, Collins ES, FitzGerald OM, Pennington SR. New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis. Arthritis Res Ther 2012; 14:226. [PMID: 23116200 PMCID: PMC3580541 DOI: 10.1186/ar4071] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent genome-wide association studies have implicated the tumor necrosis factor receptor-associated factor 3-interacting protein 2 (TRAF3IP2) gene and its product, nuclear factor-kappa-B activator 1 (Act1), in the development of psoriatic arthritis (PsA). The high level of sequence homology of the TRAF3IP2 (Act1) gene across the animal kingdom and the presence of the Act1 protein in multiple cell types strongly suggest that the protein is of importance in normal cellular function. Act1 is an adaptor protein for the interleukin-17 (IL-17) receptor, and recent observations have highlighted the significance of IL-17 signaling and localized inflammation in autoimmune diseases. This review summarizes data from recent genome-wide association studies as well as immunological and molecular investigations of Act1. Together, these studies provide new insight into the role of IL-17 signaling in PsA. It is well established that IL-17 activation of tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling pathways normally leads to nuclear factor-kappa-B-mediated inflammation. However, the dominant PsA-associated TRAF3IP2 (Act1) gene single-nucleotide polymorphism (rs33980500) results in decreased binding of Act1 to TRAF6. This key mutation in Act1 could lead to a greater association of the IL-17 receptor with TRAF2/TRAF5 and this in turn suggests an alternative function for IL-17 in PsA. The recent observations described and discussed in this review raise the clinically significant possibility of redefining the immunological role of IL-17 in PsA and provide a basis for defining future studies to elucidate the molecular and cellular functions of Act1.
Collapse
Affiliation(s)
- Matthew S Doyle
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emily S Collins
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oliver M FitzGerald
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Rheumatology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Stephen R Pennington
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Ryzhakov G, Blazek K, Lai CCK, Udalova IA. IL-17 receptor adaptor protein Act1/CIKS plays an evolutionarily conserved role in antiviral signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:4852-8. [PMID: 23066157 DOI: 10.4049/jimmunol.1200428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-β and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Kang Z, Liu L, Spangler R, Spear C, Wang C, Gulen MF, Veenstra M, Ouyang W, Ransohoff RM, Li X. IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci 2012; 32:8284-92. [PMID: 22699909 PMCID: PMC3412399 DOI: 10.1523/jneurosci.0841-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/03/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022] Open
Abstract
Cuprizone inhibits mitochondrial function and induces demyelination in the corpus callosum, which resembles pattern III lesions in multiple sclerosis patients. However, the molecular and cellular mechanism by which cuprizone induces demyelination remains unclear. Interleukin-17 (IL-17) secreted by T helper 17 cells and γδT cells are essential in the development of experimental autoimmune encephalomyelitis. In this study, we examined the importance of IL-17 signaling in cuprizone-induced demyelination. We found that mice deficient in IL-17A, IL-17 receptor C (IL-17RC), and adaptor protein Act1 (of IL-17R) all had reduced demyelination accompanied by lessened microglial and polydendrocyte cellular reactivity compared with that in wild-type mice in response to cuprizone feeding, demonstrating the essential role of IL-17-induced Act1-mediated signaling in cuprizone-induced demyelination. Importantly, specific deletion of Act1 in astrocytes reduced the severity of tissue injury in this model, indicating the critical role of CNS resident cells in the pathogenesis of cuprizone-induced demyelination. In cuprizone-fed mice, IL-17 was produced by CNS CD3(+) T cells, suggesting a source of IL-17 in CNS upon cuprizone treatment.
Collapse
Affiliation(s)
| | - Liping Liu
- Neuroinflammation Research Center, Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Roo Spangler
- Neuroinflammation Research Center, Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Charles Spear
- Neuroinflammation Research Center, Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio 44195, and
| | | | | | - Mike Veenstra
- Neuroinflammation Research Center, Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Wenjun Ouyang
- Genentech Inc., South San Francisco, California 94080
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio 44195, and
| | | |
Collapse
|
17
|
Function of Act1 in IL-17 family signaling and autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:223-35. [PMID: 21948371 DOI: 10.1007/978-1-4614-0106-3_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The maintenance of immune homeostasis requires the delicate balance between response to foreign antigens and tolerance to self. As such, when this balance is disrupted, immunodeficiency or autoimmunity may manifest. The adaptor molecule known as Act1 is a critical mediator of IL-17 receptor receptor family signaling. This chapter will detail the current understanding of Act1 's role in signal transduction as well as address the fundamental role of Act1 in autoimmunity. At the molecular level Act1 interacts with IL-17 R through the conserved SEFIR domain, binds TRAF proteins and exerts E3 ubiquitin ligase activity. In in vivo models, Act1 deficiency provides protection against experimental autoimmune diseases, such as colitis and EAE. Yet mice lacking in Act1 develop spontaneous autoimmune diseases. Indeed, the utility of Act1 seems to rely on the specific cell type expression that may determine the pathway that Act1 mediates.
Collapse
|
18
|
Wu B, Jin M, Gong J, Du X, Bai Z. Dynamic evolution of CIKS (TRAF3IP2/Act1) in metazoans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1186-1192. [PMID: 21527283 DOI: 10.1016/j.dci.2011.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
CIKS (TRAF3IP2/Act1) is important for inflammatory responses and autoimmunity control through its dual functions in CD40L/BAFF and IL17 signaling in mammalians. In this study, we performed comparative and evolutionary analyses of CIKSs from metazoans. Although nematode (Caenorabditis elegans) and sea urchin (Strongylocentrotus purpuratus) have IL17 and IL17 receptors, we found no CIKS in their genomes. The ancient CIKS-like (CIKSL) genes from the invertebrates lottia (Lottia gigantea) and amphioxus (Branchiostoma floridae) have an additional DEATH domain compared with other CIKSLs/CIKSs. Our data suggest that the ancient CIKSL evolved into early chordate CIKS possibly through gene tandem duplication and gene fission. Based on phylogenetic and synteny analyses, vertebrate CIKS genes are divided into two groups, one of which is orthologous to human CIKS and the other is paralogous. Expression analysis indicated that cephalochordata amphioxus IL17 together with CIKS might play an ancient and conserved role in host defense against bacterial infections. During the evolutionary process, the CIKS genes have obtained more and more functions through cooperation with other genes.
Collapse
Affiliation(s)
- Baojun Wu
- Laboratory of Developmental Immunology, School of Life Sciences, Shandong, University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
19
|
Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011; 12:853-60. [PMID: 21822258 PMCID: PMC3597344 DOI: 10.1038/ni.2081] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Interleukin 17 (IL-17) promotes the expression of chemokines and cytokines via the induction of gene transcription and post-transcriptional stabilization of mRNA. We show here that IL-17 enhanced the stability of chemokine CXCL1 mRNA and other mRNAs through a pathway that involved the adaptor Act1, the adaptors TRAF2 or TRAF5 and the splicing factor SF2 (also known as alternative splicing factor (ASF)). TRAF2 and TRAF5 were necessary for IL-17 to signal the stabilization of CXCL1 mRNA. Furthermore, IL-17 promoted the formation of complexes of TRAF5-TRAF2, Act1 and SF2 (ASF). Overexpression of SF2 (ASF) shortened the half-life of CXCL1 mRNA, whereas depletion of SF2 (ASF) prolonged it. SF2 (ASF) bound chemokine mRNA in unstimulated cells, whereas the SF2 (ASF)-mRNA interaction was much lower after stimulation with IL-17. Our findings define an IL-17-induced signaling pathway that links to the stabilization of selected mRNA species through Act1, TRAF2-TRAF5 and the RNA-binding protein SF2 (ASF).
Collapse
Affiliation(s)
- Dongxu Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chang SH, Dong C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal 2011; 23:1069-75. [PMID: 21130872 PMCID: PMC3078175 DOI: 10.1016/j.cellsig.2010.11.022] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 02/08/2023]
Abstract
IL-17 cytokine family, though still young since discovery, has recently emerged as critical players in immunity and inflammatory diseases. The prototype cytokine, IL-17A, plays essential roles in promoting inflammation and host defense. IL-17RA, a member of the IL-17 receptor family, forms a complex with another member, IL-17RC, to mediate effective signaling for IL-17A as well as IL-17F, which is most similar to IL-17A, via Act1 and TRAF6 factors. On the other hand, IL-17RA appears to interact with IL-17RB to regulate signaling by another cytokine IL-25. IL-25, the most distant from IL-17A in the IL-17 family, is involved in allergic disease and defense against helminthic parasites. In this review, we discuss recent advancements on signaling mechanisms and biological functions of IL-17A, IL-17F and IL-25, which will shed light on the remaining IL-17 family cytokines and help understand and treat inflammatory diseases.
Collapse
Affiliation(s)
- Seon Hee Chang
- Department of Immunology and Center for Inflammation and Cancer, M D Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
21
|
Zepp J, Wu L, Li X. IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease. Trends Immunol 2011; 32:232-9. [PMID: 21493143 DOI: 10.1016/j.it.2011.02.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is widely used to dissect molecular mechanisms of MS and to develop new therapeutic strategies. The T helper 17 (Th17) subset of CD4 T cells plays a crucial role in the development of EAE. IL-17, a cytokine produced by Th17 cells, participates in EAE pathogenesis through induction of inflammatory gene expression in target cells. Recent work has shown that Act1, a U-box E3 ubiquitin ligase, is recruited to IL-17 receptor (IL-17R) upon IL-17 stimulation and is required for IL-17-mediated signaling. Here, we review the molecular and cellular mechanisms by which IL-17 and Act1-mediated signaling contribute to EAE.
Collapse
Affiliation(s)
- Jarod Zepp
- Department of Immunology, Cleveland Clinic Cleveland, OH 44195, USA
| | | | | |
Collapse
|
22
|
|
23
|
Matsushima Y, Kikkawa Y, Takada T, Matsuoka K, Seki Y, Yoshida H, Minegishi Y, Karasuyama H, Yonekawa H. An atopic dermatitis-like skin disease with hyper-IgE-emia develops in mice carrying a spontaneous recessive point mutation in the Traf3ip2 (Act1/CIKS) gene. THE JOURNAL OF IMMUNOLOGY 2010; 185:2340-9. [PMID: 20660351 DOI: 10.4049/jimmunol.0900694] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spontaneous mutant mice that showed high levels of serum IgE and an atopic dermatitis (AD)-like skin disease were found in a colony of the KOR inbred strain that was derived from Japanese wild mice. No segregation was observed between hyper-IgE-emia and dermatitis in (BALB/c x KOR mutant) N(2) mice, suggesting that the mutation can be attributed to a single recessive locus, which we designated adjm (atopic dermatitis from Japanese mice). All four adjm congenic strains in different genetic backgrounds showed both hyper-IgE-emia and dermatitis, although the disease severity varied among strains. Linkage analysis using (BALB/c x KOR-adjm/adjm) N(2) mice restricted the potential adjm locus to the 940 kb between D10Stm216 and D10Stm238 on chromosome 10. Sequence analysis of genes located in this region revealed that the gene AI429613, which encodes the mouse homologue of the human TNFR-associated factor 3-interacting protein 2 (TRAF3IP2) protein (formerly known as NF-kappaB activator 1/connection to IkappaB kinase and stress-activated protein kinase/Jun kinase), carried a single point mutation leading to the substitution of a stop codon for glutamine at amino acid position 214. TRAF3IP2 has been shown to function as an adaptor protein in signaling pathways mediated by the TNFR superfamily members CD40 and B cell-activating factor in epithelial cells and B cells as well as in the IL-17-mediated signaling pathway. Our results suggest that malfunction of the TRAF3IP2 protein causes hyper-IgE-emia through the CD40- and B cell-activating factor-mediated pathway in B cells and causes skin inflammation through the IL-17-mediated pathway. This study demonstrates that the TRAF3IP2 protein plays an important role in AD and suggests the protein as a therapeutic target to treat AD.
Collapse
|
24
|
Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, Liu L, Qian W, Ransohoff RM, Bergmann C, Stohlman S, Tuohy VK, Li X. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 2010; 32:414-25. [PMID: 20303295 DOI: 10.1016/j.immuni.2010.03.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 01/09/2010] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
Abstract
Interleukin-17 (IL-17) secreted by T helper 17 (Th17) cells is essential in the development of experimental autoimmune encephalomyelitis (EAE). However, it remains unclear how IL-17-mediated signaling in different cellular compartments participates in the central nervous system (CNS) inflammatory process. We examined CNS inflammation in mice with specific deletion of Act1, a critical component required for IL-17 signaling, in endothelial cells, macrophages and microglia, and neuroectoderm (neurons, astrocytes, and oligodendrocytes). In Act1-deficient mice, Th17 cells showed normal infiltration into the CNS but failed to recruit lymphocytes, neutrophils, and macrophages. Act1 deficiency in endothelial cells or in macrophages and microglia did not substantially impact the development of EAE. However, targeted Act1 deficiency in neuroectoderm-derived CNS-resident cells resulted in markedly reduced severity in EAE. Specifically, Act1-deficient astrocytes showed impaired IL-17-mediated inflammatory gene induction. Thus, astroctyes are critical in IL-17-Act1-mediated leukocyte recruitment during autoimmune-induced inflammation of the CNS.
Collapse
Affiliation(s)
- Zizhen Kang
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
IL-17RC: a partner in IL-17 signaling and beyond. Semin Immunopathol 2009; 32:33-42. [PMID: 20012905 DOI: 10.1007/s00281-009-0185-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/11/2009] [Indexed: 12/15/2022]
Abstract
The interleukin (IL)-17 cytokine family members IL-17A and IL-17F mediate inflammatory activities via the IL-17 receptor (IL-17R) complex, comprised of the IL-17RA and IL-17RC subunits. Proper regulation of the IL-17 signaling axis results in effective host defense against extracellular pathogens, while aberrant signaling can drive autoimmune pathology. Elucidating the molecular mechanisms underlying IL-17 signal transduction can yield an enhanced understanding of inflammatory immune processes and also create an avenue for therapeutic intervention in the treatment of IL-17-dependent diseases. To date, the fundamental signaling mechanisms used by the IL-17R complex are still incompletely defined. While current structure-function studies have primarily focused on the IL-17RA subunit, recent research indicates that the IL-17RC subunit plays a key role in modulating IL-17 responses. This review will examine what is known regarding IL-17RC function and provide a framework for future work on this subunit and its impact on human health.
Collapse
|
26
|
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.9D.1-11.9D.19. [PMID: 19918944 DOI: 10.1002/0471142735.im1109ds87] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor necrosis factor (TNF) superfamily consists of a wide variety of cell-bound and secreted proteins that regulate numerous cellular processes. In particular, TNF-family proteins regulate the proliferation and death of tumor cells, as well as activated immune cells. This overview discusses the mammalian TNF receptor-associated factors (TRAFs), of which TRAF1, 2, 3, 5, and 6 have been shown to interact directly or indirectly with members of the TNF receptor superfamily. Structural features of TRAF proteins are described along with a discussion of TRAF-interacting proteins and the signaling pathways activated by the TRAF proteins. Finally, we examine the phenotypes observed in TRAF-knockout mice.
Collapse
Affiliation(s)
- Hyunil Ha
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Daehee Han
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Yongwon Choi
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Hartupee J, Liu C, Novotny M, Sun D, Li X, Hamilton TA. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. THE JOURNAL OF IMMUNOLOGY 2009; 182:1660-6. [PMID: 19155515 DOI: 10.4049/jimmunol.182.3.1660] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
IL-17 alone is a relatively weak inducer of gene expression, but cooperates with other cytokines, including TNF-alpha, to generate a strong response in part via prolongation of mRNA t(1/2). Because TNFR-associated factor 6 (TRAF6) has been reported to be essential for signaling by IL-17, we examined its involvement in IL-17-mediated mRNA stabilization. Although overexpression of TRAF6 in HeLa cells activates NF-kappaB, it does not stabilize transfected KC mRNA. Furthermore, a dominant-negative TRAF6 abrogates NF-kappaB activation, but does not block IL-17-induced chemokine mRNA stabilization. IL-17 can stabilize KC and MIP-2 mRNAs comparably in TNF-alpha-treated mouse embryo fibroblasts from TRAF6(+/+) and TRAF6(-/-) mice. TRAF6 is known to couple upstream signals with activation of p38 MAPK and mitogen activated protein kinase activated protein kinase 2, both of which have been shown to be important for Toll/IL-1R-mediated mRNA stabilization in various cell types. Inhibition of p38 MAPK, however, does not block IL-17-induced KC mRNA stabilization, and IL-17 can stabilize KC mRNA equally in mouse embryo fibroblasts from both wild-type and mitogen activated protein kinase activated protein kinase 2/3 doubly-deficient mice. Finally, IL-17 can amplify the levels of multiple TNF-alpha-stimulated mRNAs in wild-type and TRAF6-deficient cells, but not in cells from Act1(-/-) mice. Collectively, these findings demonstrate the existence of a TRAF6/p38 MAPK-independent pathway that couples the IL-17R with enhanced mRNA stability. Because the most potent effects of IL-17 on gene expression are obtained in cooperation with other cytokines such as TNF-alpha, these findings suggest that this pathway is a major contributing mechanism for response to IL-17.
Collapse
Affiliation(s)
- Justin Hartupee
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wolf K, Plano GV, Fields KA. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cell Microbiol 2009; 11:769-79. [PMID: 19159390 DOI: 10.1111/j.1462-5822.2009.01290.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis. Chlamydiae are obligate intracellular parasites that primarily infect epithelial cells where they develop within a membrane-bound vacuole, termed an inclusion. Interactions between the microorganism and eukaryotic cell can be mediated by chlamydial proteins inserted into the inclusion membrane. We describe here a novel C. pneumoniae-specific inclusion membrane protein (Inc) CP0236, which contains domains exposed to the host cytoplasm. We demonstrate that, in a yeast two-hybrid screen, CP0236 interacts with the NFκB activator 1 (Act1) and this interaction was confirmed in HeLa 229 cells where ectopically expressed CP0236 was co-immunoprecipitated with endogenous Act1. Furthermore, we demonstrate that Act1 displays an altered distribution in the cytoplasm of HeLa cells infected with C. pneumoniae where it associates with the chlamydial inclusion membrane. This sequestration of Act1 by chlamydiae inhibited recruitment of the protein to the interleukin-17 (IL-17) receptor upon stimulation of C. pneumoniae-infected cells with IL-17A. Such inhibition of the IL-17 signalling pathway led to protection of Chlamydia-infected cells from NFκB activation in IL-17-stimulated cells. We describe here a unique strategy employed by C. pneumoniae to achieve inhibition of NFκB activation via interaction of CP0236 with mammalian Act1.
Collapse
Affiliation(s)
- Katerina Wolf
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
29
|
Hartupee J, Li X, Hamilton T. Interleukin 1alpha-induced NFkappaB activation and chemokine mRNA stabilization diverge at IRAK1. J Biol Chem 2008; 283:15689-93. [PMID: 18411265 DOI: 10.1074/jbc.m801346200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interleukin 1alpha (IL-1alpha) is capable of driving pro-inflammatory gene expression through both the initiation of transcription and by prolonging the half-life of short-lived mRNAs. Although the signaling events linking the IL-1 receptor to the activation of NFkappaB and the initiation of transcription have been well characterized, less is known about the signaling events linking to mRNA stabilization. As a model to study the control of mRNA stability we have used the mouse chemokine KC, expression of which requires both NFkappaB-driven transcription and stabilization of the constitutively unstable mRNA. We have evaluated the role of signaling adaptors known to play a role in IL-1alpha-driven NFkappaB activation in the generation of mRNA stability. Surprisingly, although TRAF6 is essential for NFkappaB activation, it is not required for IL-1alpha-induced mRNA stabilization. IRAK1, which is recognized to function upstream of TRAF6, is required for both mRNA stabilization and activation of NFkappaB. Consistent with the previous findings, the TRAF6 interaction sites in IRAK1 are required for NFkappaB activation but do not play a role in mRNA stabilization. These findings indicate that signals from the IL-1 receptor segregate into at least two separate pathways at the level of IRAK1; one couples through TRAF6 to NFkappaB activation while a second utilizes a TRAF6-independent pathway that is responsible for mRNA stabilization.
Collapse
Affiliation(s)
- Justin Hartupee
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
30
|
Huang F, Kao CY, Wachi S, Thai P, Ryu J, Wu R. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:6504-13. [PMID: 17982039 DOI: 10.4049/jimmunol.179.10.6504] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Through DNA microarray analysis and quantitative PCR verification, we have identified additional IL-17A-inducible genes-IL-19, CXCL-1, -2, -3, -5, and -6-in well-differentiated normal human bronchial epithelial cells. These genes, similar to previously described human beta-defensin-2 (HBD-2) and CCL-20, were induced by a basolateral treatment of IL-17A, and regulated by PI3K signaling and NF-kappaB activation. For PI3K signaling, increases of cellular PIP(3) and phosphorylation of downstream molecules, such as Akt and glycogen synthase kinase-3beta (GSK3beta) (S9), were detected. Induced gene expression and HBD-2 promoter activity were attenuated by LY294002, p110alpha small-interfering RNA (siRNA), as well as by an overexpression of constitutively active GSK3beta(S9A) or wild-type phosphatase and tensin homolog. Increased phosphorylation of JAK1/2 after IL-17A treatment was detected in primary normal human bronchial epithelium cells. Transfected siRNAs of JAK molecules and JAK inhibitor I decreased IL-17A-induced gene expression and GSK3beta(S9) phosphorylation. However, both JAK inhibitor I and PI3K inhibitor had no effect on the DNA-binding activities of p65 and p50 to NF-kappaB consensus sequences. This result suggested a JAK-associated PI3K signaling axis is independent from NF-kappaB activation. With siRNA to knockdown STIR (similar expression to fibroblast growth factor and IL-17R; Toll-IL-1R)-related signaling molecules, such as Act1, TNFR-associated factor 6 (TRAF6), and TGF-beta-activated kinase 1 (TAK1), and transfection of A52R, an inhibitor of the MyD88/TRAF6 complex, or dominant-negative TAK1, IL-17A-inducible gene expression and HBD-2 promoter activity were reduced. Additionally, IL-17A-induced p65 and p50 NF-kappaB activations were confirmed and their nuclear translocations were down-regulated by siRNAs of TRAF6 and TAK1. These results suggest that two independent and indispensable signaling pathways-1) JAK1-associated PI3K signaling and 2) Act1/TRAF6/TAK1-mediated NF-kappaB activation-are stimulated by IL-17A to regulate gene induction in human airway epithelial cells.
Collapse
Affiliation(s)
- Fei Huang
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:131-51. [PMID: 17633023 DOI: 10.1007/978-0-387-70630-6_11] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor necrosis factor receptor (TNFR) superfamily molecule CD40 is expressed by a wide variety of cell types following activation signals, and constitutively on B lymphocytes, macrophages, and dendritic cells. CD40 signals to cells stimulate kinase activation, gene expression, production of a antibody and a variety of cytokines, expression or upregulation of surface molecules, and protection or promotion of apoptosis. Initial steps in CD40-mediated signal cascades involve the interactions of CD40 with various members of the TNFR-associated factor (TRAF) family of cytoplasmic proteins. This review summarizes current understanding of the nature of these interactions, and how they induce and regulate CD40 functions.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, University of Iowa and the Iowa City VAMC, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
32
|
He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:48-59. [PMID: 17633016 DOI: 10.1007/978-0-387-70630-6_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor receptor associated factor 3 (TRAF3) is one of the most enigmatic members in the TRAF family that consists of six members, TRAF1 to 6. Despite its similarities with other TRAFs in terms of structure and protein-protein association, overexpression of TRAF3 does not induce activation of the commonly known TRAF-inducible signaling pathways, namely NF-kappaB and JNK. This lack of a simple functional assay in combination with the mysterious early lethality of the TRAF3-deficient mice has made the study of the biological function of TRAF3 challenging for almost ten years. Excitingly, TRAF3 has been identified recently to perform two seemingly distinct roles. Namely, TRAF3 functions as a negative regulator of the NF-kappaB pathway and separately, as a positive regulator of type I IFN production, placing itself as a critical regulator of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jeannie Q He
- Department of Microbiology, Immunology and Molecular Genetics, 8University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
33
|
Li X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine 2007; 41:105-13. [PMID: 18061473 DOI: 10.1016/j.cyto.2007.09.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 09/21/2007] [Indexed: 01/23/2023]
Abstract
Coordinated regulation of T and B cell-mediated immune responses plays a critical role in the control and modulation of autoimmune diseases. This review is focused on the adapter molecule Act1 and its regulation of autoimmunity through its impact on both T and B cell-mediated immune responses. Whereas Act1 molecule is an important negative regulator for B cell-mediated humoral immune responses through its function in CD40L and BAFF signaling, recent studies have shown that Act1 is also a key positive signaling component for IL-17 signaling pathway, critical for T(H)17-mediated autoimmune and inflammatory responses. The dual functions of Act1 are evident in Act1-deficient mice that displayed B cell-mediated autoimmune phenotypes (including dramatic increase in peripheral B cells, lymphadenopathy and splenomegaly, hypergammaglobulinemia and Sjogren's disease in association with Lupus Nephritis), but showed resistance to T(H)17-dependent EAE and colitis. Such seemingly opposite functions of Act1 in CD40-BAFFR and IL-17R signaling are orchestrated by different domains in Act1. Whereas Act1 interacts with the IL-17R through the C-terminal SEFIR domain, Act1 is recruited to CD40 and BAFFR indirectly, which is mediated by TRAF3 through the TRAF binding site in Act1. Such delicate regulatory mechanisms may provide a common vehicle to promote balance between host defense to pathogens and tolerance to self.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Immunology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Abstract
Interleukin (IL)-17 (also known as IL-17A) plays an important role in host defense and inflammatory disorders, in part by linking the activation of a subset of T lymphocytes to the mobilization of neutrophils and macrophages. IL-17 exerts its effects both directly and indirectly; the latter by stimulating the production of various chemokines, IL-6, and growth factors from resident cells in the affected tissue. As a result, IL-17 coordinates the innate immune response to extracellular bacteria, which is interesting because IL-17 is produced by several types of T cells that are traditionally regarded as key players in adaptive immunity. Studies have uncovered the function and relevance of a unique subset of CD4(+) T helper (Th) cells that produce IL-17 (Th17 cells), but our understanding of the function of IL-17 receptors (IL-17Rs) and their downstream signaling pathways remains poor. This Review discusses studies that suggest that the cytoplasmic adaptor protein Act1 [nuclear factor-kappaB (NF-kappaB) activator 1] is essential for linking stimulation of IL-17Rs to downstream signaling pathways, and, therefore, that Act1 might play a role in local inflammatory responses. Act1 mediates activation of NF-kappaB and the subsequent production of IL-6 and chemokines that are chemotactic for neutrophils and macrophages. These findings have increased our understanding of host defense against bacteria and indicated a role for Act1 in mediating in chronic inflammatory disease. Future studies on Act1 and IL-17 signaling should contribute to the identification and improved understanding of the mechanisms behind aberrant innate immune responses in chronic inflammatory disease.
Collapse
Affiliation(s)
- Anders Lindén
- Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Sahlgrenska Academy at Göteborg University, Sweden.
| |
Collapse
|
35
|
Toutirais O, Gervais A, Cabillic F, Le Gallo M, Coudrais A, Levêque J, Catros-Quemener V, Genetet N. Effects of CD40 binding on ovarian carcinoma cell growth and cytokine production in vitro. Clin Exp Immunol 2007; 149:372-7. [PMID: 17565609 PMCID: PMC1941941 DOI: 10.1111/j.1365-2249.2007.03426.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2007] [Indexed: 12/21/2022] Open
Abstract
The poor prognosis associated with ovarian carcinoma (OVCA) is linked to the high incidence of local recurrence. There is a pressing need to identify factors that can play a role in OVCA growth and spread. Here, we focused on CD40, a member of the tumour necrosis factor (TNF) receptor superfamily with important functions in immune response. The expression of CD40 has been reported on various types of carcinoma cells, but its biological role is still poorly understood. The aim of the present study was to investigate the expression and function of the CD40 in OVCA cell lines. Detectable CD40 levels ranging from low to very high were found on the cell surface of several OVCA cell lines by flow cytometry analysis. Co-culture with a murine cell line transfected with CD40 ligand (CD40L) inhibited cell growth and up-regulated the secretion of proinflammatory cytokines interleukin (IL)-6, IL-8 and TNF-alpha in high-level CD40-expressing OVCA cell lines. Similarly, an increase of IL-6 and IL-8 release could be obtained by adding a soluble form of CD40L to the OVCA cultures. These results suggest that CD40-CD40L interaction is an important pathway affecting growth regulation and cytokine production in OVCA.
Collapse
Affiliation(s)
- O Toutirais
- UPRES 3891, Faculté de Médecine de Rennes, Rennes, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, Kordula T, Zhang QW, Vallance B, Swaidani S, Aronica M, Tuohy VK, Hamilton T, Li X. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007; 8:247-56. [PMID: 17277779 DOI: 10.1038/ni1439] [Citation(s) in RCA: 471] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/11/2007] [Indexed: 01/07/2023]
Abstract
T helper cells that produce interleukin 17 (IL-17) are associated with inflammation and the control of certain bacteria. We report here the essential involvement of the adaptor protein Act1 in IL-17 receptor (IL-17R) signaling and IL-17-dependent immune responses. After stimulation with IL-17, recruitment of Act1 to IL-17R required the IL-17R conserved cytoplasmic 'SEFIR' domain, followed by recruitment of the kinase TAK1 and E3 ubiquitin ligase TRAF6, which mediate 'downstream' activation of transcription factor NF-kappaB. IL-17-induced expression of inflammation-related genes was abolished in Act1-deficient primary astroglial and gut epithelial cells. This reduction was associated with much less inflammatory disease in vivo in both autoimmune encephalomyelitis and dextran sodium sulfate-induced colitis. Our data show that Act1 is essential in IL-17-dependent signaling in autoimmune and inflammatory disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adoptive Transfer
- Animals
- Autoimmune Diseases
- Autoimmunity
- B-Cell Activation Factor Receptor/immunology
- B-Cell Activation Factor Receptor/metabolism
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- Colitis/immunology
- Colitis/metabolism
- Colitis/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Gene Expression
- Gene Expression Regulation/immunology
- HeLa Cells
- Humans
- Inflammation/immunology
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Mice
- Receptors, Interleukin-17/immunology
- Receptors, Interleukin-17/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- Transfection
- Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
Collapse
Affiliation(s)
- Youcun Qian
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chang SH, Park H, Dong C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem 2006; 281:35603-7. [PMID: 17035243 DOI: 10.1074/jbc.c600256200] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-17, the founding member of the IL-17 cytokine family, is the hallmark of a novel subset of CD4+ T cells that is regulated by TGFbeta, IL-6, and IL-23. IL-17 plays an important role in promoting tissue inflammation in host defense against infection and in autoimmune diseases. Although IL-17 has been reported to regulate the expression of proinflammatory cytokines, chemokines, and matrix metalloproteinases, the signaling mechanism of IL-17 receptor has not been understood. An earlier study found that IL-17 activates NF-kappaB and MAPK pathways and requires TRAF6 to induce IL-6. However, it is unknown what molecule(s) directly associates with IL-17 receptor to initiate the signaling. We demonstrate here that IL-17 receptor family shares sequence homology in their intracellular region with Toll-IL-1 receptor (TIR) domains and with Act1, a novel adaptor previously reported as an NF-kappaB activator. MyD88 and IRAK4, downstream signaling components of TIR, are not required for IL-17 signaling. On the other hand, Act1 and IL-17 receptor directly associate likely via homotypic interaction. Deficiency of Act1 in fibroblast abrogates IL-17-induced cytokine and chemokine expression, as well as the induction of C/EBPbeta, C/EBPdelta, and IkappaBzeta. Also, absence of Act1 results in a selective defect in IL-17-induced activation of NF-kappaB pathway. These results thus indicate Act1 as a membrane-proximal adaptor of IL-17 receptor with an essential role in induction of inflammatory genes. Our study not only for the first time reveals an immediate signaling mechanism downstream of an IL-17 family receptor but also has implications in therapeutic treatment of various immune diseases.
Collapse
Affiliation(s)
- Seon Hee Chang
- Department of Immunology, M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Abstract
Naïve peripheral B cells survive in vivo because of active stimulation by the TNF superfamily ligand B lymphocyte stimulator (BLyS/BAFF). Although the survival promoting properties of BLyS are well known, the signal pathways and molecular effectors that characterize this stimulation are still being elucidated. In this communication, we discuss the signal cascades that effect BLyS dependent survival and the regulation of BLyS induced signaling. We also examine the role of BLyS as a growth factor and propose that BLyS induced metabolic enhancement optimizes the B cell response to BCR and TLR-dependent signaling.
Collapse
Affiliation(s)
- Robert T Woodland
- Department of Molecular Genetics and Microbiolgy, Immunology and Virology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
40
|
Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol 2006; 18:263-75. [PMID: 16914324 DOI: 10.1016/j.smim.2006.04.006] [Citation(s) in RCA: 382] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/03/2006] [Indexed: 12/17/2022]
Abstract
BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.
Collapse
Affiliation(s)
- Claudia Bossen
- Biochemistry Department, University of Lausanne, Boveresses 155, CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
41
|
Georgopoulos NT, Steele LP, Thomson MJ, Selby PJ, Southgate J, Trejdosiewicz LK. A novel mechanism of CD40-induced apoptosis of carcinoma cells involving TRAF3 and JNK/AP-1 activation. Cell Death Differ 2006; 13:1789-801. [PMID: 16429118 DOI: 10.1038/sj.cdd.4401859] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.
Collapse
Affiliation(s)
- N T Georgopoulos
- Institute of Molecular Medicine, Epidemiology and Cancer Research, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
42
|
Qian Y, Qin J, Cui G, Naramura M, Snow EC, Ware CF, Fairchild RL, Omori SA, Rickert RC, Scott M, Kotzin BL, Li X. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 2004; 21:575-87. [PMID: 15485634 DOI: 10.1016/j.immuni.2004.09.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 01/07/2023]
Abstract
TNF receptor (TNFR) superfamily members, CD40, and BAFFR play critical roles in B cell survival and differentiation. Genetic deficiency in a novel adaptor molecule, Act1, for CD40 and BAFF results in a dramatic increase in peripheral B cells, which culminates in lymphadenopathy and splenomegaly, hypergammaglobulinemia, and autoantibodies. While the B cell-specific Act1 knockout mice displayed a similar phenotype with less severity, the pathology of the Act1-deficient mice was mostly blocked in CD40-Act1 and BAFF-Act1 double knockout mice. CD40- and BAFF-mediated survival is significantly increased in Act1-deficent B cells, with stronger IkappaB phosphorylation, processing of NF-kappaB2 (p100/p52), and activation of JNK, ERK, and p38 pathways, indicating that Act1 negatively regulates CD40- and BAFF-mediated signaling events. These findings demonstrate that Act1 plays an important role in the homeostasis of B cells by attenuating CD40 and BAFFR signaling.
Collapse
Affiliation(s)
- Youcun Qian
- Department of Immunology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Matthew S Hayden
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
44
|
Dadgostar H, Doyle SE, Shahangian A, Garcia DE, Cheng G. T3JAM, a novel protein that specifically interacts with TRAF3 and promotes the activation of JNK(1). FEBS Lett 2003; 553:403-7. [PMID: 14572659 DOI: 10.1016/s0014-5793(03)01072-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.
Collapse
Affiliation(s)
- Hajir Dadgostar
- Medical Scientist Training Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Mauro C, Vito P, Mellone S, Pacifico F, Chariot A, Formisano S, Leonardi A. Role of the adaptor protein CIKS in the activation of the IKK complex. Biochem Biophys Res Commun 2003; 309:84-90. [PMID: 12943667 DOI: 10.1016/s0006-291x(03)01532-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in numerous cellular processes, including stress response, inflammation, and protection from apoptosis. Therefore, the activity of NF-kappaB needs to be tightly regulated. We have previously identified a novel gene, named CIKS (connection to IkappaB-kinase and SAPK), able to bind the regulatory sub-unit NEMO/IKKgamma and to activate NF-kappaB. Here, we demonstrate that CIKS forms homo-oligomers, interacts with NEMO/IKKgamma, and is recruited to the IKK-complex upon cell stimulation. In addition, we identified the regions of CIKS responsible for these functions. We found that the ability of CIKS to oligomerize, and to be recruited to the IKK-complex is not sufficient to activate the NF-kappaB. In fact, a deletion mutant of CIKS able to oligomerize, to interact with NEMO/IKKgamma, and to be recruited to the IKK-complex does not activate NF-kappaB, suggesting that CIKS needs a second level of regulation to efficiently activate NF-kappaB.
Collapse
Affiliation(s)
- Claudio Mauro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Federico II University of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhao Z, Qian Y, Wald D, Xia YF, Geng JG, Li X. IFN regulatory factor-1 is required for the up-regulation of the CD40-NF-kappa B activator 1 axis during airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5674-80. [PMID: 12759449 DOI: 10.4049/jimmunol.170.11.5674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies show that NF-kappa B activator 1 (Act1) functions as an important adapter molecule for CD40-mediated signaling in epithelial cells. To explore the physiological function of the CD40-Act1 axis, we studied the regulation of gene expression of CD40 and Act1 both in vivo and in cell culture models. Although CD40 and Act1 are up-regulated in mouse lung upon LPS stimulation, IL-1 plus IFN-alpha, -beta, or -gamma synergistically up-regulate both CD40 and Act1 gene expression in human epithelial A549 cells. Cycloheximide superinduces the Act1 mRNA, whereas actinomycin D completely abolishes the Act1 mRNA, indicating that the induction of Act1 mRNA is at the transcriptional level and does not require protein synthesis. Promoter sequence analyses identified putative IFN regulatory factor (IRF)-1, C/EBP-beta, and AP-1 transcription factor binding sites in the Act1 promoter. Although mutation of any of the three sites abolished the promoter activity, Abs against IRF-1 and C/EBP-beta, but not AP-1, blocked the formation of the DNA-binding complex induced by IL-1 plus IFN-beta stimulation, suggesting cooperative action between IRF-1 and C/EBP-beta in mediating Act1 promoter activity. Importantly, LPS-induced gene expression of CD40 and Act1 in the mouse lung is abolished in IRF-1(-/-) mice, indicating an essential role of transcription factor IRF-1 in the coordinated regulation of these two genes during airway inflammation. The induced expression of the CD40-Act1 axis by inflammatory cytokines in epithelial cells probably plays an important role in priming these cells for their response to CD40 ligand during airway inflammation.
Collapse
Affiliation(s)
- Zhendong Zhao
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
47
|
Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003; 14:193-209. [PMID: 12787559 DOI: 10.1016/s1359-6101(03)00021-2] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Members of the TNF receptor superfamily play pivotal roles in numerous biological events in metazoan organisms. Ligand-mediated trimerization by corresponding homo- or heterotrimeric ligands, the TNF family ligands, causes recruitment of several intracellular adaptors, which activate multiple signal transduction pathways. While recruitment of death domain (DD) containing adaptors such as Fas associated death domain (FADD) and TNFR associated DD (TRADD) can lead to the activation of a signal transduction pathway that induces apoptosis, recruitment of TRAF family proteins can lead to the activation of transcription factors such as, NF-kappaB and JNK thereby promoting cell survival and differentiation as well as immune and inflammatory responses. Individual TNF receptors are expressed in different cell types and have a range of affinities for various intracellular adaptors, which provide tremendous signaling and biological specificities. In addition, numerous signaling modulators are involved in regulating activities of signal transduction pathways downstream of receptors in this superfamily. Most of the TNF receptor superfamily members as well as many of their signaling mediators, have been uncovered in the last two decades. However, much remains unknown about how individual signal transduction pathways are regulated upon activation by any particular TNF receptor, under physiological conditions.
Collapse
Affiliation(s)
- Paul W Dempsey
- Department of Microbiology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 8-240 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
48
|
Pacifico F, Barone C, Mellone S, Di Jeso B, Consiglio E, Formisano S, Vito P, Leonardi A. Promoter identification of CIKS, a novel NF-kappaB activating gene, and regulation of its expression. Gene 2003; 307:99-109. [PMID: 12706892 DOI: 10.1016/s0378-1119(03)00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have recently identified a novel gene, named CIKS (Connection to IKK-complex and SAPK), able to activate the transcription factor NF-kappaB, after interaction with the regulatory subunit NEMO/IKKgamma of IKK complex, and the stress-activated protein kinase (SAPK)/JNK. CIKS mRNA is ubiquitously expressed, although its levels differ greatly among different tissues. The aim of this study is to identify and characterize the promoter region of CIKS gene and to analyse the regulation of its expression by different cytokines. The transcription start site of CIKS mRNA was mapped both by primer extension and by a polymerase chain reaction (PCR)-based strategy. The proximal 5'-flanking region of CIKS gene was 'TATA-less', but contained other consensus promoter elements including an initiator (Inr), 'GC' and 'CAAT' boxes. Transfection of luciferase reporter plasmids containing 1.8 kb of the 5'-flanking region increased luciferase activity in epithelial MDCK cells, but not in endothelial HUVEC cells. Deletion analysis identified a sequence from -464 to -220 bp of the 5'-flanking region of CIKS gene essential for basal promoter activity in MDCK cells. Competitive reverse transcriptase-PCR, Northern and Western blot assays showed that different cytokines, such as tumor necrosis factor (TNF)-alpha, Interleukin (IL)-1beta and transforming growth factor (TGF)-beta, dramatically increased CIKS mRNA expression in HeLa cells. We conclude that the proximal 5'-flanking region of CIKS gene contains a functional promoter and binding sites for nuclear proteins leading to its basal transcription. Moreover, we demonstrate that the expression of CIKS is up-regulated by different cytokines.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Baccam M, Woo SY, Vinson C, Bishop GA. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/EBP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3099-108. [PMID: 12626566 DOI: 10.4049/jimmunol.170.6.3099] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of CD40 by its ligand CD154 induces IL-6 production by B lymphocytes. We previously reported that this IL-6 production is dependent upon binding of the adapter protein TNF receptor-associated factor 6 to the cytoplasmic domain of CD40, while binding of TNF receptor-associated factors 2 and 3 is dispensable, as is the activation-induced nuclear translocation of NF-kappa B. The present study was designed to characterize CD40-mediated transcriptional control of the IL-6 gene in B cells. CD40 engagement on B lymphocytes activated the IL-6 promoter, and mutations in the putative binding sites for AP-1 and C/EBP transcription factors reduced this activation. Interestingly, a mutation in the putative NF-kappa B binding site completely abrogated the basal promoter activity, thus also rendering the promoter unresponsive to CD40 stimulation, suggesting that this site is required for binding of NF-kappa B constitutively present in the nucleus of mature B cells. The expression of dominant negative Fos or C/EBP alpha proteins, which prevent binding of AP-1 or C/EBP complexes to DNA, also reduced CD40-mediated IL-6 gene expression. Furthermore, CD40 stimulation led to phosphorylation of c-Jun on its activation domain, implicating CD40-mediated Jun kinase activation in the transcriptional regulation of IL-6 production.
Collapse
Affiliation(s)
- Mekhine Baccam
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
50
|
Kanamori M, Kai C, Hayashizaki Y, Suzuki H. NF-kappaB activator Act1 associates with IL-1/Toll pathway adaptor molecule TRAF6. FEBS Lett 2002; 532:241-6. [PMID: 12459498 DOI: 10.1016/s0014-5793(02)03688-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
NF-kappaB activator 1 (Act1), also called CIKS, is a recently identified protein with NF-kappaB and AP-1 activation activities through its association with the IkappaB kinase complex. We identified and confirmed that Act1 interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6); notably, Act1 binds to TRAF6 only among TRAF family proteins. The amino-terminal half of Act1 is required for its interaction with the TRAF domain. Act1-mediated NF-kappaB activation was inhibited by a dominant-negative mutant of TRAF6 in a dose-dependent manner, and IL-1-induced NF-kappaB activation was inhibited by a high level of Act1 expression. Our results suggest that Act1 is involved in IL-1/Toll-mediated signaling through TRAF6.
Collapse
Affiliation(s)
- Mutsumi Kanamori
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|