1
|
Lu CH, Lee CE, Nakamoto ML, Cui B. Cellular Signaling at the Nano-Bio Interface: Spotlighting Membrane Curvature. Annu Rev Phys Chem 2025; 76:251-277. [PMID: 40258240 PMCID: PMC12043246 DOI: 10.1146/annurev-physchem-090722-021151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
No longer viewed as a passive consequence of cellular activities, membrane curvature-the physical shape of the cell membrane-is now recognized as an active constituent of biological processes. Nanoscale topographies on extracellular matrices or substrate surfaces impart well-defined membrane curvatures on the plasma membrane. This review examines biological events occurring at the nano-bio interface, the physical interface between the cell membrane and surface nanotopography, which activates intracellular signaling by recruiting curvature-sensing proteins. We encompass a wide range of biological processes at the nano-bio interface, including cell adhesion, endocytosis, glycocalyx redistribution, regulation of mechanosensitive ion channels, cell migration, and differentiation. Despite the diversity of processes, we call attention to the critical role of membrane curvature in each process. We particularly highlight studies that elucidate molecular mechanisms involving curvature-sensing proteins with the hope of providing comprehensive insights into this rapidly advancing area of research.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Christina E Lee
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Bull AL, Mosher M, Rodriguez P, Fox S, Hourwitz MJ, Fourkas JT, Losert W. Suppressing collective cell motion with bidirectional guidance cues. Phys Rev E 2025; 111:024409. [PMID: 40103173 DOI: 10.1103/physreve.111.024409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
In natural environments, cells move in the presence of multiple physical and chemical guidance cues. Using a model system for such guided cell migration, Dictyostelium discoideum (Dicty), we investigate how chemical and physical signals compete in guiding the motion of cell groups. In Dicty cells, chemical signals can lead to collective streaming behavior, in which cells follow one another head-to-tail and aggregate into clusters of ∼10^{5} cells. We use experiments and numerical simulations to show that streaming and aggregation can be suppressed by the addition of a physical guidance cue of comparable strength to the chemical signals, parallel nanoridges. The bidirectional character of physical guidance by ridges is a determining factor in the suppression of streaming and aggregation. Thus, combining multiple types of guidance cues is a powerful approach to trigger or explain a broad range of collective cell behaviors.
Collapse
Affiliation(s)
- Abby L Bull
- Institute for Physical Science and Technology, College Park, Maryland 20742, USA
- University of Maryland, College Park, Department of Physics, Maryland 20742, USA
| | - Molly Mosher
- Pomona College, Claremont, California 91711, USA
| | - Paula Rodriguez
- University of Maryland, College Park, Department of Physics, Maryland 20742, USA
| | - Shannon Fox
- University of Maryland, College Park, Department of Physics, Maryland 20742, USA
| | - Matt J Hourwitz
- University of Maryland, College Park, Department of Chemistry and Biochemistry, Maryland 20742, USA
| | - John T Fourkas
- Institute for Physical Science and Technology, College Park, Maryland 20742, USA
- University of Maryland, College Park, Department of Chemistry and Biochemistry, Maryland 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, College Park, Maryland 20742, USA
- University of Maryland, College Park, Department of Physics, Maryland 20742, USA
| |
Collapse
|
3
|
Nakamura K, Kobayashi TJ. Gradient sensing limit of an elongated cell with orientational control. Phys Rev E 2024; 110:064407. [PMID: 39916211 DOI: 10.1103/physreve.110.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/26/2024] [Indexed: 05/07/2025]
Abstract
Eukaryotic cells perform chemotaxis by determining the direction of chemical gradients based on stochastic sensing of concentrations at the cell surface. To examine the efficiency of this process, previous studies have investigated the limit of estimation accuracy for gradients. However, most studies have treated a circular cell shape, and the few considering elongated shapes assume the elongated direction as fixed. This leaves the question of how adaptive regulation of cell shape affects the estimation limit. Dynamics of cell shape during gradient sensing is biologically ubiquitous and can influence the estimation by altering the way the concentration is measured, and cells may strategically regulate their shape to improve estimation accuracy. To address this gap, we investigate the estimation limits in dynamic situations where elongated cells change their orientation adaptively depending on the sensed signal. We approach this problem by analyzing the stationary solution of the Bayesian nonlinear filtering equation. By applying diffusion approximation to the ligand-receptor binding process and the Laplace method for the posterior expectation under a high signal-to-noise ratio regime, we obtain an analytical expression for the estimation limit. This expression indicates that estimation accuracy can be improved by aligning the elongated direction perpendicular to the estimated direction, which is also confirmed by numerical simulations. Our analysis provides a basis for clarifying the interplay between estimation and control in gradient sensing and sheds light on how cells optimize their shape to enhance chemotactic efficiency.
Collapse
Affiliation(s)
- Kento Nakamura
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuya J Kobayashi
- The University of Tokyo, Institute of Industrial Science, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 Japan
| |
Collapse
|
4
|
Wang M, Pang SW. Detecting Nanotopography Induced Changes in Cell Migration Directions Using Oxygen Sensors. BIOSENSORS 2024; 14:389. [PMID: 39194618 DOI: 10.3390/bios14080389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
This study investigates the oxygen (O2) consumption of single cells during changes in their migration direction. This is the first integration of nanotopographies with an O2 biosensor in a platform, allowing the real-time monitoring of O2 consumption in cells and the ability to distinguish cells migrating in the same direction from those migrating in the opposite direction. Advanced nanofabrication technologies were used to pattern nanoholes or nanopillars on grating ridges, and their effects were evaluated using fluorescence microscopy, cell migration assays, and O2 consumption analysis. The results revealed that cells on the nanopillars over grating ridges exhibited an enhanced migration motility and more frequent directional changes. Additionally, these cells showed an increased number of protrusions and filopodia with denser F-actin areas and an increased number of dotted F-actin structures around the nanopillars. Dynamic metabolic responses were also evident, as indicated by the fluorescence intensity peaks of platinum octaethylporphyrin ketone dye, reflecting an increased O2 consumption and higher mitochondria activities, due to the higher energy required in response to directional changes. The study emphasizes the complex interplay between O2 consumption and cell migration directional changes, providing insights into biomaterial science and regenerative medicine. It suggests innovative designs for biomaterials that guide cell migration and metabolism, advocating nanoengineered platforms to harness the intricate relationships between cells and their microenvironments for therapeutic applications.
Collapse
Affiliation(s)
- Muting Wang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Fontelo R, Reis RL, Novoa-Carballal R, Pashkuleva I. Preparation, Properties, and Bioapplications of Block Copolymer Nanopatterns. Adv Healthc Mater 2024; 13:e2301810. [PMID: 37737834 DOI: 10.1002/adhm.202301810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Block copolymer (BCP) self-assembly has emerged as a feasible method for large-scale fabrication with remarkable precision - features that are not common for most of the nanofabrication techniques. In this review, recent advancements in the molecular design of BCP along with state-of-the-art processing methodologies based on microphase separation alone or its combination with different lithography methods are presented. Furthermore, the bioapplications of the generated nanopatterns in the development of protein arrays, cell-selective surfaces, and antibacterial coatings are explored. Finally, the current challenges in the field are outlined and the potential breakthroughs that can be achieved by adopting BCP approaches already applied in the fabrication of electronic devices are discussed.
Collapse
Affiliation(s)
- Raul Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CINBIO, University of Vigo, Campus Universitario de Vigo, Vigo, Pontevedra, 36310, Spain
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Rajeev M, Helms CC. A Study of the Relationship between Polymer Solution Entanglement and Electrospun PCL Fiber Mechanics. Polymers (Basel) 2023; 15:4555. [PMID: 38231998 PMCID: PMC10707761 DOI: 10.3390/polym15234555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Electrospun fibers range in size from nanometers to micrometers and have a multitude of potential applications that depend upon their morphology and mechanics. In this paper, we investigate the effect of polymer solution entanglement on the mechanical properties of individual electrospun polycaprolactone (PCL) fibers. Multiple concentrations of PCL, a biocompatible polymer, were dissolved in a minimum toxicity solvent composed of acetic acid and formic acid. The number of entanglements per polymer (ne) in solution was calculated using the polymer volume fraction, and the resultant electrospun fiber morphology and mechanics were measured. Consistent electrospinning of smooth fibers was achieved for solutions with ne ranging from 3.8 to 4.9, and the corresponding concentration of 13 g/dL to 17 g/dL PCL. The initial modulus of the resultant fibers did not depend upon polymer entanglement. However, the examination of fiber mechanics at higher strains, performed via lateral force atomic force microscopy (AFM), revealed differences among the fibers formed at various concentrations. Average fiber extensibility increased by 35% as the polymer entanglement number increased from a 3.8 ne solution to a 4.9 ne solution. All PCL fibers displayed strain-hardening behavior. On average, the stress increased with strain to the second power. Therefore, the larger extensibilities at higher ne also led to a more than double increase in fiber strength. Our results support the role of polymer entanglement in the mechanical properties of electrospun fiber at large strains.
Collapse
|
7
|
Gu S, Bull A, Perry JK, Huang A, Hourwitz MJ, Abostate M, Fourkas JT, Korchevskiy AA, Wylie AG, Losert W. Excitable systems: A new perspective on the cellular impact of elongate mineral particles. ENVIRONMENTAL RESEARCH 2023; 230:115353. [PMID: 36702187 DOI: 10.1016/j.envres.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/22/2023] [Indexed: 05/30/2023]
Abstract
We investigate how the geometry of elongate mineral particles (EMPs) in contact with cells influences esotaxis, a recently discovered mechanism of texture sensing. Esotaxis is based on cytoskeletal waves and oscillations that are nucleated, shaped, and steered by the texture of the surroundings. We find that all EMPs studied trigger an esotactic response in macrophages, and that this response dominates cytoskeletal activity in these immune cells. In contrast, epithelial cells show little to no esotactic response to the EMPs. These results are consistent with the distinct interactions of both cell types with ridged nanotopographies of dimensions comparable to those of asbestiform EMPs. Our findings raise the question of whether narrow, asbestiform EMPs may also dominate cytoskeletal activity in other types of immune cells that exhibit similar esotactic effects. These findings, together with prior studies of esotaxis, lead us to the hypothesis that asbestiform EMPs suppress the migration of immune cells and activate immune signaling, thereby outcompeting signals that would normally stimulate the immune system in nearby tissue.
Collapse
Affiliation(s)
- Shuyao Gu
- Department of Physics, University of Maryland, College Park, MD 20740, United States
| | - Abby Bull
- Department of Physics, University of Maryland, College Park, MD 20740, United States; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States
| | - Jeneh K Perry
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, MD 21005, United States
| | - Amilee Huang
- Department of Biology, University of Maryland, College Park, MD 20740, United States
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - Mona Abostate
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20740, United States
| | - Andrey A Korchevskiy
- Chemistry & Industrial Hygiene, Inc., 5420 Ward Road, Suite 100, Arvada, CO 80002, United States
| | - Ann G Wylie
- Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland, 8000 Regents Dr., College Park, MD 20742, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD 20740, United States; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740, United States.
| |
Collapse
|
8
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
9
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Yang Q, Miao Y, Banerjee P, Hourwitz MJ, Hu M, Qing Q, Iglesias PA, Fourkas JT, Losert W, Devreotes PN. Nanotopography modulates intracellular excitable systems through cytoskeleton actuation. Proc Natl Acad Sci U S A 2023; 120:e2218906120. [PMID: 37126708 PMCID: PMC10175780 DOI: 10.1073/pnas.2218906120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Cellular sensing of most environmental cues involves receptors that affect a signal-transduction excitable network (STEN), which is coupled to a cytoskeletal excitable network (CEN). We show that the mechanism of sensing of nanoridges is fundamentally different. CEN activity occurs preferentially on nanoridges, whereas STEN activity is constrained between nanoridges. In the absence of STEN, waves disappear, but long-lasting F-actin puncta persist along the ridges. When CEN is suppressed, wave propagation is no longer constrained by nanoridges. A computational model reproduces these experimental observations. Our findings indicate that nanotopography is sensed directly by CEN, whereas STEN is only indirectly affected due to a CEN-STEN feedback loop. These results explain why texture sensing is robust and acts cooperatively with multiple other guidance cues in complex, in vivo microenvironments.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Matt J. Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ85287
- Biodesign Institute, Arizona State University, Tempe, AZ85287
| | - Pablo A. Iglesias
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD21218
| | - John T. Fourkas
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
11
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
12
|
Sung B, Kim DH, Kim MH, Vigolo D. Combined Effect of Matrix Topography and Stiffness on Neutrophil Shape and Motility. Adv Biol (Weinh) 2022; 6:e2101312. [PMID: 35347887 DOI: 10.1002/adbi.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Indexed: 01/27/2023]
Abstract
The crawling behavior of leukocytes is driven by the cell morphology transition, which is a direct manifestation of molecular motor machinery. The topographical anisotropy and mechanical stiffness of the substrates are the main physical cues that affect leukocytes' shape generation and migratory responses. However, their combined effects on the cell morphology and motility have been poorly understood, particularly for neutrophils, which are the fastest reacting leukocytes against infections and wounds. Here, spatiotemporally correlated physical parameters are shown, which determine the neutrophil shape change during migratory processes, in response to surface topography and elasticity. Guided crawling and shape generation of individual neutrophils, activated by a uniform concentration of a chemoattractant, are analyzed by adopting elasticity-tunable micropatterning and live cell imaging techniques. Whole cell-level image analysis is performed based on a planar geometric quantification of cell shape and motility. The findings show that the pattern anisotropy and elastic modulus of the substrate induce synergic effects on the shape anisotropy, deformability, and polarization/alignment of crawling neutrophils. How the morphology-motility relationship is affected by different surface microstructures and stiffness is demonstrated. These results imply that the neutrophil shape-motility correlations can be utilized for controlling the immune cell functions with predefined physical microenvironments.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbH, 66123, Saarbrücken, Germany.,Division of Energy & Environment Technology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
13
|
Bull AL, Campanello L, Hourwitz MJ, Yang Q, Zhao M, Fourkas JT, Losert W. Actin Dynamics as a Multiscale Integrator of Cellular Guidance Cues. Front Cell Dev Biol 2022; 10:873567. [PMID: 35573675 PMCID: PMC9092214 DOI: 10.3389/fcell.2022.873567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Migrating cells must integrate multiple, competing external guidance cues. However, it is not well understood how cells prioritize among these cues. We investigate external cue integration by monitoring the response of wave-like, actin-polymerization dynamics, the driver of cell motility, to combinations of nanotopographies and electric fields in neutrophil-like cells. The electric fields provide a global guidance cue, and approximate conditions at wound sites in vivo. The nanotopographies have dimensions similar to those of collagen fibers, and act as a local esotactic guidance cue. We find that cells prioritize guidance cues, with electric fields dominating long-term motility by introducing a unidirectional bias in the locations at which actin waves nucleate. That bias competes successfully with the wave guidance provided by the bidirectional nanotopographies.
Collapse
Affiliation(s)
- Abby L. Bull
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Leonard Campanello
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Qixin Yang
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
- *Correspondence: Wolfgang Losert,
| |
Collapse
|
14
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
15
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
16
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Microtopographical guidance of macropinocytic signaling patches. Proc Natl Acad Sci U S A 2021; 118:2110281118. [PMID: 34876521 PMCID: PMC8685668 DOI: 10.1073/pnas.2110281118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Morphologies of amoebae and immune cells are highly deformable and dynamic, which facilitates migration in various terrains, as well as ingestion of extracellular solutes and particles. It remains largely unexplored whether and how the underlying membrane protrusions are triggered and guided by the geometry of the surface in contact. In this study, we show that in Dictyostelium, the precursor of a structure called macropinocytic cup, which has been thought to be a constitutive process for the uptake of extracellular fluid, is triggered by micrometer-scale surface features. Imaging analysis and computational simulations demonstrate how the topographical dependence of the self-organizing dynamics supports efficient guidance and capturing of the membrane protrusion and hence movement of an entire cell along such surface features. In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.
Collapse
|
18
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc Natl Acad Sci U S A 2021; 118:2021135118. [PMID: 34031242 DOI: 10.1073/pnas.2021135118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.
Collapse
|
20
|
Le Maout E, Lo Vecchio S, Kumar Korla P, Jinn-Chyuan Sheu J, Riveline D. Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement. Biophys J 2021; 119:1301-1308. [PMID: 33027610 DOI: 10.1016/j.bpj.2020.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Cell motility is essential in a variety of biological phenomena ranging from early development to organ homeostasis and diseases. This phenomenon has mainly been studied and characterized on flat surfaces in vitro, whereas such conditions are rarely observed in vivo. Recently, cell motion in three-dimensional microfabricated channels was reported to be possible, and it was shown that confined cells push on walls. However, rules setting cell directions in this context have not yet been characterized. Here, we show by using assays that ratchetaxis operates in three-dimensional ratchets in fibroblasts and epithelial cancerous cells. Open ratchets rectify cell motion, whereas closed ratchets impose direct cell migration along channels set by the cell orientation at the channel entry point. We also show that nuclei are pressed in constriction zones through mechanisms involving dynamic asymmetries of focal contacts, stress fibers, and intermediate filaments. Interestingly, cells do not pass these constricting zones when they contain a defective keratin fusion protein implicated in squamous cancer. By combining ratchetaxis with chemical gradients, we finally report that cells are sensitive to local asymmetries in confinement and that topological and chemical cues may be encoded differently by cells. Overall, our ratchet channels could mimic small blood vessels in which cells such as circulating tumor cells are confined; cells can probe local asymmetries that determine their entry into tissues and their subsequent direction. Our results shed light on invasion mechanisms in cancer.
Collapse
Affiliation(s)
- Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
21
|
Seo J, Lanara C, Choi JY, Kim J, Cho H, Chang Y, Kang K, Stratakis E, Choi IS. Neuronal Migration on Silicon Microcone Arrays with Different Pitches. Adv Healthc Mater 2021; 10:e2000583. [PMID: 32815647 DOI: 10.1002/adhm.202000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/10/2022]
Abstract
Neuronal migration is a complicated but fundamental process for proper construction and functioning of neural circuits in the brain. Many in vivo studies have suggested the involvement of environmental physical features of a neuron in its migration, but little effort has been made for the in vitro demonstration of topography-driven neuronal migration. This work investigates migratory behaviors of primary hippocampal neurons on a silicon microcone (SiMC) array that presents 14 different pitch domains (pitch: 2.5-7.3 µm). Neuronal migration becomes the maximum at the pitch of around 3 µm, with an upper migration threshold of about 4 µm. Immunocytochemical studies indicate that the speed and direction of migration, as well as its probability of occurrence, are correlated with the morphology of the neuron, which is dictated by the pitch and shape of underlying SiMC structures. In addition to the effects on neuronal migration, the real-time imaging of migrating neurons on the topographical substrate reveals new in vitro modes of neuronal migration, which have not been observed on the conventional flat culture plate, but been suggested by in vivo studies.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Christina Lanara
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Ji Yu Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Young‐Tae Chang
- Department of Chemistry POSTECH Center for Self‐Assembly and Complexity Institute for Basic Science (IBS) Pohang 37673 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry Kyung Hee University Yongin Gyeonggi 17104 Korea
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
- Department of Bio and Brain Engineering KAIST Daejeon 34141 Korea
| |
Collapse
|
22
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Principles of Leukocyte Migration Strategies. Trends Cell Biol 2020; 30:818-832. [DOI: 10.1016/j.tcb.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
|
24
|
Borggaard XG, Pirapaharan DC, Delaissé JM, Søe K. Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products. Int J Mol Sci 2020; 21:ijms21165924. [PMID: 32824687 PMCID: PMC7460581 DOI: 10.3390/ijms21165924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Until recently, it was well-accepted that osteoclasts resorb bone according to the resorption cycle model. This model is based on the assumption that osteoclasts are immobile during bone erosion, allowing the actin ring to be firmly attached and thereby provide an effective seal encircling the resorptive compartment. However, through time-lapse, it was recently documented that osteoclasts making elongated resorption cavities and trenches move across the bone surface while efficiently resorbing bone. However, it was also shown that osteoclasts making rounded cavities and pits indeed resorb bone while they are immobile. Only little is known about what distinguishes these two different resorption modes. This is of both basic and clinical interest because these resorption modes are differently sensitive to drugs and are affected by the gender as well as age of the donor. In the present manuscript we show that: 1. levels of active cathepsin K determine the switch from pit to trench mode; 2. pit and trench mode depend on clathrin-mediated endocytosis; and 3. a mechanism integrating release of resorption products and membrane/integrin recycling is required for prolongation of trench mode. Our study therefore contributes to an improved understanding of the molecular and cellular determinants for the two osteoclastic bone resorption modes.
Collapse
Affiliation(s)
- Xenia G. Borggaard
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence: (X.G.B.); (K.S.); Tel.: +45-65413190 (K.S.)
| | - Dinisha C. Pirapaharan
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Jean-Marie Delaissé
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Kent Søe
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence: (X.G.B.); (K.S.); Tel.: +45-65413190 (K.S.)
| |
Collapse
|
25
|
Caballero D, Kundu SC, Reis RL. The Biophysics of Cell Migration: Biasing Cell Motion with Feynman Ratchets. ACTA ACUST UNITED AC 2020. [DOI: 10.35459/tbp.2020.000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The concepts and frameworks of soft matter physics and the laws of thermodynamics can be used to describe relevant developmental, physiologic, and pathologic events in which directed cell migration is involved, such as in cancer. Typically, this directionality has been associated with the presence of soluble long-range gradients of a chemoattractant, synergizing with many other guidance cues to direct the motion of cells. In particular, physical inputs have been shown to strongly influence cell locomotion. However, this type of cue has been less explored despite the importance in biology. In this paper, we describe recent in vitro works at the interface between physics and biology, showing how the motion of cells can be directed by using gradient-free environments with repeated local asymmetries. This rectification of cell migration, from random to directed, is a process reminiscent of the Feynman ratchet; therefore, this framework can be used to explain the mechanism behind directed cell motion.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
26
|
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Semin Cell Dev Biol 2020; 112:8-15. [PMID: 32563679 DOI: 10.1016/j.semcdb.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Osteoclasts, the multinucleated cells responsible for bone resorption, have an enormous destructive power which demands to be kept under tight control. Accordingly, the identification of molecular signals directing osteoclastogenesis and switching on their resorptive activity have received much attention. Mandatory factors were identified, but a very essential aspect of the control mechanism of osteoclastic resorption, i.e. its spatial control, remains poorly understood. Under physiological conditions, multinucleated osteoclasts are only detected on the bone surface, while their mono-nucleated precursors are only in the bone marrow. How are pre-osteoclasts targeted to the bone surface? How is their progressive differentiation coordinated with their approach to the bone surface sites to be resorbed, which is where they finally fuse? Here we review the information on the bone marrow distribution of differentiating pre-osteoclasts relative to the position of the mandatory factors for their differentiation as well as relative to physical entities that may affect their access to the remodelling sites. This info allows recognizing an "osteoclastogenesis route" through the bone marrow and leading to the coincident fusion/resorption site - but also points to what still remains to be clarified regarding this route and regarding the restriction of fusion at the resorption site. Finally, we discuss the mechanism responsible for the start of resorption and its spatial extension. This review underscores that fully understanding the control of bone resorption requires to consider it in both space and time - which demands taking into account the context of bone tissue.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Xenia Goldberg Borggaard
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
27
|
Lo Vecchio S, Thiagarajan R, Caballero D, Vigon V, Navoret L, Voituriez R, Riveline D. Collective Dynamics of Focal Adhesions Regulate Direction of Cell Motion. Cell Syst 2020; 10:535-542.e4. [DOI: 10.1016/j.cels.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023]
|
28
|
Jiang J, Dhakal NP, Guo Y, Andre C, Thompson L, Skalli O, Peng C. Controlled Dynamics of Neural Tumor Cells by Templated Liquid Crystalline Polymer Networks. Adv Healthc Mater 2020; 9:e2000487. [PMID: 32378330 DOI: 10.1002/adhm.202000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Indexed: 01/25/2023]
Abstract
The ability to control the alignment and organization of cell populations has great potential for tissue engineering and regenerative medicine. A variety of approaches such as nano/microtopographical patterning, mechanical loading, and nanocomposite synthesis have been developed to engineer scaffolds able to control cellular properties and behaviors. In this work, a patterned liquid crystal polymer network (LCN) film is synthesized by using a nematic liquid crystal template in which the molecular orientations are predesigned by photopatterning technique. Various configurations of polymer networks such as linear and circular patterns are created. When neural tumor cells are plated onto the templated LCN films, the cell alignment, migration, and proliferation are directed in both linear and curvilinear fashions following the pattern of the aligned polymer chains. A complex LCN pattern with zigzag geometry is also fabricated and found to be capable of controlling cell alignment and collective cellular organization. The demonstrated control of cell dynamics and organization by LCN films with various molecular alignments opens new opportunities to design scaffolds to control cultured cell organization in a manner resembling that found in tissues and to develop novel advanced materials for nerve repair, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Jinghua Jiang
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Netra Prasad Dhakal
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Yubing Guo
- Advanced Materials and Liquid Crystal InstituteKent State University Kent OH 44242 USA
| | - Christian Andre
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Lauren Thompson
- Department of BiologyThe University of Memphis Memphis TN 38152 USA
| | - Omar Skalli
- Department of BiologyThe University of Memphis Memphis TN 38152 USA
| | - Chenhui Peng
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| |
Collapse
|
29
|
Abstract
Cytokinesis-the division of a cell into two daughter cells-is a key step in cell growth and proliferation. It typically occurs in synchrony with the cell cycle to ensure that a complete copy of the genetic information is passed on to the next generation of daughter cells. In animal cells, cytokinesis commonly relies on an actomyosin contractile ring that drives equatorial furrowing and separation into the two daughter cells. However, also contractile ring-independent forms of cell division are known that depend on substrate-mediated traction forces. Here, we report evidence of an as yet unknown type of contractile ring-independent cytokinesis that we termed wave-mediated cytofission. It is driven by self-organized cortical actin waves that travel across the ventral membrane of oversized, multinucleated Dictyostelium discoideum cells. Upon collision with the cell border, waves may initiate the formation of protrusions that elongate and eventually pinch off to form separate daughter cells. They are composed of a stable elongated wave segment that is enclosed by a cell membrane and moves in a highly persistent fashion. We rationalize our observations based on a noisy excitable reaction-diffusion model in combination with a dynamic phase field to account for the cell shape and demonstrate that daughter cells emerging from wave-mediated cytofission exhibit a well-controlled size.
Collapse
|
30
|
Schakenraad K, Ravazzano L, Sarkar N, Wondergem JAJ, Merks RMH, Giomi L. Topotaxis of active Brownian particles. Phys Rev E 2020; 101:032602. [PMID: 32289917 DOI: 10.1103/physreve.101.032602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/26/2020] [Indexed: 06/11/2023]
Abstract
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, has been extensively studied for topographical gradients at the subcellular scale, but can also occur in the presence of a spatially varying density of cell-sized features. Such a large-scale topotaxis has recently been observed in highly motile cells that persistently crawl within an array of obstacles with smoothly varying lattice spacing. We introduce a toy model of large-scale topotaxis, based on active Brownian particles. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles' persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive large-scale topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
Collapse
Affiliation(s)
- Koen Schakenraad
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Linda Ravazzano
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Niladri Sarkar
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
31
|
Lee RM, Campanello L, Hourwitz MJ, Alvarez P, Omidvar A, Fourkas JT, Losert W. Quantifying topography-guided actin dynamics across scales using optical flow. Mol Biol Cell 2020; 31:1753-1764. [PMID: 32023172 PMCID: PMC7521856 DOI: 10.1091/mbc.e19-11-0614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton is an essential component of many mechanotransduction and cellular force generation pathways. Here we use periodic surface topographies with feature sizes comparable to those of in vivo collagen fibers to measure and compare actin dynamics for two representative cell types that have markedly different migratory modes and physiological purposes: slowly migrating epithelial MCF10A cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to measure the directions of actin waves at the submicron scale. Clustering the optical flow into regions that move in similar directions enables micron-scale measurements of actin-wave speed and direction. Although the speed and morphology of actin waves differ between MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both cell types at the micron and submicron scales.
Collapse
Affiliation(s)
- Rachel M Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Phillip Alvarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Ava Omidvar
- Department of Physics, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
32
|
Engineered topographical structure to control spatial cell density using cell migration. Biomed Microdevices 2019; 21:98. [PMID: 31729612 DOI: 10.1007/s10544-019-0447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Control of the spatial distribution of various cell types is required to construct functional tissues. Here, we report a simple topographical structure changed the spatial cell density. A concave curved boundary was designed, which allowed the spatial descent moving of cells and the change in spatial distributions of co-cultured cells. We utilized the difference in cell motility between myoblast cells (C2C12) and neuronal cells (PC12) to demonstrate the feasibility of spontaneous change in spatial cell density. Without the curved boundaries, high motility cells (C2C12) did not migrate to the adjacent area, which resulted in a slight temporal change (< 15%) in the spatial cell distribution. In contrast, with the curved boundaries, the cell density of the high motility cells in the groove to those cells on the ridge showed an increase exceeding 45%. On the other hand, the temporal change in the spatial cell distribution of low motility cells (PC12) was below 15% with or without the curved boundaries. In addition, as groove width increased, both cells displayed more initially gathering in groove. Importantly, these cell-type dependent results were also maintained under co-culture conditions. Our results suggest that designing topographical interfaces changes spatial cell density without any manipulation and is useful for multi-cellular constructs.
Collapse
|
33
|
Chen S, Hourwitz MJ, Campanello L, Fourkas JT, Losert W, Parent CA. Actin Cytoskeleton and Focal Adhesions Regulate the Biased Migration of Breast Cancer Cells on Nanoscale Asymmetric Sawteeth. ACS NANO 2019; 13:1454-1468. [PMID: 30707556 PMCID: PMC7159974 DOI: 10.1021/acsnano.8b07140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical guidance from the underlying matrix is a key regulator of cancer invasion and metastasis. We explore the effects of surface topography on the migration phenotype of multiple breast cancer cell lines using aligned nanoscale ridges and asymmetric sawtooth structures. Both benign and metastatic breast cancer cells preferentially move parallel to nanoridges, with enhanced speeds compared to flat surfaces. In contrast, asymmetric sawtooth structures unidirectionally bias the movement of breast cancer cells in a cell-type-dependent manner. Quantitative analysis shows that the level of bias in cell migration increases when cells move with higher speeds or with higher directional persistence. Live-cell imaging studies further reveal that actin polymerization waves are unidirectionally guided by the sawteeth in the same direction as the cell motion. High-resolution fluorescence imaging and scanning electron microscopy studies reveal that two breast cancer cell lines with opposite migrational profiles exhibit profoundly different cell cortical plasticity and focal adhesion patterns. These results suggest that the overall migration response of cancer cells to surface topography is directly related to the underlying cytoskeletal architectures and dynamics, which are regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leonard Campanello
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Kamprad N, Witt H, Schröder M, Kreis CT, Bäumchen O, Janshoff A, Tarantola M. Adhesion strategies of Dictyostelium discoideum- a force spectroscopy study. NANOSCALE 2018; 10:22504-22519. [PMID: 30480299 DOI: 10.1039/c8nr07107a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.
Collapse
Affiliation(s)
- Nadine Kamprad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Influence of multiscale and curved structures on the migration of stem cells. Biointerphases 2018; 13:06D408. [DOI: 10.1116/1.5042747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Ketchum CM, Sun X, Suberi A, Fourkas JT, Song W, Upadhyaya A. Subcellular topography modulates actin dynamics and signaling in B-cells. Mol Biol Cell 2018; 29:1732-1742. [PMID: 29771636 PMCID: PMC6080708 DOI: 10.1091/mbc.e17-06-0422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
B-cell signaling activation is most effectively triggered by the binding of B-cell receptors (BCRs) to membrane-bound antigens. In vivo, B-cells encounter antigen on antigen-presenting cells (APC), which possess complex surfaces with convoluted topographies, a fluid membrane and deformable cell bodies. However, whether and how the physical properties of antigen presentation affect B-cell activation is not well understood. Here we use nanotopographic surfaces that allow systematic variation of geometric parameters to show that surface features on a subcellular scale influence B-cell signaling and actin dynamics. Parallel nanoridges with spacings of 3 microns or greater induce actin intensity oscillations on the ventral cell surface. Nanotopography-induced actin dynamics requires BCR signaling, actin polymerization, and myosin contractility. The topography of the stimulatory surface also modulates the distribution of BCR clusters in activated B-cells. Finally, B-cells stimulated on nanopatterned surfaces exhibit intracellular calcium oscillations with frequencies that depend on topography. Our results point to the importance of physical aspects of ligand presentation, in particular, nanotopography for B-cell activation and antigen gathering.
Collapse
Affiliation(s)
| | - Xiaoyu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Alexandra Suberi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742.,Maryland NanoCenter, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD 20742.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
37
|
Zeng Y, Wong ST, Teo SK, Leong KW, Chiam KH, Yim EKF. Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature. Sci Rep 2018; 8:6444. [PMID: 29691432 PMCID: PMC5915387 DOI: 10.1038/s41598-018-24123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
The topography of the extracellular substrate provides physical cues to elicit specific downstream biophysical and biochemical effects in cells. An example of such a topographical substrate is periodic gratings, where the dimensions of the periodic gratings influence cell morphology and directs cell differentiation. We first develop a novel sample preparation technique using Spurr's resin to allow for cross-sectional transmission electron microscopy imaging of cells on grating grooves, and observed that the plasma membrane on the basal surface of these cells can deform and bend into grooves between the gratings. We postulate that such membrane bending is an important first step in eliciting downstream effects. Thus, we use a combination of image analysis and mathematical modeling to explain the extent of bending of basal membrane into grooves. We show that the extent to which the basal membrane bends into grooves depends on both groove width and angle of the grating ridge. Our model predicts that the basal membrane will bend into grooves when they are wider than 1.9 µm in width. The existence of such a threshold may provide an explanation for how the width of periodic gratings may bring about cellular downstream effects, such as cell proliferation or differentiation.
Collapse
Affiliation(s)
- Yukai Zeng
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Sum Thai Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Soo Kng Teo
- Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Keng-Hwee Chiam
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore.
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore. .,Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
38
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
39
|
Sun X, Hourwitz MJ, Baker EM, Schmidt BUS, Losert W, Fourkas JT. Replication of biocompatible, nanotopographic surfaces. Sci Rep 2018; 8:564. [PMID: 29330498 PMCID: PMC5766624 DOI: 10.1038/s41598-017-19008-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/20/2017] [Indexed: 01/16/2023] Open
Abstract
The ability of cells to sense and respond to nanotopography is being implicated as a key element in many physiological processes such as cell differentiation, immune response, and wound healing, as well as in pathologies such as cancer metastasis. To understand how nanotopography affects cellular behaviors, new techniques are required for the mass production of biocompatible, rigid nanotopographic surfaces. Here we introduce a method for the rapid and reproducible production of biocompatible, rigid, acrylic nanotopographic surfaces, and for the functionalization of the surfaces with adhesion-promoting molecules for cell experiments. The replica surfaces exhibit high optical transparency, which is advantageous for high-resolution, live-cell imaging. As a representative application, we demonstrate that epithelial cells form focal adhesions on surfaces composed of nanoscale ridges and grooves, and that the focal adhesions prefer to localize on the nanoridges. We further demonstrate that both F-actin and microtubules align along the nanoridges, but only F-actin aligns along the nanogrooves. The mass production of nanotopographic surfaces opens the door to the investigation of the effect of physical cues on the spatial distribution and the dynamics of intracellular proteins, and to the study of the mechanism of mechanosensing in processes such as cell migration, phagocytosis, division, and differentiation.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eleni M Baker
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - B U Sebastian Schmidt
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA. .,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA.
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA. .,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA. .,Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD, 20742, USA. .,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
40
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
41
|
Azatov M, Sun X, Suberi A, Fourkas JT, Upadhyaya A. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts. Phys Biol 2017. [PMID: 28635615 DOI: 10.1088/1478-3975/aa7acc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.
Collapse
Affiliation(s)
- Mikheil Azatov
- Department of Physics, University of Maryland, College Park, MD 20742, United States of America
| | | | | | | | | |
Collapse
|
42
|
Abstract
Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Søe K, Delaissé JM. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing. J Cell Sci 2017; 130:2026-2035. [PMID: 28473470 PMCID: PMC5482982 DOI: 10.1242/jcs.202036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022] Open
Abstract
Bone erosion both demands that the osteoclast resorbs bone matrix and moves over the bone surface. It is widely accepted that these two activities alternate, because they are considered mutually exclusive since resorption is believed to involve an immobilizing seal to the bone surface. However, clear real-time observations are still lacking. Herein, we used specific markers and time-lapse to monitor live the spatiotemporal generation of resorption events by osteoclasts cultured on bone slices. In accordance with the current view, we found alternating episodes of resorption and migration resulting in the formation of clusters of round pits. However, very importantly, we also demonstrate that more than half of the osteoclasts moved laterally, displacing their extracellular bone-resorbing compartment over the bone surface without disassembling and reconstructing it, thereby generating long trenches. Compared to pit events, trench events show properties enabling higher aggressiveness: long duration (days), high erosion speed (two times faster) and long-distance erosion (several 100 µm). Simultaneous resorption and migration reflect a unique situation where epithelial/secretory and mesenchymal/migratory characteristics are integrated into just one cell phenotype, and deserves attention in future research. Summary: Bone erosion requires that osteoclasts both resorb and migrate. According to common belief, these activities are mutually exclusive and alternate. Paradoxically, we show here simultaneous resorption and migration.
Collapse
Affiliation(s)
- Kent Søe
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Jean-Marie Delaissé
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
44
|
Tomba C, Braïni C, Bugnicourt G, Cohen F, Friedrich BM, Gov NS, Villard C. Geometrical Determinants of Neuronal Actin Waves. Front Cell Neurosci 2017; 11:86. [PMID: 28424590 PMCID: PMC5372798 DOI: 10.3389/fncel.2017.00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.
Collapse
Affiliation(s)
- Caterina Tomba
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut NéelGrenoble, France.,Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Laboratoire des Technologies de la Microélectronique, CEA-LETIGrenoble, France
| | - Céline Braïni
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut NéelGrenoble, France.,Laboratoire PhysicoChimie Curie, Institut Curie, Pierre-Gilles de Gennes Institute for Microfluidics, CNRS, PSL Research UniversityParis, France
| | - Ghislain Bugnicourt
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut NéelGrenoble, France
| | - Floriane Cohen
- Laboratoire PhysicoChimie Curie, Institut Curie, Pierre-Gilles de Gennes Institute for Microfluidics, CNRS, PSL Research UniversityParis, France
| | - Benjamin M Friedrich
- Biological Algorithms Group, Center for Advancing Electronics Dresden, Technische Universität DresdenDresden, Germany
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of ScienceRehovot, Israel
| | - Catherine Villard
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut NéelGrenoble, France.,Laboratoire PhysicoChimie Curie, Institut Curie, Pierre-Gilles de Gennes Institute for Microfluidics, CNRS, PSL Research UniversityParis, France
| |
Collapse
|
45
|
Ramirez-San Juan GR, Oakes PW, Gardel ML. Contact guidance requires spatial control of leading-edge protrusion. Mol Biol Cell 2017; 28:1043-1053. [PMID: 28228548 PMCID: PMC5391181 DOI: 10.1091/mbc.e16-11-0769] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Subcellular mechanisms underlying contact guidance are incompletely understood. Use of micoropatterned substrates and quantitative analysis of protrusion dynamics shows that contact guidance is mediated predominately though spatial regulation of protrusions and mediated through myosin II– and Rac1-mediated feedbacks. In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not understood. Here we pattern linear fibronectin features to mimic fibrillar ECM and elucidate the mechanisms of contact guidance. By systematically varying patterned line spacing, we show that a 2-μm spacing is sufficient to promote cell shape elongation and migration parallel to the ECM, or contact guidance. As line spacing is increased, contact guidance increases without affecting migration speed. To elucidate the subcellular mechanisms of contact guidance, we analyze quantitatively protrusion dynamics and find that the structured ECM orients cellular protrusions parallel to the ECM. This spatial organization of protrusion relies on myosin II contractility, and feedback between adhesion and Rac-mediated protrusive activity, such that we find Arp2/3 inhibition can promote contact guidance. Together our data support a model for contact guidance in which the ECM enforces spatial constraints on the lamellipodia that result in cell shape elongation and enforce migration direction.
Collapse
Affiliation(s)
- G R Ramirez-San Juan
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| | - P W Oakes
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637.,Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627.,Department of Biology, University of Rochester, Rochester, NY 14627
| | - M L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 .,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
46
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
47
|
Caballero D, Katuri J, Samitier J, Sánchez S. Motion in microfluidic ratchets. LAB ON A CHIP 2016; 16:4477-4481. [PMID: 27759754 DOI: 10.1039/c6lc90107g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ubiquitous random motion of mesoscopic active particles, such as cells, can be "rectified" or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.
Collapse
Affiliation(s)
- D Caballero
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain. and Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain and Department of Engineering: Electronics, University of Barcelona, 08028 Barcelona, Spain
| | - J Katuri
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain. and Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart, Germany.
| | - J Samitier
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain. and Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain and Department of Engineering: Electronics, University of Barcelona, 08028 Barcelona, Spain
| | - S Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain. and Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart, Germany. and Catalan Institute for Research and Advanced Studies (ICREA), Psg. Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
49
|
Caballero D, Comelles J, Piel M, Voituriez R, Riveline D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol 2016; 25:815-827. [PMID: 26615123 DOI: 10.1016/j.tcb.2015.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Bio6, F-75005, Paris, France.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France.
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.
| |
Collapse
|
50
|
Fukujin F, Nakajima A, Shimada N, Sawai S. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell-substrate adhesion. J R Soc Interface 2016; 13:20160233. [PMID: 27358278 PMCID: PMC4938087 DOI: 10.1098/rsif.2016.0233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration.
Collapse
Affiliation(s)
- Fumihito Fukujin
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Akihiko Nakajima
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Nao Shimada
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|