1
|
Salman A, Biziaev N, Shuvalova E, Alkalaeva E. mRNA context and translation factors determine decoding in alternative nuclear genetic codes. Bioessays 2024; 46:e2400058. [PMID: 38724251 DOI: 10.1002/bies.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Biziaev N, Sokolova E, Yanvarev DV, Toropygin IY, Shuvalov A, Egorova T, Alkalaeva E. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation. J Biol Chem 2022; 298:102133. [PMID: 35700825 PMCID: PMC9272376 DOI: 10.1016/j.jbc.2022.102133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Dmitry V Yanvarev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ilya Yu Toropygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:223-231. [PMID: 30824055 DOI: 10.1016/j.plantsci.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Noriko Yamashiro
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Wada M, Ito K. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. FEBS J 2019; 286:788-802. [PMID: 30471181 PMCID: PMC7379694 DOI: 10.1111/febs.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
The CGA arginine codon is a rare codon in Saccharomyces cerevisiae. Thus, full-length mature protein synthesis from reporter genes with internal CGA codon repeats are markedly reduced, and the reporters, instead, produce short-sized polypeptides via an unknown mechanism. Considering the product size and similar properties between CGA sense and UGA stop codons, we hypothesized that eukaryote polypeptide-chain release factor complex eRF1/eRF3 catalyses polypeptide release at CGA repeats. Herein, we performed a series of analyses and report that the CGA codon can be, to a certain extent, decoded as a stop codon in yeast. This also raises an intriguing possibility that translation termination factors eRF1/eRF3 rescue ribosomes stalled at CGA codons, releasing premature polypeptides, and competing with canonical tRNAICG to the CGA codon. Our results suggest an alternative ribosomal rescue pathway in eukaryotes. The present results suggest that misdecoding of low efficient codons may play a novel role in global translation regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Miki Wada
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
- Technical officeThe Institute of Medical ScienceThe University of TokyoMinato‐kuJapan
| | - Koichi Ito
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
| |
Collapse
|
5
|
Cridge AG, Crowe-McAuliffe C, Mathew SF, Tate WP. Eukaryotic translational termination efficiency is influenced by the 3' nucleotides within the ribosomal mRNA channel. Nucleic Acids Res 2018; 46:1927-1944. [PMID: 29325104 PMCID: PMC5829715 DOI: 10.1093/nar/gkx1315] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/07/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
When a stop codon is at the 80S ribosomal A site, there are six nucleotides (+4 to +9) downstream that are inferred to be occupying the mRNA channel. We examined the influence of these downstream nucleotides on translation termination success or failure in mammalian cells at the three stop codons. The expected hierarchy in the intrinsic fidelity of the stop codons (UAA>UAG>>UGA) was observed, with highly influential effects on termination readthrough mediated by nucleotides at position +4 and position +8. A more complex influence was observed from the nucleotides at positions +5 and +6. The weakest termination contexts were most affected by increases or decreases in the concentration of the decoding release factor (eRF1), indicating that eRF1 binding to these signals was rate-limiting. When termination efficiency was significantly reduced by cognate suppressor tRNAs, the observed influence of downstream nucleotides was maintained. There was a positive correlation between experimentally measured signal strength and frequency of the signal in eukaryotic genomes, particularly in Saccharomyces cerevisiae and Drosophila melanogaster. We propose that termination efficiency is not only influenced by interrogation of the stop signal directly by the release factor, but also by downstream ribosomal interactions with the mRNA nucleotides in the entry channel.
Collapse
Affiliation(s)
- Andrew G Cridge
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | | | - Suneeth F Mathew
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Warren P Tate
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
6
|
Hoernes TP, Clementi N, Juen MA, Shi X, Faserl K, Willi J, Gasser C, Kreutz C, Joseph S, Lindner H, Hüttenhofer A, Erlacher MD. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release. Proc Natl Acad Sci U S A 2018; 115:E382-E389. [PMID: 29298914 PMCID: PMC5776981 DOI: 10.1073/pnas.1714554115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
7
|
Pillay S, Li Y, Wong LE, Pervushin K. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition. Sci Rep 2016; 6:18644. [PMID: 26725946 PMCID: PMC4698671 DOI: 10.1038/srep18644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q(122)FM(Y)F(126). RDCs were recorded on (15)N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1.
Collapse
Affiliation(s)
- Shubhadra Pillay
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
8
|
Bezerra AR, Guimarães AR, Santos MAS. Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life (Basel) 2015; 5:1610-28. [PMID: 26569314 PMCID: PMC4695839 DOI: 10.3390/life5041610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Collapse
Affiliation(s)
- Ana R Bezerra
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Ana R Guimarães
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Manuel A S Santos
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
9
|
Saito K, Ito K. Genetic analysis of L123 of the tRNA-mimicking eukaryote release factor eRF1, an amino acid residue critical for discrimination of stop codons. Nucleic Acids Res 2015; 43:4591-601. [PMID: 25897120 PMCID: PMC4482090 DOI: 10.1093/nar/gkv376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the tRNA-mimicking polypeptide-chain release factor, eRF1, decodes stop codons on the ribosome in a complex with eRF3; this complex exhibits striking structural similarity to the tRNA–eEF1A–GTP complex. Although amino acid residues or motifs of eRF1 that are critical for stop codon discrimination have been identified, the details of the molecular mechanisms involved in the function of the ribosomal decoding site remain obscure. Here, we report analyses of the position-123 amino acid of eRF1 (L123 in Saccharomyces cerevisiae eRF1), a residue that is phylogenetically conserved among species with canonical and variant genetic codes. In vivo readthrough efficiency analysis and genetic growth complementation analysis of the residue-123 systematic mutants suggested that this amino acid functions in stop codon discrimination in a manner coupled with eRF3 binding, and distinctive from previously reported adjacent residues. Furthermore, aminoglycoside antibiotic sensitivity analysis and ribosomal docking modeling of eRF1 in a quasi-A/T state suggested a functional interaction between the side chain of L123 and ribosomal residues critical for codon recognition in the decoding site, as a molecular explanation for coupling with eRF3. Our results provide insights into the molecular mechanisms underlying stop codon discrimination by a tRNA-mimicking protein on the ribosome.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
10
|
Blanchet S, Rowe M, Von der Haar T, Fabret C, Demais S, Howard MJ, Namy O. New insights into stop codon recognition by eRF1. Nucleic Acids Res 2015; 43:3298-308. [PMID: 25735746 PMCID: PMC4381064 DOI: 10.1093/nar/gkv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We performed alanine scanning mutagenesis of this region, and we quantified in vivo readthrough efficiency for each alanine mutant. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. We also demonstrated a role for the serine 33 and serine 70 residues in UGA decoding in vivo. NMR analysis of the alanine mutants revealed that the correct conformation of this region was controlled by the YxCxxxF motif. By combining our genetic data with a structural analysis of eRF1 mutants, we were able to formulate a new model in which the stop codon interacts with eRF1 through the P1 pocket.
Collapse
Affiliation(s)
- Sandra Blanchet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | - Céline Fabret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Stéphane Demais
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Batiment 400, 91400 Orsay, France
| |
Collapse
|
11
|
Wesolowska MT, Richter-Dennerlein R, Lightowlers RN, Chrzanowska-Lightowlers ZMA. Overcoming stalled translation in human mitochondria. Front Microbiol 2014; 5:374. [PMID: 25101074 PMCID: PMC4103422 DOI: 10.3389/fmicb.2014.00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022] Open
Abstract
Protein synthesis is central to life and maintaining a highly accurate and efficient mechanism is essential. What happens when a translating ribosome stalls on a messenger RNA? Many highly intricate processes have been documented in the cytosol of numerous species, but how does organellar protein synthesis resolve this stalling issue? Mammalian mitochondria synthesize just thirteen highly hydrophobic polypeptides. These proteins are all integral components of the machinery that couples oxidative phosphorylation. Consequently, it is essential that stalled mitochondrial ribosomes can be efficiently recycled. To date, there is no evidence to support any particular molecular mechanism to resolve this problem. However, here we discuss the observation that there are four predicted members of the mitochondrial translation release factor family and that only one member, mtRF1a, is necessary to terminate the translation of all thirteen open reading frames in the mitochondrion. Could the other members be involved in the process of recycling stalled mitochondrial ribosomes?
Collapse
Affiliation(s)
| | | | | | - Zofia M. A. Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Medical SchoolNewcastle upon Tyne, UK
| |
Collapse
|
12
|
Karijolich J, Yu YT. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355-62. [PMID: 24939317 PMCID: PMC4094583 DOI: 10.3892/ijmm.2014.1809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022] Open
Abstract
An estimated one-third of genetic disorders are the result of mutations that generate premature termination codons (PTCs) within protein coding genes. These disorders are phenotypically diverse and consist of diseases that affect both young and old individuals. Various small molecules have been identified that are capable of modulating the efficiency of translation termination, including select antibiotics of the aminoglycoside family and multiple novel synthetic molecules, including PTC124. Several of these agents have proved their effectiveness at promoting nonsense suppression in preclinical animal models, as well as in clinical trials. In addition, it has recently been shown that box H/ACA RNA-guided peudouridylation, when directed to modify PTCs, can also promote nonsense suppression. In this review, we summarize our current understanding of eukaryotic translation termination and discuss various methods for promoting the read-through of disease-causing PTCs, as well as the current obstacles that stand in the way of using the discussed agents broadly in clinical practice.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|
14
|
Kuzmenko AV, Levitskii SA, Vinogradova EN, Atkinson GC, Hauryliuk V, Zenkin N, Kamenski PA. Protein biosynthesis in mitochondria. BIOCHEMISTRY (MOSCOW) 2014; 78:855-66. [PMID: 24228873 DOI: 10.1134/s0006297913080014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- A V Kuzmenko
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
15
|
des Georges A, Hashem Y, Unbehaun A, Grassucci RA, Taylor D, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res 2013; 42:3409-18. [PMID: 24335085 PMCID: PMC3950680 DOI: 10.1093/nar/gkt1279] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.
Collapse
Affiliation(s)
- Amédée des Georges
- Howard Hughes Medical Institute, Chevy Chase, MD, USA, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA, Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA, Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA and Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu L, Hao Y, Li C, Shen Q, Chai B, Wang W, Liang A. Identification of amino acids responsible for stop codon recognition for polypeptide chain release factor. Biochem Cell Biol 2013; 91:155-64. [PMID: 23668788 DOI: 10.1139/bcb-2012-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One factor involved in eukaryotic translation termination is class 1 release factor in eukaryotes (eRF1), which functions to decode stop codons. Variant code species, such as ciliates, frequently exhibit altered stop codon recognition. Studies revealed that some class-specific residues in the eRF1 N-terminal domain are responsible for stop codon reassignment in ciliates. Here, we investigated the effects on stop codon recognition of chimeric eRF1s containing the N-terminal domain of Euplotes octocarinatus and Blepharisma japonicum eRF1 fused to Saccharomyces cerevisiae M and C domains using dual luciferase read-through assays. Mutation of class-specific residues in different eRF1 classes was also studied to identify key residues and motifs involved in stop codon decoding. As expected, our results demonstrate that 3 pockets within the eRF1 N-terminal domain were involved in decoding stop codon nucleotides. However, allocation of residues to each pocket was revalued. Our data suggest that hydrophobic and class-specific surface residues participate in different functions: modulation of pocket conformation and interaction with stop codon nucleotides, respectively. Residues conserved across all eRF1s determine the relative orientation of the 3 pockets according to stop codon nucleotides. However, quantitative analysis of variant ciliate and yeast eRF1 point mutants did not reveal any correlation between evolutionary conservation of class-specific residues and termination-related functional specificity and was limited in elucidating a detailed mechanism for ciliate stop codon reassignment. Thus, based on isolation of suppressor tRNAs from Euplotes and Tetrahymena, we propose that stop codon reassignment in ciliates may be controlled by cooperation between eRF1 and suppressor tRNAs.
Collapse
Affiliation(s)
- Lijun Xu
- a Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; and Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
17
|
A Single Amino Acid Substitution Alters Omnipotent eRF1 of Dileptus to Euplotes-type Dualpotent eRF1: Standard Codon Usage May be Advantageous in Raptorial Ciliates. Protist 2013; 164:440-9. [DOI: 10.1016/j.protis.2013.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
18
|
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 2013; 41:4573-86. [PMID: 23435318 PMCID: PMC3632111 DOI: 10.1093/nar/gkt113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognition. In the current study, we extend this work by investigating the role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1. Using a combination of the conservative and non-conservative amino acid substitutions, we measured the functional activity of >80 mutant eRF1s in an in vitro reconstituted eukaryotic translation system and selected 15 amino acid residues essential for recognition of different stop codon nucleotides. Furthermore, toe-print analyses provide evidence of a conformational rearrangement of ribosomal complexes that occurs during binding of eRF1 to messenger RNA and reflects stop codon decoding activity of eRF1. Based on our experimental data and molecular modelling of the N-domain at the ribosomal A site, we propose a two-step model of stop codon decoding in the eukaryotic ribosome.
Collapse
Affiliation(s)
- Polina Kryuchkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Hernández G, Proud CG, Preiss T, Parsyan A. On the Diversification of the Translation Apparatus across Eukaryotes. Comp Funct Genomics 2012; 2012:256848. [PMID: 22666084 PMCID: PMC3359775 DOI: 10.1155/2012/256848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 03/07/2012] [Indexed: 11/21/2022] Open
Abstract
Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.
Collapse
Affiliation(s)
- Greco Hernández
- Division of Basic Research, National Institute for Cancer (INCan), Avenida San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico
| | - Christopher G. Proud
- Centre for Biological Sciences, University of Southampton, Life Sciences Building (B85), Southampton SO17 1BJ, UK
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Acton, Canberra, ACT 0200, Australia
| | - Armen Parsyan
- Goodman Cancer Centre and Department of Biochemistry, Faculty of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, Canada H3A 1A3
- Division of General Surgery, Department of Surgery, Faculty of Medicine, McGill University Health Centre, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
20
|
Polshakov VI, Eliseev BD, Birdsall B, Frolova LY. Structure and dynamics in solution of the stop codon decoding N-terminal domain of the human polypeptide chain release factor eRF1. Protein Sci 2012; 21:896-903. [PMID: 22517631 DOI: 10.1002/pro.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/07/2022]
Abstract
The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the β-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
21
|
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 2012; 40:5751-65. [PMID: 22383581 PMCID: PMC3384315 DOI: 10.1093/nar/gks192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation termination in eukaryotes is catalyzed by two release factors eRF1 and eRF3 in a cooperative manner. The precise mechanism of stop codon discrimination by eRF1 remains obscure, hindering drug development targeting aberrations at translation termination. By solving the solution structures of the wild-type N-domain of human eRF1 exhibited omnipotent specificity, i.e. recognition of all three stop codons, and its unipotent mutant with UGA-only specificity, we found the conserved GTS loop adopting alternate conformations. We propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. To explore such feasibility, we positioned N-domain in a pre-termination ribosomal complex using the binding interface between N-domain and model RNA oligonucleotides mimicking Helix 44 of 18S rRNA. NMR analysis revealed that those duplex RNA containing 2-nt internal loops interact specifically with helix α1 of N-domain, and displace C-domain from a non-covalent complex of N-domain and C-domain, suggesting domain rearrangement in eRF1 that accompanies N-domain accommodation into the ribosomal A site.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
22
|
Chrzanowska-Lightowlers ZMA, Pajak A, Lightowlers RN. Termination of protein synthesis in mammalian mitochondria. J Biol Chem 2011; 286:34479-85. [PMID: 21873426 DOI: 10.1074/jbc.r111.290585] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All mechanisms of protein synthesis can be considered in four stages: initiation, elongation, termination, and ribosome recycling. Remarkable progress has been made in understanding how these processes are mediated in the cytosol of many species; however, details of organellar protein synthesis remain sketchy. This is an important omission, as defects in human mitochondrial translation are known to cause disease and may contribute to the aging process itself. In this minireview, we focus on the recent advances that have been made in understanding how one of these processes, translation termination, occurs in the human mitochondrion.
Collapse
Affiliation(s)
- Zofia M A Chrzanowska-Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
23
|
Nakamura Y, Ito K. tRNA mimicry in translation termination and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:647-68. [DOI: 10.1002/wrna.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Bulygin KN, Khairulina YS, Kolosov PM, Ven'yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Kisselev LL, Karpova GG. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. RNA (NEW YORK, N.Y.) 2010; 16:1902-14. [PMID: 20688868 PMCID: PMC2941099 DOI: 10.1261/rna.2066910] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/27/2010] [Indexed: 05/07/2023]
Abstract
To study positioning of the polypeptide release factor eRF1 toward a stop signal in the ribosomal decoding site, we applied photoactivatable mRNA analogs, derivatives of oligoribonucleotides. The human eRF1 peptides cross-linked to these short mRNAs were identified. Cross-linkers on the guanines at the second, third, and fourth stop signal positions modified fragment 31-33, and to lesser extent amino acids within region 121-131 (the "YxCxxxF loop") in the N domain. Hence, both regions are involved in the recognition of the purines. A cross-linker at the first uridine of the stop codon modifies Val66 near the NIKS loop (positions 61-64), and this region is important for recognition of the first uridine of stop codons. Since the N domain distinct regions of eRF1 are involved in a stop-codon decoding, the eRF1 decoding site is discontinuous and is not of "protein anticodon" type. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. In the simulated eRF1 conformation, the YxCxxxF motif and positions 31-33 are very close to a stop codon, which becomes also proximal to several parts of the C domain. Thus, in the A-site-bound state, the eRF1 conformation significantly differs from those in crystals and solution. The model suggested for eRF1 conformation in the ribosomal A site and cross-linking data are compatible.
Collapse
MESH Headings
- Base Sequence
- Codon, Terminator/genetics
- Codon, Terminator/metabolism
- Cross-Linking Reagents
- Humans
- In Vitro Techniques
- Models, Molecular
- Mutagenesis, Site-Directed
- Peptide Chain Termination, Translational
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptide Mapping
- Peptide Termination Factors/chemistry
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res 2010; 39:599-608. [PMID: 20860996 PMCID: PMC3025575 DOI: 10.1093/nar/gkq759] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes a single class-1 translation termination factor eRF1 decodes the three stop codons: UAA, UAG and UGA. Some ciliates, like Euplotes, have a variant code, and here eRF1s exhibit UAR-only specificity, whereas UGA is reassigned as a sense codon. Since eukaryote eRF1 stop-codon recognition is associated with its N-terminal domain, structural features should exist in the N domain of ciliate eRF1s that restrict their stop-codon specificity. Using an in vitro reconstituted eukaryotic translation system we demonstrate here that a chimeric eRF1 composed of the N domain of Euplotes aediculatus eRF1 fused to the MC domains of human eRF1 exhibits UAR-only specificity. Functional analysis of eRF1 chimeras constructed by swapping Euplotes N domain sequences with the cognate regions from human eRF1 as well as site-directed mutagenesis of human eRF1 highlighted the crucial role of the alanine residue in position 70 of E. aediculatus eRF1 in restricting UGA decoding. Switching the UAR-only specificity of E. aediculatus eRF1 to omnipotent mode is due to a single point mutation. Furthermore, we examined the influence of eRF3 on the ability of chimeric and mutant eRF1s to induce peptide release in response to different stop codons.
Collapse
Affiliation(s)
- Boris Eliseev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
26
|
Fidelity in archaeal information processing. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20871851 PMCID: PMC2943090 DOI: 10.1155/2010/960298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 07/12/2010] [Indexed: 12/30/2022]
Abstract
A key element during the flow of genetic information in living systems is fidelity. The accuracy of DNA replication influences the genome size as well as the rate of genome evolution. The large amount of energy invested in gene expression implies that fidelity plays a major role in fitness. On the other hand, an increase in fidelity generally coincides with a decrease in velocity. Hence, an important determinant of the evolution of life has been the establishment of a delicate balance between fidelity and variability. This paper reviews the current knowledge on quality control in archaeal information processing. While the majority of these processes are homologous in Archaea, Bacteria, and Eukaryotes, examples are provided of nonorthologous factors and processes operating in the archaeal domain. In some instances, evidence for the existence of certain fidelity mechanisms has been provided, but the factors involved still remain to be identified.
Collapse
|
27
|
Grosjean H, de Crécy-Lagard V, Marck C. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 2010; 584:252-64. [PMID: 19931533 DOI: 10.1016/j.febslet.2009.11.052] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The strategies organisms use to decode synonymous codons in cytosolic protein synthesis are not uniform. The complete isoacceptor tRNA repertoire and the type of modified nucleoside found at the wobble position 34 of their anticodons were analyzed in all kingdoms of life. This led to the identification of four main decoding strategies that are diversely used in Bacteria, Archaea and Eukarya. Many of the modern tRNA modification enzymes acting at position 34 of tRNAs are present only in specific domains and obviously have arisen late during evolution. In an evolutionary fine-tuning process, these enzymes must have played an essential role in the progressive introduction of new amino acids, and in the refinement and standardization of the canonical nuclear genetic code observed in all extant organisms (functional convergent evolutionary hypothesis).
Collapse
Affiliation(s)
- Henri Grosjean
- Université Paris-Sud, CNRS, UMR8621, Institut de Génétique et de Microbiologie, Orsay F-91405, France.
| | | | | |
Collapse
|
28
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
29
|
Alkalaeva E, Eliseev B, Ambrogelly A, Vlasov P, Kondrashov FA, Gundllapalli S, Frolova L, Söll D, Kisselev L. Translation termination in pyrrolysine-utilizing archaea. FEBS Lett 2009; 583:3455-60. [PMID: 19796638 DOI: 10.1016/j.febslet.2009.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Although some data link archaeal and eukaryotic translation, the overall mechanism of protein synthesis in archaea remains largely obscure. Both archaeal (aRF1) and eukaryotic (eRF1) single release factors recognize all three stop codons. The archaeal genus Methanosarcinaceae contains two aRF1 homologs, and also uses the UAG stop to encode the 22nd amino acid, pyrrolysine. Here we provide an analysis of the last stage of archaeal translation in pyrrolysine-utilizing species. We demonstrated that only one of two Methanosarcina barkeri aRF1 homologs possesses activity and recognizes all three stop codons. The second aRF1 homolog may have another unknown function. The mechanism of pyrrolysine incorporation in the Methanosarcinaceae is discussed.
Collapse
Affiliation(s)
- Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vallabhaneni H, Fan-Minogue H, Bedwell DM, Farabaugh PJ. Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA (NEW YORK, N.Y.) 2009; 15:889-897. [PMID: 19329535 PMCID: PMC2673066 DOI: 10.1261/rna.1508109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/05/2009] [Indexed: 05/27/2023]
Abstract
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore,Maryland 21250, USA
| | | | | | | |
Collapse
|
31
|
Hatin I, Fabret C, Rousset JP, Namy O. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1. Nucleic Acids Res 2009; 37:1789-98. [PMID: 19174561 PMCID: PMC2665212 DOI: 10.1093/nar/gkp012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Translation termination in eukaryotes is completed by two interacting factors eRF1 and eRF3. In Saccharomyces cerevisiae, these proteins are encoded by the genes SUP45 and SUP35, respectively. The eRF1 protein interacts directly with the stop codon at the ribosomal A-site, whereas eRF3—a GTPase protein—probably acts as a proofreading factor, coupling stop codon recognition to polypeptide chain release. We performed random PCR mutagenesis of SUP45 and screened the library for mutations resulting in increased eRF1 activity. These mutations led to the identification of two new pockets in domain 1 (P1 and P2) involved in the regulation of eRF1 activity. Furthermore, we identified novel mutations located in domains 2 and 3, which confer stop codon specificity to eRF1. Our findings are consistent with the model of a closed-active conformation of eRF1 and shed light on two new functional regions of the protein.
Collapse
Affiliation(s)
- Isabelle Hatin
- Université Paris-Sud and IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | | | | | | |
Collapse
|
32
|
The life in science. Mol Biol 2008. [DOI: 10.1134/s0026893308050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Kim OTP, Sakurai A, Saito K, Ito K, Ikehara K, Harumoto T. Ciliates use both variant and universal genetic codes: Evidence of omnipotent eRF1s in the class Litostomatea. Gene 2008; 417:51-8. [DOI: 10.1016/j.gene.2008.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|
34
|
Vorobjev YN, Kisselev LL. Modeling of the positioning of eRF1 and the mRNA stop codon explains the proximity of the eRF1 C domain to the stop codon in the ribosomal complex. Mol Biol 2008. [DOI: 10.1134/s0026893308020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
|
36
|
Lekomtsev SA, Kolosov PM, Frolova LY, Bidou L, Rousset JP, Kisselev LL. How does Euplotes translation termination factor eRF1 fail to recognize the UGA stop codon? Mol Biol 2007. [DOI: 10.1134/s002689330706009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zhouravleva GA, Moskalenko SE, Murina OA, Inge-Vechtomov SG. Viable nonsense mutants for the SUP45 gene in the yeast Saccharomyces cerevisiae are lethal at increased temperature. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Bulygin KN, Popugaeva EA, Repkova MN, Meschaninova MI, Ven’yaminova AG, Graifer DM, Frolova LY, Karpova GG. The C domain of translation termination factor eRF1 is close to the stop codon in the A site of the 80S ribosome. Mol Biol 2007. [DOI: 10.1134/s0026893307050111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI. Eukaryotic class 1 translation termination factor eRF1 − the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis. FEBS J 2007; 274:4223-37. [PMID: 17651434 DOI: 10.1111/j.1742-4658.2007.05949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other.
Collapse
Affiliation(s)
- Elena V Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
40
|
Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset JP, Kisselev L. Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. Proc Natl Acad Sci U S A 2007; 104:10824-9. [PMID: 17573528 PMCID: PMC1904165 DOI: 10.1073/pnas.0703887104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Indexed: 11/18/2022] Open
Abstract
In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.
Collapse
Affiliation(s)
- Sergey Lekomtsev
- *Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Unité Mixte de Recherche 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay, France; and
| | - Petr Kolosov
- *Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Laure Bidou
- Unité Mixte de Recherche 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay, France; and
- Centre National de la Recherche Scientifique, F-91405 Orsay, France
| | - Ludmila Frolova
- *Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Jean-Pierre Rousset
- Unité Mixte de Recherche 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay, France; and
- Centre National de la Recherche Scientifique, F-91405 Orsay, France
| | - Lev Kisselev
- *Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
41
|
Vorobjev YN, Kisselev LL. Model of the structure of the eukaryotic ribosomal translation termination complex. Mol Biol 2007. [DOI: 10.1134/s002689330701013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Bogdanov AA, Karpov VL. RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary). BIOCHEMISTRY (MOSCOW) 2006; 71:915-24. [PMID: 16978156 DOI: 10.1134/s0006297906080141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review highlights studies by Lev L. Kisselev and his colleagues on the initial and terminal stages of protein biosynthesis, which cover the period of the last 45 years (1961-2006). They investigated spatial structure of tRNAs, structure and functions of aminoacyl-tRNA-synthetases of higher organisms, and the final step of protein synthesis, termination of translation. L. Kisselev and his team have made three major contributions to these fields of molecular biology; (i) they proposed the hypothesis on the role of anticodon triplet of tRNA in recognition by cognate aminoacyl-tRNA synthetase, which has been experimentally confirmed and is now included in textbooks; (ii) identified primary structures and functions of two eukaryotic protein factors (eRF1 and eRF3) playing a pivotal role in translation termination; (iii) characterized a structural basis for stop codon recognition by eRF1 within the ribosome and discovered the negative structural elements of eRF1, limiting its recognition of one or two stop-codons.
Collapse
Affiliation(s)
- A A Bogdanov
- Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
43
|
Mitkevich VA, Kononenko AV, Petrushanko IY, Yanvarev DV, Makarov AA, Kisselev LL. Termination of translation in eukaryotes is mediated by the quaternary eRF1*eRF3*GTP*Mg2+ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct. Nucleic Acids Res 2006; 34:3947-54. [PMID: 16914449 PMCID: PMC1557817 DOI: 10.1093/nar/gkl549] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (K(d) = 1.9 microM) and this interaction depends only minimally on the Mg(2+) concentration; (ii) GTP binds to eRF3 (K(d) = 0.5 microM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1*eRF3*GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1*eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1*eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1*eRF3*GTP*Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3*eRF1 complex profoundly differ from those of prokaryotic RF3.
Collapse
Affiliation(s)
- Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
- University of Oslo, Center for Medical Studies at Moscow119991, Russia
| | - Artem V. Kononenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
| | - Lev L. Kisselev
- Engelhardt Institute of Molecular Biology, the Russian Academy of SciencesMoscow 119991, Russia
- To whom correspondence should be addressed. Tel: +7495 135 60 09; Fax: +7495 135 14 05; Email
| |
Collapse
|
44
|
Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 2006; 125:1125-36. [PMID: 16777602 DOI: 10.1016/j.cell.2006.04.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/21/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.
Collapse
Affiliation(s)
- Elena Z Alkalaeva
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
45
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
46
|
Dubovaya VI, Kolosov PM, Alkalaeva EZ, Frolova LY, Kisselev LL. Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3. Mol Biol 2006. [DOI: 10.1134/s0026893306020130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 2006; 26:438-47. [PMID: 16382136 PMCID: PMC1346903 DOI: 10.1128/mcb.26.2.438-447.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.
Collapse
Affiliation(s)
- Joe Salas-Marco
- Department of Microbiology, BBRB 432/Box 8, 1530 Third Avenue South, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | | | |
Collapse
|
48
|
Mitkevich VA, Kononenko AV, Oparina NJ, Kolosov PM, Makarov AA, Kisselev LL. Thermal denaturation of class 1 eukaryotic translation termination factor eRF1. Relationship between stability and functional activity of eRF1 mutants. Mol Biol 2006. [DOI: 10.1134/s0026893306010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kolosov P, Frolova L, Seit-Nebi A, Dubovaya V, Kononenko A, Oparina N, Justesen J, Efimov A, Kisselev L. Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res 2005; 33:6418-25. [PMID: 16282590 PMCID: PMC1283522 DOI: 10.1093/nar/gki927] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/08/2005] [Accepted: 10/08/2005] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125-131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.
Collapse
Affiliation(s)
- Petr Kolosov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Ludmila Frolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Alim Seit-Nebi
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Vera Dubovaya
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Artem Kononenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Nina Oparina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Just Justesen
- Institute of Molecular Biology, Aarhus UniversityDenmark
| | - Alexandr Efimov
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Lev Kisselev
- To whom correspondence should be addressed. Tel: +7 095 1356009; Fax: +7 095 1351405;
| |
Collapse
|
50
|
Oparina NJ, Kalinina OV, Gelfand MS, Kisselev LL. Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications. Nucleic Acids Res 2005; 33:5226-34. [PMID: 16162810 PMCID: PMC1214553 DOI: 10.1093/nar/gki841] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Termination of protein synthesis is promoted in ribosomes by proper stop codon discrimination by class 1 polypeptide release factors (RFs). A large set of prokaryotic RFs differing in stop codon specificity, RF1 for UAG and UAA, and RF2 for UGA and UAA, was analyzed by means of a recently developed computational method allowing identification of the specificity-determining positions (SDPs) in families composed of proteins with similar but not identical function. Fifteen SDPs were identified within the RF1/2 superdomain II/IV known to be implicated in stop codon decoding. Three of these SDPs had particularly high scores. Five residues invariant for RF1 and RF2 [invariant amino acid residues (IRs)] were spatially clustered with the highest-scoring SDPs that in turn were located in two zones within the SDP/IR area. Zone 1 (domain II) included PxT and SPF motifs identified earlier by others as ‘discriminator tripeptides’. We suggest that IRs in this zone take part in the recognition of U, the first base of all stop codons. Zone 2 (domain IV) possessed two SDPs with the highest scores not identified earlier. Presumably, they also take part in stop codon binding and discrimination. Elucidation of potential functional role(s) of the newly identified SDP/IR zones requires further experiments.
Collapse
Affiliation(s)
- Nina J. Oparina
- To whom correspondence should be addressed. Tel: +7 095 1351419; Fax: +7 095 1351405;
| | - Olga V. Kalinina
- Department of Bioengineering and Bioinformatics, Moscow State UniversityVorob'evy Gory, 1-73, Moscow 119992, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, Russian Academy of SciencesBolshoi Karetnyi per., 19, Moscow 127994, Russia
- State Scientific Centre GosNIIGenetika1st Dorozhny pr. 1, Moscow, 113545, Russia
| | | |
Collapse
|