1
|
Zhang X, Di Y, Zhang Y, Hu Y, Chi M, Kang J, Zheng Y, Wang H, Wang Y, Chen J, Zhang X. Hypermutability of Mycolicibacterium smegmatis due to ribonucleotide reductase-mediated oxidative homeostasis and imbalanced dNTP pools. Emerg Microbes Infect 2025; 14:2480698. [PMID: 40099407 PMCID: PMC11948356 DOI: 10.1080/22221751.2025.2480698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Ribonucleotide reductase (RNR) catalyzes the synthesis of four deoxyribonucleoside triphosphates (dNTPs), which are essential for DNA replication. Although dNTP imbalances reduce replication fidelity and elevate mutation rates, the impact of RNR dysfunction on Mycobacterium tuberculosis (Mtb) physiology and drug resistance remains unknown. Here, we constructed inducible knockdown strains for the RNR R1 subunit NrdE in Mtb and Mycolicibacterium smegmatis (Msm). NrdE knockdown significantly impaired growth and metabolic imbalances, indirectly disrupting oxidative homeostasis and mycolic acid synthesis, while increasing levels of intracellular ROS accumulation and enhancing cell wall permeability. Additionally, we developed genomic mutant strains, Msm-Y252A and Msm-Q255A, featuring targeted point mutations in the substrate-specific site (S-site) of the RNR loop domain, which determines NDP reduction specificity. The Msm-Y252A displayed a 1.9-fold decrease in dATP and increases in dGTP (1.6-fold), dTTP (9.0-fold), and dCTP (1.3-fold). In contrast, Msm-Q255A exhibited elevated intracellular levels of dGTP (1.6-fold), dTTP (6.1-fold), and dATP (1.5-fold), while dCTP levels remained unchanged. Neither the NrdE knockdown strain nor the S-site mutants exhibited direct resistance development; however, they both showed genomic instability, enhancing the emergence of rifampicin-resistant mutants, even with a 70-fold and a 25-fold increase in mutation frequency for Msm-Y252A and Msm-Q255A, respectively. This study demonstrates that NrdE is integral to Mycobacterium survival and genomic stability and that its RNR dysfunction creates a mutagenic environment under selective pressure, indirectly contributes to the development of drug resistance, positioning NrdE as an effective target for therapeutic strategies and a valuable molecular marker for early detection of drug-resistant Mtb.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yuchang Di
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yu Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Youwei Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Mingzhe Chi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jian Kang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yuqing Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Hengyu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jiazhen Chen
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
- MOE Engineering Research Center of Gene Technology and Shanghai Engineering Research Center of Industrial Microorganism, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Latoszek M, Baginska-Drabiuk K, Sledziewska-Gojska E, Kaniak-Golik A. PCNA and Rnh1 independently participate in the protection of mitochondrial genome against UV-induced mutagenesis in yeast cells. Sci Rep 2024; 14:31017. [PMID: 39730600 DOI: 10.1038/s41598-024-82104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria. We show that, contrary to expectations, yeast PCNA is mitochondrially localized and, upon genotoxic stress, ubiquitinated PCNA can be detected in purified mitochondria. Moreover, the substitution K164R in PCNA leads to an increase of UV-induced point mutations in mtDNA. This UV-dependent effect is highly enhanced in cells in which the Mec1/Rad53/Dun1 checkpoint-dependent deoxynucleotide triphosphate (dNTP) increase in response to DNA damage is blocked and RNase H1 is lacking, suggesting that PCNA plays a role in a replication damage bypass pathway dealing with lesions in multiple ribonucleotides embedded in mtDNA. In addition, our analysis indicates that K164R in PCNA restricts mostly the anti-mutagenic Polη activity on UV-damaged mtDNA, whereas the inhibitory effect on Polζ's activity is only partial. We also show for the first time that in conditions of dNTP depletion yeast Rnh1 neutralizes deleterious effects of ribonucleotides for mtDNA replication, thereby preventing the enhanced instability of rho+ mitochondrial genomes.
Collapse
Affiliation(s)
- Martyna Latoszek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Baginska-Drabiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Aneta Kaniak-Golik
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Tomkova M, McClellan MJ, Crevel G, Shahid AM, Mozumdar N, Tomek J, Shepherd E, Cotterill S, Schuster-Böckler B, Kriaucionis S. Human DNA polymerase ε is a source of C>T mutations at CpG dinucleotides. Nat Genet 2024; 56:2506-2516. [PMID: 39390083 PMCID: PMC11549043 DOI: 10.1038/s41588-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
C-to-T transitions in CpG dinucleotides are the most prevalent mutations in human cancers and genetic diseases. These mutations have been attributed to deamination of 5-methylcytosine (5mC), an epigenetic modification found on CpGs. We recently linked CpG>TpG mutations to replication and hypothesized that errors introduced by polymerase ε (Pol ε) may represent an alternative source of mutations. Here we present a new method called polymerase error rate sequencing (PER-seq) to measure the error spectrum of DNA polymerases in isolation. We find that the most common human cancer-associated Pol ε mutant (P286R) produces an excess of CpG>TpG errors, phenocopying the mutation spectrum of tumors carrying this mutation and deficiencies in mismatch repair. Notably, we also discover that wild-type Pol ε has a sevenfold higher error rate when replicating 5mCpG compared to C in other contexts. Together, our results from PER-seq and human cancers demonstrate that replication errors are a major contributor to CpG>TpG mutagenesis in replicating cells, fundamentally changing our understanding of this important disease-causing mutational mechanism.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Gilles Crevel
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | - Nandini Mozumdar
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Emelie Shepherd
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sue Cotterill
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | | |
Collapse
|
4
|
Bugallo A, Segurado M. Unraveling the complexity of asymmetric DNA replication: Advancements in ribonucleotide mapping techniques and beyond. Genomics 2024; 116:110908. [PMID: 39106913 DOI: 10.1016/j.ygeno.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
DNA replication is a fundamental process for cell proliferation, governed by intricate mechanisms involving leading and lagging strand synthesis. In eukaryotes, canonical DNA replication occurs during the S phase of the cell cycle, facilitated by various components of the replicative machinery at sites known as replication origins. Leading and lagging strands exhibit distinct replication dynamics, with leading strand replication being relatively straightforward compared to the complex synthesis of lagging strands involving Okazaki fragment maturation. Central to DNA synthesis are DNA polymerases, with Polα, Polε, and Polδ playing pivotal roles, each specializing in specific tasks during replication. Notably, leading and lagging strands are replicated by different polymerases, contributing to the division of labor in DNA replication. Understanding the enzymology of asymmetric DNA replication has been challenging, with methods relying on ribonucleotide incorporation and next-generation sequencing techniques offering comprehensive insights. These methodologies, such as HydEn-seq, PU-seq, ribose-seq, and emRiboSeq, offer insights into polymerase activity and strand synthesis, aiding in understanding DNA replication dynamics. Recent advancements include novel conditional mutants for ribonucleotide excision repair, enzymatic cleavage alternatives, and unified pipelines for data analysis. Further developments in adapting techniques to different organisms, studying non-canonical polymerases, and exploring new sequencing platforms hold promise for expanding our understanding of DNA replication dynamics. Integrating strand-specific information into single-cell studies could offer novel insights into enzymology, opening avenues for future research and applications in repair and replication biology.
Collapse
Affiliation(s)
- Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain; Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
5
|
Vandenberg BN, Laughery MF, Cordero C, Plummer D, Mitchell D, Kreyenhagen J, Albaqshi F, Brown AJ, Mieczkowski PA, Wyrick JJ, Roberts SA. Contributions of replicative and translesion DNA polymerases to mutagenic bypass of canonical and atypical UV photoproducts. Nat Commun 2023; 14:2576. [PMID: 37142570 PMCID: PMC10160025 DOI: 10.1038/s41467-023-38255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
UV exposure induces a mutation signature of C > T substitutions at dipyrimidines in skin cancers. We recently identified additional UV-induced AC > TT and A > T substitutions that could respectively cause BRAF V600K and V600E oncogenic mutations. The mutagenic bypass mechanism past these atypical lesions, however, is unknown. Here, we whole genome sequenced UV-irradiated yeast and used reversion reporters to delineate the roles of replicative and translesion DNA polymerases in mutagenic bypass of UV-lesions. Our data indicates that yeast DNA polymerase eta (pol η) has varied impact on UV-induced mutations: protecting against C > T substitutions, promoting T > C and AC > TT substitutions, and not impacting A > T substitutions. Surprisingly, deletion rad30Δ increased novel UV-induced C > A substitutions at CA dinucleotides. In contrast, DNA polymerases zeta (pol ζ) and epsilon (pol ε) participated in AC > TT and A > T mutations. These results uncover lesion-specific accurate and mutagenic bypass of UV lesions, which likely contribute to key driver mutations in melanoma.
Collapse
Affiliation(s)
- Brittany N Vandenberg
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Marian F Laughery
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Dalton Plummer
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Jordan Kreyenhagen
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Fatimah Albaqshi
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Meng X, Claussin C, Regan-Mochrie G, Whitehouse I, Zhao X. Balancing act of a leading strand DNA polymerase-specific domain and its exonuclease domain promotes genome-wide sister replication fork symmetry. Genes Dev 2023; 37:74-79. [PMID: 36702483 PMCID: PMC10069448 DOI: 10.1101/gad.350054.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 01/28/2023]
Abstract
Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Clémence Claussin
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gemma Regan-Mochrie
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
7
|
Wang HL, Chen Y, Wang YQ, Tao EW, Tan J, Liu QQ, Li CM, Tong XM, Gao QY, Hong J, Chen YX, Fang JY. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 2022; 13:6121. [PMID: 36253417 PMCID: PMC9576705 DOI: 10.1038/s41467-022-33903-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
In our previous study, we reported that sirtuin5 (SIRT5), a member of the NAD+-dependent class III histone deacetylase family, is highly expressed in colorectal cancer (CRC). Herein we show that SIRT5 knockdown impairs the production of ribose-5-phosphate, which is essential for nucleotide synthesis, resulting in continuous and irreparable DNA damage and consequently leading to cell cycle arrest and enhanced apoptosis in CRC cells. These SIRT5 silencing-induced effects can be reversed by nucleoside supplementation. Mechanistically, SIRT5 activates transketolase (TKT), a key enzyme in the non-oxidative pentose phosphate pathway, in a demalonylation-dependent manner. Furthermore, TKT is essential for SIRT5-induced malignant phenotypes of CRC both in vivo and in vitro. Altogether, SIRT5 silencing induces DNA damage in CRC via post-translational modifications and inhibits tumor growth, suggesting that SIRT5 can serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Hao-Lian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - En-Wei Tao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Tan
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-Qian Liu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Min Li
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Mei Tong
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Yan Gao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Barbari SR, Beach AK, Markgren JG, Parkash V, Moore E, Johansson E, Shcherbakova PV. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Nucleic Acids Res 2022; 50:8023-8040. [PMID: 35822874 PMCID: PMC9371911 DOI: 10.1093/nar/gkac602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.
Collapse
Affiliation(s)
- Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joel G Markgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression. Sci Rep 2022; 12:9576. [PMID: 35688912 PMCID: PMC9187656 DOI: 10.1038/s41598-022-13668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, is thought to sustain and enhance human health. Several surface-exposed structures, including so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in various members of the Bifidobacterium genus. The nature and extent of this slippage is modulated by the host environment. Involvement of such sortase-dependent pilus clusters in microbe-host interactions, including bacterial attachment to the gut epithelial cells, has been shown previously and is corroborated here for one case. Using a Maximum Depth Sequencing strategy aimed at excluding PCR and sequencing errors introduced by DNA polymerase reagents, specific G-tract sequences in B. breve UCC2003 reveal a range of G-tract lengths whose plasticity within the population is functionally utilized. Interestingly, replication slippage is shown to be modulated under in vivo conditions in a murine model. This in vivo modulation causes an enrichment of a G-tract length which appears to allow biosynthesis of these sortase-dependent pili. This work provides the first example of productive replication slippage influenced by in vivo conditions. It highlights the potential for microdiversity generation in “beneficial” gut commensals.
Collapse
|
10
|
Williams JS, Kunkel TA. Ribonucleotide Incorporation by Eukaryotic B-family Replicases and Its Implications for Genome Stability. Annu Rev Biochem 2022; 91:133-155. [PMID: 35287470 DOI: 10.1146/annurev-biochem-032620-110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
11
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
12
|
Herzog M, Alonso-Perez E, Salguero I, Warringer J, Adams D, Jackson SP, Puddu F. Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles. Nucleic Acids Res 2021; 49:3919-3931. [PMID: 33764464 PMCID: PMC8053093 DOI: 10.1093/nar/gkab160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
A single amino acid residue change in the exonuclease domain of human DNA polymerase ϵ, P286R, is associated with the development of colorectal cancers, and has been shown to impart a mutator phenotype. The corresponding Pol ϵ allele in the yeast Saccharomyces cerevisiae (pol2-P301R), was found to drive greater mutagenesis than an entirely exonuclease-deficient Pol ϵ (pol2-4), an unexpected phenotype of ultra-mutagenesis. By studying the impact on mutation frequency, type, replication-strand bias, and sequence context, we show that ultra-mutagenesis is commonly observed in yeast cells carrying a range of cancer-associated Pol ϵ exonuclease domain alleles. Similarities between mutations generated by these alleles and those generated in pol2-4 cells indicate a shared mechanism of mutagenesis that yields a mutation pattern similar to cancer Signature 14. Comparison of POL2 ultra-mutator with pol2-M644G, a mutant in the polymerase domain decreasing Pol ϵ fidelity, revealed unexpected analogies in the sequence context and strand bias of mutations. Analysis of mutational patterns unique to exonuclease domain mutant cells suggests that backtracking of the polymerase, when the mismatched primer end cannot be accommodated in the proofreading domain, results in the observed insertions and T>A mutations in specific sequence contexts.
Collapse
Affiliation(s)
- Mareike Herzog
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- The Wellcome Sanger Institute, Hinxton CB10 1HH, UK
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Göteborg, Sweden
| | - Israel Salguero
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Göteborg, Sweden
| | | | - Stephen P Jackson
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fabio Puddu
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
13
|
Rate volatility and asymmetric segregation diversify mutation burden in cells with mutator alleles. Commun Biol 2021; 4:21. [PMID: 33398111 PMCID: PMC7782790 DOI: 10.1038/s42003-020-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mutations that compromise mismatch repair (MMR) or DNA polymerase ε or δ exonuclease domains produce mutator phenotypes capable of fueling cancer evolution. Here, we investigate how combined defects in these pathways expands genetic heterogeneity in cells of the budding yeast, Saccharomyces cerevisiae, using a single-cell resolution approach that tallies all mutations arising from individual divisions. The distribution of replication errors present in mother cells after the initial S-phase was broader than expected for a single uniform mutation rate across all cell divisions, consistent with volatility of the mutator phenotype. The number of mismatches that then segregated to the mother and daughter cells co-varied, suggesting that each division is governed by a different underlying genome-wide mutation rate. The distribution of mutations that individual cells inherit after the second S-phase is further broadened by the sequential actions of semiconservative replication and mitotic segregation of chromosomes. Modeling suggests that this asymmetric segregation may diversify mutation burden in mutator-driven tumors. Dowsett et al use a single-cell resolution approach to analyse the distribution of mutations across several divisions in yeast diploid strains mutated in mismatch repair and polymerase delta proofreading. They find that the underlying mutation rate varies from one division to another, and that new mutations segregate unequally between sister chromatids at each division, expanding genetic heterogeneity in the population.
Collapse
|
14
|
Spontaneous Polyploids and Antimutators Compete During the Evolution of Saccharomyces cerevisiae Mutator Cells. Genetics 2020; 215:959-974. [PMID: 32513814 PMCID: PMC7404223 DOI: 10.1534/genetics.120.303333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
Mutations affecting DNA polymerase exonuclease domains or mismatch repair (MMR) generate "mutator" phenotypes capable of driving tumorigenesis. Cancers with both defects exhibit an explosive increase in mutation burden that appears to reach a threshold, consistent with selection acting against further mutation accumulation. In Saccharomyces cerevisiae haploid yeast, simultaneous defects in polymerase proofreading and MMR select for "antimutator" mutants that suppress the mutator phenotype. We report here that spontaneous polyploids also escape this "error-induced extinction" and routinely outcompete antimutators in evolved haploid cultures. We performed similar experiments to explore how diploid yeast adapt to the mutator phenotype. We first evolved cells with homozygous mutations affecting polymerase δ proofreading and MMR, which we anticipated would favor tetraploid emergence. While tetraploids arose with a low frequency, in most cultures, a single antimutator clone rose to prominence carrying biallelic mutations affecting the polymerase mutator alleles. Variation in mutation rate between subclones from the same culture suggests that there exists continued selection pressure for additional antimutator alleles. We then evolved diploid yeast modeling MMR-deficient cancers with the most common heterozygous exonuclease domain mutation (POLE-P286R). Although these cells grew robustly, within 120 generations, all subclones carried truncating or nonsynonymous mutations in the POLE-P286R homologous allele (pol2-P301R) that suppressed the mutator phenotype as much as 100-fold. Independent adaptive events in the same culture were common. Our findings suggest that analogous tumor cell populations may adapt to the threat of extinction by polyclonal mutations that neutralize the POLE mutator allele and preserve intratumoral genetic diversity for future adaptation.
Collapse
|
15
|
Cerritelli SM, Iranzo J, Sharma S, Chabes A, Crouch RJ, Tollervey D, El Hage A. High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase. Nucleic Acids Res 2020; 48:4274-4297. [PMID: 32187369 PMCID: PMC7192613 DOI: 10.1093/nar/gkaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87, Sweden
| | - Robert J Crouch
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Tollervey
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
17
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
You Z, Zhang Q, Miao X. Increasing DNA content for cost-effective oil production in Parachlorella kessleri. BIORESOURCE TECHNOLOGY 2019; 285:121332. [PMID: 30999194 DOI: 10.1016/j.biortech.2019.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study salt stress effects on DNA content and oil production processes integrating harvesting, lipid accumulation and oil extraction. Salt-induced enlargement of Parachlorella kessleri cells, with increasing content of DNA and neutral lipid were found. The 34.77% neutral lipid content and biomass concentration of 0.83 g L-1 were obtained after 7 days of salt treatment, compared with that of 13.57% and 0.89 g L-1 cultivated under normal condition. Sedimentation efficiency increased markedly from 15% to 90% due to the cell enlargement. Disruption fraction and the recovery rate of total lipids of wet cells under salt stress were significantly higher than that of normal conditions (100% and 82.4% for salt stress vs.76.8% and 51.1% for normal conditions). This work demonstrated that salt-induced increase in cell size and DNA content was an effective strategy for the enhancement of oil production, microalgae harvesting and oil extraction.
Collapse
Affiliation(s)
- Zaizhi You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Kong Z, Jia S, Chabes AL, Appelblad P, Lundmark R, Moritz T, Chabes A. Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in biological samples by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Nucleic Acids Res 2019; 46:e66. [PMID: 29554314 PMCID: PMC6009580 DOI: 10.1093/nar/gky203] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Information about the intracellular concentration of dNTPs and NTPs is important for studies of the mechanisms of DNA replication and repair, but the low concentration of dNTPs and their chemical similarity to NTPs present a challenge for their measurement. Here, we describe a new rapid and sensitive method utilizing hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the simultaneous determination of dNTPs and NTPs in biological samples. The developed method showed linearity (R2 > 0.99) in wide concentration ranges and could accurately quantify dNTPs and NTPs at low pmol levels. The intra-day and inter-day precision were below 13%, and the relative recovery was between 92% and 108%. In comparison with other chromatographic methods, the current method has shorter analysis times and simpler sample pre-treatment steps, and it utilizes an ion-pair-free mobile phase that enhances mass-spectrometric detection. Using this method, we determined dNTP and NTP concentrations in actively dividing and quiescent mouse fibroblasts.
Collapse
Affiliation(s)
- Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Shaodong Jia
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Lena Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Patrik Appelblad
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.,Merck Chemicals and Life Science AB, SE 169-03 Solna, Sweden
| | - Richard Lundmark
- Dept. of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre (UPSC), Dept. of Forest Genetics and Plant Physiology, SLU, SE-901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
20
|
Park VS, Pursell ZF. POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair (Amst) 2019; 76:50-59. [PMID: 30818169 PMCID: PMC6467506 DOI: 10.1016/j.dnarep.2019.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
DNA polymerases are uniquely poised to contribute to the elevated mutation burdens seen in many human tumors. These mutations can arise through a number of different polymerase-dependent mechanisms, including intrinsic errors made using template DNA and precursor dNTPs free from chemical modifications, misinsertion events opposite chemically damaged template DNA or insertion events using modified nucleotides. While specific DNA repair polymerases have been known to contribute to tumorigenesis, the role of replication polymerases in mutagenesis in human disease has come into sharp focus over the last decade. This review describes how mutations in these replication DNA polymerases help to drive mutagenesis and tumor development, with particular attention to DNA polymerase epsilon. Recent studies using cancer genome sequencing, mutational signature analyses, yeast and mouse models, and the influence of mismatch repair on tumors with DNA polymerase mutations are discussed.
Collapse
Affiliation(s)
- Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, USA.
| |
Collapse
|
21
|
Lee MB, Dowsett IT, Carr DT, Wasko BM, Stanton SG, Chung MS, Ghodsian N, Bode A, Kiflezghi MG, Uppal PA, Grayden KA, Elala YC, Tang TT, Tran NHB, Tran THB, Diep AB, Hope M, Promislow DEL, Kennedy SR, Kaeberlein M, Herr AJ. Defining the impact of mutation accumulation on replicative lifespan in yeast using cancer-associated mutator phenotypes. Proc Natl Acad Sci U S A 2019; 116:3062-3071. [PMID: 30718408 PMCID: PMC6386679 DOI: 10.1073/pnas.1815966116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations accumulate within somatic cells and have been proposed to contribute to aging. It is unclear what level of mutation burden may be required to consistently reduce cellular lifespan. Human cancers driven by a mutator phenotype represent an intriguing model to test this hypothesis, since they carry the highest mutation burdens of any human cell. However, it remains technically challenging to measure the replicative lifespan of individual mammalian cells. Here, we modeled the consequences of cancer-related mutator phenotypes on lifespan using yeast defective for mismatch repair (MMR) and/or leading strand (Polε) or lagging strand (Polδ) DNA polymerase proofreading. Only haploid mutator cells with significant lifetime mutation accumulation (MA) exhibited shorter lifespans. Diploid strains, derived by mating haploids of various genotypes, carried variable numbers of fixed mutations and a range of mutator phenotypes. Some diploid strains with fewer than two mutations per megabase displayed a 25% decrease in lifespan, suggesting that moderate numbers of random heterozygous mutations can increase mortality rate. As mutation rates and burdens climbed, lifespan steadily eroded. Strong diploid mutator phenotypes produced a form of genetic anticipation with regard to aging, where the longer a lineage persisted, the shorter lived cells became. Using MA lines, we established a relationship between mutation burden and lifespan, as well as population doubling time. Our observations define a threshold of random mutation burden that consistently decreases cellular longevity in diploid yeast cells. Many human cancers carry comparable mutation burdens, suggesting that while cancers appear immortal, individual cancer cells may suffer diminished lifespan due to accrued mutation burden.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Ian T Dowsett
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA 98195-7705
| | - Daniel T Carr
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX 77058
| | - Sarah G Stanton
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael S Chung
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Niloufar Ghodsian
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Anna Bode
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael G Kiflezghi
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA 98195-7705
| | - Priya A Uppal
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | | | - Yordanos C Elala
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Thao T Tang
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Ngoc H B Tran
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Thu H B Tran
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Anh B Diep
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Michael Hope
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
- Department of Biology, University of Washington, Seattle, WA, 98195-1800
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195-7705
| | - Alan J Herr
- Department of Pathology, University of Washington, Seattle, WA 98195-7705;
| |
Collapse
|
22
|
Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 2019; 10:374. [PMID: 30670691 PMCID: PMC6343027 DOI: 10.1038/s41467-018-08145-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3’-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate. Somatic alterations in the exonuclease domain of DNA polymerase ɛ have been linked to the development of highly mutated cancers. Here, the authors report that a major consequence of the most common cancer-associated Polɛ variant is a dramatically increased DNA polymerase activity.
Collapse
Affiliation(s)
- Xuanxuan Xing
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Daniel P Kane
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY, 13214, USA
| | - Chelsea R Bulock
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
24
|
Kunkel TA. A simple but profound mutation in mouse DNA polymerase ε drives tumorigenesis. J Clin Invest 2018; 128:3754-3756. [PMID: 30124465 DOI: 10.1172/jci123021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over 40 years ago, Loeb and colleagues proposed that errors in DNA replication produce a mutator phenotype that is involved in generating the multiple mutations required for tumor development. In this issue of the JCI, Li, Castrillon, and colleagues describe a mouse model containing a single base change in the gene encoding replicative DNA polymerase ε (POLE) that mimics the "ultramutator" phenotype recently reported in many human tumors. Their seminal accomplishment validates Loeb's hypothesis and the use of mutational signatures to understand the origins and potentially the treatment of human tumors, and it offers an exciting opportunity to further explore the mechanisms responsible for normal DNA replication fidelity and their perturbations.
Collapse
|
25
|
Mauney CH, Hollis T. SAMHD1: Recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity 2018; 51:96-110. [PMID: 29583030 PMCID: PMC6117824 DOI: 10.1080/08916934.2018.1454912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a deoxynucleotide triphosphate (dNTP) hydrolase that plays an important role in the homeostatic balance of cellular dNTPs. Its emerging role as an effector of innate immunity is affirmed by mutations in the SAMHD1 gene that cause the severe autoimmune disease, Aicardi-Goutieres syndrome (AGS) and that are linked to cancer. Additionally, SAMHD1 functions as a restriction factor for retroviruses, such as HIV. Here, we review the current biochemical and biological properties of the enzyme including its structure, activity, and regulation by post-translational modifications in the context of its cellular function. We outline open questions regarding the biology of SAMHD1 whose answers will be important for understanding its function as a regulator of cell cycle progression, genomic integrity, and in autoimmunity.
Collapse
Affiliation(s)
- Christopher H Mauney
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Thomas Hollis
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
26
|
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in Saccharomyces cerevisiae. Genetics 2018; 209:115-128. [PMID: 29500182 DOI: 10.1534/genetics.117.300672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
The Ku heterodimer acts centrally in nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB). Saccharomyces cerevisiae Ku, like mammalian Ku, binds and recruits NHEJ factors to DSB ends. Consequently, NHEJ is virtually absent in yeast Ku null (yku70∆ or yku80∆) strains. Previously, we unexpectedly observed imprecise NHEJ proficiency in a yeast Ku mutant with impaired DNA end-binding (DEB). However, how DEB impairment supported imprecise NHEJ was unknown. Here, we found imprecise NHEJ proficiency to be a feature of a panel of DEB-impaired Ku mutants and that DEB impairment resulted in a deficiency in precise NHEJ. These results suggest that DEB-impaired Ku specifically promotes error-prone NHEJ. Epistasis analysis showed that classical NHEJ factors, as well as novel and previously characterized NHEJ-specific residues of Ku, are required for the distinct error-prone repair in a Ku DEB mutant. However, sequencing of repair junctions revealed that imprecise repair in Ku DEB mutants was almost exclusively characterized by small deletions, in contrast to the majority of insertions that define imprecise repair in wild-type strains. Notably, while sequencing indicated a lack of Pol4-dependent insertions at the site of repair, Pol2 exonuclease activity, which mediates small deletions in NHEJ, contributed to imprecise NHEJ in a Ku DEB mutant. The deletions were smaller than in Ku-independent microhomology-mediated end-joining (MMEJ) and were neither promoted by Mre11 nuclease activity nor Sae2 Thus, the quality of Ku's engagement at the DNA end influences end-processing during NHEJ and DEB impairment unmasks a Ku-dependent error-prone pathway of end-joining distinct from MMEJ.
Collapse
|
27
|
Hodel KP, de Borja R, Henninger EE, Campbell BB, Ungerleider N, Light N, Wu T, LeCompte KG, Goksenin AY, Bunnell BA, Tabori U, Shlien A, Pursell ZF. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair. eLife 2018; 7:32692. [PMID: 29488881 PMCID: PMC5829921 DOI: 10.7554/elife.32692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε.
Collapse
Affiliation(s)
- Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Richard de Borja
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erin E Henninger
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Brittany B Campbell
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, United States
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Tong Wu
- Department of Pathology, Tulane University School of Medicine, New Orleans, United States
| | - Kimberly G LeCompte
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - A Yasemin Goksenin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Bruce A Bunnell
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, United States.,Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, United States
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
28
|
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. BIOLOGY 2018; 7:biology7010005. [PMID: 29301327 PMCID: PMC5872031 DOI: 10.3390/biology7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3'-5' exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis.
Collapse
|
29
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Res 2017; 45:10143-10155. [PMID: 28973469 PMCID: PMC5737552 DOI: 10.1093/nar/gkx689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3′ of such ‘slippage-stimulatory’ structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stem–loop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
30
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
31
|
Abstract
The fidelity of DNA replication is determined by many factors, here simplified as the contribution of the DNA polymerase (nucleotide selectivity and proofreading), mismatch repair, a balanced supply of nucleotides, and the condition of the DNA template (both in terms of sequence context and the presence of DNA lesions). This review discusses the contribution and interplay between these factors to the overall fidelity of DNA replication.
Collapse
Affiliation(s)
- Rais A Ganai
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden; Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
32
|
Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy. DNA Repair (Amst) 2017; 56:16-25. [PMID: 28687338 DOI: 10.1016/j.dnarep.2017.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fidelity of DNA replication relies on three error avoidance mechanisms acting in series: nucleotide selectivity of replicative DNA polymerases, exonucleolytic proofreading, and post-replicative DNA mismatch repair (MMR). MMR defects are well known to be associated with increased cancer incidence. Due to advances in DNA sequencing technologies, the past several years have witnessed a long-predicted discovery of replicative DNA polymerase defects in sporadic and hereditary human cancers. The polymerase mutations preferentially affect conserved amino acid residues in the exonuclease domain and occur in tumors with an extremely high mutation load. Thus, a concept has formed that defective proofreading of replication errors triggers the development of these tumors. Recent studies of the most common DNA polymerase variants, however, suggested that their pathogenicity may be determined by functional alterations other than loss of proofreading. In this review, we summarize our current understanding of the consequences of DNA polymerase mutations in cancers and the mechanisms of their mutator effects. We also discuss likely explanations for a high recurrence of some but not other polymerase variants and new ideas for therapeutic interventions emerging from the mechanistic studies.
Collapse
|
33
|
Normally lethal amino acid substitutions suppress an ultramutator DNA Polymerase δ variant. Sci Rep 2017; 7:46535. [PMID: 28417960 PMCID: PMC5394481 DOI: 10.1038/srep46535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
In yeast, the pol3-01,L612M double mutant allele, which causes defects in DNA polymerase delta (Pol δ) proofreading (pol3-01) and nucleotide selectivity (pol3-L612M), confers an “ultramutator” phenotype that rapidly drives extinction of haploid and diploid MMR-proficient cells. Here, we investigate antimutator mutations that encode amino acid substitutions in Pol δ that suppress this lethal phenotype. We find that most of the antimutator mutations individually suppress the pol3-01 and pol3-L612M mutator phenotypes. The locations of many of the amino acid substitutions in Pol δ resemble those of previously identified antimutator substitutions; however, two novel mutations encode substitutions (R674G and Q697R) of amino acids in the fingers domain that coordinate the incoming dNTP. These mutations are lethal without pol3-L612M and markedly change the mutation spectra produced by the pol3-01,L612M mutator allele, suggesting that they alter nucleotide selection to offset the pol3-L612M mutator phenotype. Consistent with this hypothesis, mutations and drug treatments that perturb dNTP pool levels disproportionately influence the viability of pol3-L612M,R674G and pol3-L612M,Q697R cells. Taken together, our findings suggest that mutation rate can evolve through genetic changes that alter the balance of dNTP binding and dissociation from DNA polymerases.
Collapse
|
34
|
Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E4442-E4451. [PMID: 28416670 DOI: 10.1073/pnas.1618714114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.
Collapse
|
35
|
Pai CC, Kearsey SE. A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes (Basel) 2017; 8:genes8020057. [PMID: 28146119 PMCID: PMC5333046 DOI: 10.3390/genes8020057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
36
|
Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J Bacteriol 2017; 199:JB.00715-16. [PMID: 27920297 DOI: 10.1128/jb.00715-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H2O2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. IMPORTANCE Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions.
Collapse
|
37
|
Qu J, Sun W, Zhong J, Lv H, Zhu M, Xu J, Jin N, Xie Z, Tan M, Lin SH, Geng M, Ding J, Huang M. Phosphoglycerate mutase 1 regulates dNTP pool and promotes homologous recombination repair in cancer cells. J Cell Biol 2017; 216:409-424. [PMID: 28122957 PMCID: PMC5294784 DOI: 10.1083/jcb.201607008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/02/2016] [Accepted: 01/17/2017] [Indexed: 02/04/2023] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) regulates metabolism in cancer cells. Qu et al. show that PGAM1 maintains the intracellular dNTP pool, promotes the stability of CTBP-interacting protein, and is required for homologous recombination repair. PGAM1 inhibition sensitizes BRCA1/2-proficient breast cancer to PARP inhibitors. Glycolytic enzymes are known to play pivotal roles in cancer cell survival, yet their molecular mechanisms remain poorly understood. Phosphoglycerate mutase 1 (PGAM1) is an important glycolytic enzyme that coordinates glycolysis, pentose phosphate pathway, and serine biosynthesis in cancer cells. Herein, we report that PGAM1 is required for homologous recombination (HR) repair of DNA double-strand breaks (DSBs) caused by DNA-damaging agents. Mechanistically, PGAM1 facilitates DSB end resection by regulating the stability of CTBP-interacting protein (CtIP). Knockdown of PGAM1 in cancer cells accelerates CtIP degradation through deprivation of the intracellular deoxyribonucleotide triphosphate pool and associated activation of the p53/p73 pathway. Enzymatic inhibition of PGAM1 decreases CtIP protein levels, impairs HR repair, and hence sensitizes BRCA1/2-proficient breast cancer to poly(ADP-ribose) polymerase (PARP) inhibitors. Together, this study identifies a metabolically dependent function of PGAM1 in promoting HR repair and reveals a potential therapeutic opportunity for PGAM1 inhibitors in combination with PARP inhibitors.
Collapse
Affiliation(s)
- Jia Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenyi Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Zhong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Lv
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingrui Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nan Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shu-Hai Lin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
38
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
39
|
Williams JS, Lujan SA, Kunkel TA. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 2016; 17:350-63. [PMID: 27093943 PMCID: PMC5445644 DOI: 10.1038/nrm.2016.37] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.
Collapse
Affiliation(s)
- Jessica S. Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Scott A. Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
40
|
Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance. Proc Natl Acad Sci U S A 2016; 113:4723-8. [PMID: 27071091 DOI: 10.1073/pnas.1519128113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Even small variations in dNTP concentrations decrease DNA replication fidelity, and this observation prompted us to analyze genomic cancer data for mutations in enzymes involved in dNTP metabolism. We found that sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP pools, is frequently mutated in colon cancers, that these mutations negatively affect SAMHD1 activity, and that several SAMHD1 mutations are found in tumors with defective mismatch repair. We show that minor changes in dNTP pools in combination with inactivated mismatch repair dramatically increase mutation rates. Determination of dNTP pools in mouse embryos revealed that inactivation of one SAMHD1 allele is sufficient to elevate dNTP pools. These observations suggest that heterozygous cancer-associated SAMHD1 mutations increase mutation rates in cancer cells.
Collapse
|
41
|
Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, Church DN. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer 2016; 16:71-81. [PMID: 26822575 DOI: 10.1038/nrc.2015.12] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although it has long been recognized that the exonucleolytic proofreading activity intrinsic to the replicative DNA polymerases Pol δ and Pol ε is essential for faithful replication of DNA, evidence that defective DNA polymerase proofreading contributes to human malignancy has been limited. However, recent studies have shown that germline mutations in the proofreading domains of Pol δ and Pol ε predispose to cancer, and that somatic Pol ε proofreading domain mutations occur in multiple sporadic tumours, where they underlie a phenotype of 'ultramutation' and favourable prognosis. In this Review, we summarize the current understanding of the mechanisms and consequences of polymerase proofreading domain mutations in human malignancies, and highlight the potential utility of these variants as novel cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Emily Rayner
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Inge C van Gool
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Claire Palles
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David N Church
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
42
|
|
43
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
44
|
|
45
|
St Charles JA, Liberti SE, Williams JS, Lujan SA, Kunkel TA. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 31:41-51. [PMID: 25996407 DOI: 10.1016/j.dnarep.2015.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Abstract
Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.
Collapse
Affiliation(s)
- Jordan A St Charles
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sascha E Liberti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|