1
|
Kamerkar SC, Liu A, Higgs HN. Mitochondrial fission - changing perspectives for future progress. J Cell Sci 2025; 138:jcs263640. [PMID: 40104946 DOI: 10.1242/jcs.263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial fission is important for many aspects of cellular homeostasis, including mitochondrial distribution, stress response, mitophagy, mitochondrially derived vesicle production and metabolic regulation. Several decades of research has revealed much about fission, including identification of a key division protein - the dynamin Drp1 (also known as DNM1L) - receptors for Drp1 on the outer mitochondrial membrane (OMM), including Mff, MiD49 and MiD51 (also known as MIEF2 and MIEF1, respectively) and Fis1, and important Drp1 regulators, including post-translational modifications, actin filaments and the phospholipid cardiolipin. In addition, it is now appreciated that other organelles, including the endoplasmic reticulum, lysosomes and Golgi-derived vesicles, can participate in mitochondrial fission. However, a more holistic understanding of the process is lacking. In this Review, we address three questions that highlight knowledge gaps. First, how do we quantify mitochondrial fission? Second, how does the inner mitochondrial membrane (IMM) divide? Third, how many 'types' of fission exist? We also introduce a model that integrates multiple regulatory factors in mammalian mitochondrial fission. In this model, three possible pathways (cellular stimulation, metabolic switching or mitochondrial dysfunction) independently initiate Drp1 recruitment at the fission site, followed by a shared second step in which Mff mediates subsequent assembly of a contractile Drp1 ring. We conclude by discussing some perplexing issues in fission regulation, including the effects of Drp1 phosphorylation and the multiple Drp1 isoforms.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Guo JY, Xu K, Wang XH, Li XM, Ku YP, Zeng L, Wan B, Yang GY, Wang J, Chu BB, Pan JJ, Hao WB. Host factor DIAPH1 regulates pseudorabivirus replication by modulating the dynamics of cytoskeleton. Int J Biol Macromol 2025; 298:140112. [PMID: 39842589 DOI: 10.1016/j.ijbiomac.2025.140112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection. Here, we showed that sus scrofa DIAPH1 was involved in the regulation of cytoskeletal dynamics during PRV replication. Firstly, we found that DIAPH1 showed significant changes in the expression level and intracellular localization during PRV infection of PK-15 cells. Next, inhibition of DIAPH1 by RNA interference or small molecular inhibitor SMIFH2 was found to diminish the outcome of PRV infection. Besides, DIAPH1 partially co-localized with actin and tubulin in PRV-infected cells. Cross-talk occurred between microfilaments and microfilaments, which also had an influence on the intracellular localization of DIAPH1. What's more, inhibition of DIAPH1 induced the reorganization of microfilament and the stability of microtubule. These results suggested that DIAPH1 regulated PRV infection by remodeling microfilament and microtubule cytoskeletal dynamics.
Collapse
Affiliation(s)
- Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Yan-Pei Ku
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Kahlert S, Nossol C, Krüger M, Kopp S, Grimm D, Wuest SL, Rothkötter HJ. Dynamic Mechanical Load as a Trigger for Growth and Proliferation in Porcine Epithelial Cells. Biomolecules 2025; 15:455. [PMID: 40149991 PMCID: PMC11940287 DOI: 10.3390/biom15030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The impact of gravity is a basic force determining our existence on Earth. Changes in orientation with respect to the gravity vector trigger alternating mechanical forces on organisms, organs, and cells. In the intestines of mammals, epithelial cells are continuously exposed to changed orientations to gravity. In this study, we employed dynamic cultivation systems to mimic the load changes and the resulting mechanical forces. The morphological and functional response of non-cancer-derived porcine epithelial cell lines IPEC-1 and IPEC-J2 was analyzed. We found that dynamic growth conditions affect morphology in the enterocyte model IPEC-1 but not in IPEC-J2. Changes in IPEC-1 were accompanied by modifications of the distribution and structure of the F-actin cytoskeleton rather than the amount. The structure of the apical brush border and the tight junction system seemed to be largely unaffected; however, a robust decrease in transepithelial resistance was found in IPEC-1 and partially in IPEC-J2. We further detected an increase in Ki67, pointing towards accelerated proliferation. In line with this finding, we detected a doubling of cellular mitochondrial respiration, which was not linked to a general increase in the respiratory chain capacity. Dynamic cultivation of confluent epithelial cell layers did not evoke signs of senescence. In summary, we identified the mechanical load cycle as a relevant parameter for the modulation of the morphological structure and physiological behaviour of intestinal epithelial cells.
Collapse
Affiliation(s)
- Stefan Kahlert
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
| | - Constanze Nossol
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
| | - Marcus Krüger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Core Facility Tissue Engineering, Institut für Chemie, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, HØegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Obermattweg 9, 6052 Hergiswil, NW, Switzerland
| | - Hermann-Josef Rothkötter
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
| |
Collapse
|
4
|
Peralta M, Dupas A, Larnicol A, Lefebvre O, Goswami R, Stemmelen T, Molitor A, Carapito R, Girardo S, Osmani N, Goetz JG. Endothelial calcium firing mediates the extravasation of metastatic tumor cells. iScience 2025; 28:111690. [PMID: 39898056 PMCID: PMC11787530 DOI: 10.1016/j.isci.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Metastatic dissemination is driven by genetic, biochemical, and biophysical cues that favor the distant colonization of organs and the formation of life-threatening secondary tumors. We have previously demonstrated that endothelial cells (ECs) actively remodel during extravasation by enwrapping arrested tumor cells (TCs) and extruding them from the vascular lumen while maintaining perfusion. In this work, we dissect the cellular and molecular mechanisms driving endothelial remodeling. Using high-resolution intravital imaging in zebrafish embryos, we demonstrate that the actomyosin network of ECs controls tissue remodeling and subsequent TC extravasation. Furthermore, we uncovered that this cytoskeletal remodeling is driven by altered endothelial-calcium (Ca2+) signaling caused by arrested TCs. Accordingly, we demonstrated that the inhibition of voltage-dependent calcium L-type channels impairs extravasation. Lastly, we identified P2X4, TRP, and Piezo1 mechano-gated Ca2+ channels as key mediators of the process. These results further highlight the central role of endothelial remodeling during the extravasation of TCs and open avenues for successful therapeutic targeting.
Collapse
Affiliation(s)
- Marina Peralta
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tristan Stemmelen
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Raphael Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky G. Goetz
- Tumor Biomechanics lab, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
5
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
6
|
Albaghdadi AJH, Xu W, Kan FWK. An Immune-Independent Mode of Action of Tacrolimus in Promoting Human Extravillous Trophoblast Migration Involves Intracellular Calcium Release and F-Actin Cytoskeletal Reorganization. Int J Mol Sci 2024; 25:12090. [PMID: 39596157 PMCID: PMC11593602 DOI: 10.3390/ijms252212090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action of TAC in promoting implantation has yet to be elucidated, the integral association of its binding protein FKBP12 with the inositol triphosphate receptor (IP3R) regulated intracellular calcium [Ca2+]i channels in the endoplasmic reticulum (ER), suggesting that TAC can mediate its action through ER release of [Ca2+]i. Using the immortalized human-derived first-trimester extravillous trophoblast cells HTR8/SVneo, our data indicated that TAC can increase [Ca2+]I, as measured by fluorescent live-cell imaging using Fluo-4. Concomitantly, the treatment of HTR8/SVneo with TAC resulted in a major dynamic reorganization in the actin cytoskeleton, favoring a predominant distribution of cortical F-actin networks in these trophoblasts. Notably, the findings that TAC was unable to recover [Ca2+]i in the presence of the IP3R inhibitor 2-APB indicate that this receptor may play a crucial role in the mechanism of action of TAC. Taken together, our results suggest that TAC has the potential to influence trophoblast migration through downstream [Ca2+]i-mediated intracellular events and mechanisms involved in trophoblast migration, such as F-actin redistribution. Further research into the mono-therapeutic use of TAC in promoting trophoblast growth and differentiation in clinical settings of assisted reproduction is warranted.
Collapse
Affiliation(s)
| | | | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.J.H.A.); (W.X.)
| |
Collapse
|
7
|
Ulferts S, Grosse R. SUN2 mediates calcium-triggered nuclear actin polymerization to cluster active RNA polymerase II. EMBO Rep 2024; 25:4728-4748. [PMID: 39317734 PMCID: PMC11549082 DOI: 10.1038/s44319-024-00274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024] Open
Abstract
The nucleoskeleton is essential for nuclear architecture as well as genome integrity and gene expression. In addition to lamins, titin or spectrins, dynamic actin filament polymerization has emerged as a potential intranuclear structural element but its functions are less well explored. Here we found that calcium elevations trigger rapid nuclear actin assembly requiring the nuclear membrane protein SUN2 independently of its function as a component of the LINC complex. Instead, SUN2 colocalized and associated with the formin and actin nucleator INF2 in the nuclear envelope in a calcium-regulated manner. Moreover, SUN2 is required for active RNA polymerase II (RNA Pol II) clustering in response to calcium elevations. Thus, our data uncover a SUN2-formin module linking the nuclear envelope to intranuclear actin assembly to promote signal-dependent spatial reorganization of active RNA Pol II.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Fran MAG, Leaño DMG, de Borja JAD, Uy CJT, Andresan AAR, Sacdalan DL, Garcia RL. Atypical Exon 2/3 Mutants G48C, Q43K, and E37K Present Oncogenic Phenotypes Distinct from Characterized NRAS Variants. Cells 2024; 13:1691. [PMID: 39451209 PMCID: PMC11506670 DOI: 10.3390/cells13201691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
NRAS belongs to the RAS family of GTPases. In colorectal cancer (CRC), NRAS mutations are rare compared to KRAS, but may lead to worse outcomes. We report the functional characterization of the novel NRAS mutants-G48C, Q43K, and E37K-identified in Filipino young-onset CRC patients. Unlike previously characterized NRAS mutants with no apparent effects on cell proliferation, these mutants enhanced proliferation of both HCT116 and NIH3T3 cells. This was confirmed in 3D spheroid assays to mimic the spatial organization of cells. G48C and E37K showed apoptosis resistance in both cell lines, and Q43K showed resistance in HCT116 cells. All three showed no effect on cellular migration in NIH3T3, but G48C enhanced the migration rate of HCT116 cells. Actin staining of NIH3T3 cells expressing the mutants showed a shrunken cytoplasm and transient structures associated with motility and invasiveness. Docking simulations show that GDP is only able to bind fully within the binding pocket of wild-type NRAS, but not in the mutants. Further, G48C, Q43K, and E37K all have less negative ΔG values, indicating a weaker GDP-binding affinity compared to wild-type NRAS. Taken together, the results suggest that oncogenic readouts of NRAS mutants are codon- and mutation-specific, with potential repercussions on the aggressiveness, resistance, and therapeutic response.
Collapse
Affiliation(s)
- Mark Anthony G. Fran
- The Graduate School, Thomas Aquinas Research Complex, University of Santo Tomas, España, Manila 1008, Philippines;
| | - Dominique Mickai G. Leaño
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
| | - James Allen D. de Borja
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
| | - Charles John T. Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
| | - Aleq Adrianne R. Andresan
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
| | - Dennis L. Sacdalan
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
- Division of Medical Oncology, Department of Medicine, University of the Philippines, Manila City 1000, Philippines
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines; (D.M.G.L.); (J.A.D.d.B.); (C.J.T.U.); (A.A.R.A.); (D.L.S.)
| |
Collapse
|
9
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
10
|
Braidotti N, Demontis G, Conti M, Andolfi L, Ciubotaru CD, Sbaizero O, Cojoc D. The local mechanosensitive response of primary cardiac fibroblasts is influenced by the microenvironment mechanics. Sci Rep 2024; 14:10365. [PMID: 38710778 PMCID: PMC11074268 DOI: 10.1038/s41598-024-60685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Giorgia Demontis
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Martina Conti
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Catalin Dacian Ciubotaru
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Dan Cojoc
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
11
|
Sepaniac LA, Davenport NR, Bement WM. Bring the pain: wounding reveals a transition from cortical excitability to epithelial excitability in Xenopus embryos. Front Cell Dev Biol 2024; 11:1295569. [PMID: 38456169 PMCID: PMC10918254 DOI: 10.3389/fcell.2023.1295569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
The cell cortex plays many critical roles, including interpreting and responding to internal and external signals. One behavior which supports a cell's ability to respond to both internal and externally-derived signaling is cortical excitability, wherein coupled positive and negative feedback loops generate waves of actin polymerization and depolymerization at the cortex. Cortical excitability is a highly conserved behavior, having been demonstrated in many cell types and organisms. One system well-suited to studying cortical excitability is Xenopus laevis, in which cortical excitability is easily monitored for many hours after fertilization. Indeed, recent investigations using X. laevis have furthered our understanding of the circuitry underlying cortical excitability and how it contributes to cytokinesis. Here, we describe the impact of wounding, which represents both a chemical and a physical signal, on cortical excitability. In early embryos (zygotes to early blastulae), we find that wounding results in a transient cessation ("freezing") of wave propagation followed by transport of frozen waves toward the wound site. We also find that wounding near cell-cell junctions results in the formation of an F-actin (actin filament)-based structure that pulls the junction toward the wound; at least part of this structure is based on frozen waves. In later embryos (late blastulae to gastrulae), we find that cortical excitability diminishes and is progressively replaced by epithelial excitability, a process in which wounded cells communicate with other cells via wave-like increases of calcium and apical F-actin. While the F-actin waves closely follow the calcium waves in space and time, under some conditions the actin wave can be uncoupled from the calcium wave, suggesting that they may be independently regulated by a common upstream signal. We conclude that as cortical excitability disappears from the level of the individual cell within the embryo, it is replaced by excitability at the level of the embryonic epithelium itself.
Collapse
Affiliation(s)
- Leslie A. Sepaniac
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas R. Davenport
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
13
|
Kasahara K, Muramatsu J, Kurashina Y, Miura S, Miyata S, Onoe H. Spatiotemporal single-cell tracking analysis in 3D tissues to reveal heterogeneous cellular response to mechanical stimuli. SCIENCE ADVANCES 2023; 9:eadf9917. [PMID: 37831766 PMCID: PMC10575577 DOI: 10.1126/sciadv.adf9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Mechanical stimuli have been recognized as important for tissue maturation, homeostasis and constructing engineered three-dimensional (3D) tissues. However, we know little about the cellular mechanical response in tissues that could be considerably heterogeneous and spatiotemporally dynamic due to the complex structure of tissues. Here, we report a spatiotemporal single-cell tracking analysis of in vitro 3D tissues under mechanical stretch, to reveal the heterogeneous cellular behavior by using a developed stretch and optical live imaging system. The system could affect the cellular orientation and directly measure the distance of cells in in vitro 3D myoblast tissues (3DMTs) at the single-cell level. Moreover, we observed the spatiotemporal heterogeneous cellular locomotion and shape changes under mechanical stretch in 3DMTs. This single-cell tracking analysis can become a principal method to investigate the heterogeneous cellular response in tissues and provide insights that conventional analyses have not yet offered.
Collapse
Affiliation(s)
- Keitaro Kasahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shigenori Miura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
14
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
16
|
Frittoli E, Palamidessi A, Iannelli F, Zanardi F, Villa S, Barzaghi L, Abdo H, Cancila V, Beznoussenko GV, Della Chiara G, Pagani M, Malinverno C, Bhattacharya D, Pisati F, Yu W, Galimberti V, Bonizzi G, Martini E, Mironov AA, Gioia U, Ascione F, Li Q, Havas K, Magni S, Lavagnino Z, Pennacchio FA, Maiuri P, Caponi S, Mattarelli M, Martino S, d'Adda di Fagagna F, Rossi C, Lucioni M, Tancredi R, Pedrazzoli P, Vecchione A, Petrini C, Ferrari F, Lanzuolo C, Bertalot G, Nader G, Foiani M, Piel M, Cerbino R, Giavazzi F, Tripodo C, Scita G. Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer. NATURE MATERIALS 2023; 22:644-655. [PMID: 36581770 PMCID: PMC10156599 DOI: 10.1038/s41563-022-01431-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2022] [Indexed: 05/05/2023]
Abstract
The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.
Collapse
Affiliation(s)
| | | | - Fabio Iannelli
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Stefano Villa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
- Max Plank Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | - Hind Abdo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | | | | | - Massimiliano Pagani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | | | | | - Federica Pisati
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, Singapore, & Bioinformatics Institute, A*STAR, Singapore, Singapore
| | | | | | | | | | - Ubaldo Gioia
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Kristina Havas
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Serena Magni
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Zeno Lavagnino
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Paolo Maiuri
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | | | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, Perugia, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Chiara Rossi
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marco Lucioni
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- S.C. Oncologia Medica, ASST Melegnano e della Martesana, Ospedale Uboldo, Cernusco sul Naviglio, Milan, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Roma, La Sapienza, Rome, Italy
| | | | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
- National Institute of Molecular Genetics Romeo and Enrica Invernizzi, INGM, Milan, Italy
| | - Giovanni Bertalot
- Department of Pathology, S. Chiara Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- CISMed University of Trento, University of Trento, Trento, Italy
| | - Guilherme Nader
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR-144, Paris, France
- Cell Pathology Children's Hospital of Philadelphia, Research Institute Department of Pathology and Laboratory Medicine University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR-144, Paris, France
| | - Roberto Cerbino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy.
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy.
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Rayens NT, Cook KJ, McKinley SA, Payne CK. Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility. Biophys J 2023; 122:1355-1363. [PMID: 36869590 PMCID: PMC10111363 DOI: 10.1016/j.bpj.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Essential cellular processes such as metabolism, protein synthesis, and autophagy require the intracellular transport of membrane-bound vesicles. The importance of the cytoskeleton and associated molecular motors for transport is well documented. Recent research has suggested that the endoplasmic reticulum (ER) may also play a role in vesicle transport through a tethering of vesicles to the ER. We use single-particle tracking fluorescence microscopy and a Bayesian change-point algorithm to characterize vesicle motility in response to the disruption of the ER, actin, and microtubules. This high-throughput change-point algorithm allows us to efficiently analyze thousands of trajectory segments. We find that palmitate-mediated disruption of the ER leads to a significant decrease in vesicle motility. A comparison with the disruption of actin and microtubules shows that disruption of the ER has a significant impact on vesicle motility, greater than the disruption of actin. Vesicle motility was dependent on cellular region, with greater motility in the cell periphery than the perinuclear region, possibly due to regional differences in actin and the ER. Overall, these results suggest that the ER is an important factor in vesicle transport.
Collapse
Affiliation(s)
- Nathan T Rayens
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Keisha J Cook
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
18
|
Chakrabarti R, Fung TS, Kang T, Elonkirjo PW, Suomalainen A, Usherwood EJ, Higgs HN. Mitochondrial dysfunction triggers actin polymerization necessary for rapid glycolytic activation. J Cell Biol 2022; 221:e202201160. [PMID: 36102863 PMCID: PMC9477750 DOI: 10.1083/jcb.202201160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial damage represents a dramatic change in cellular homeostasis. One rapid response is perimitochondrial actin polymerization, termed acute damage-induced actin (ADA). The consequences of ADA are not understood. In this study, we show evidence suggesting that ADA is linked to rapid glycolytic activation upon mitochondrial damage in multiple cells, including mouse embryonic fibroblasts and effector CD8+ T lymphocytes. ADA-inducing treatments include CCCP, antimycin, rotenone, oligomycin, and hypoxia. The Arp2/3 complex inhibitor CK666 or the mitochondrial sodium-calcium exchanger (NCLX) inhibitor CGP37157 inhibits both ADA and the glycolytic increase within 5 min, supporting ADA's role in glycolytic stimulation. Two situations causing chronic reductions in mitochondrial ATP production, mitochondrial DNA depletion and mutation to the NDUFS4 subunit of complex 1 of the electron transport chain, cause persistent perimitochondrial actin filaments similar to ADA. CK666 treatment causes rapid mitochondrial actin loss and a drop in ATP in NDUFS4 knock-out cells. We propose that ADA is necessary for rapid glycolytic activation upon mitochondrial impairment, to re-establish ATP production.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Taewook Kang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Pieti W. Elonkirjo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| |
Collapse
|
19
|
Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 2022; 79:571. [PMID: 36306014 PMCID: PMC9616786 DOI: 10.1007/s00018-022-04581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
In INF2—a formin linked to inherited renal and neurological disease in humans—the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Comas
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - M Teresa Martín
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM, Higgs HN, Shih AY, Halpain S. INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 2022; 13:6037. [PMID: 36229429 PMCID: PMC9558009 DOI: 10.1038/s41467-022-33268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | | | - Michael Lingelbach
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| | - Uri Manor
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, 03755, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Yao H, Zhang L, Yan S, He Y, Zhu H, Li Y, Wang D, Yang K. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J Nanobiotechnology 2022; 20:378. [PMID: 35964037 PMCID: PMC9375242 DOI: 10.1186/s12951-022-01587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) has been reported to accelerate fracture healing, but the mechanism is unclear and its efficacy needs to be further optimized. Ultrasound in combination with functionalized microbubbles has been shown to induce local shear forces and controllable mechanical stress in cells, amplifying the mechanical effects of LIPUS. Nanoscale lipid bubbles (nanobubbles) have high stability and good biosafety. However, the effect of LIPUS combined with functionalized nanobubbles on osteogenesis has rarely been studied. RESULTS In this study, we report cyclic arginine-glycine-aspartic acid-modified nanobubbles (cRGD-NBs), with a particle size of ~ 500 nm, able to actively target bone marrow mesenchymal stem cells (BMSCs) via integrin receptors. cRGD-NBs can act as nanomechanical force generators on the cell membrane, and further enhance the BMSCs osteogenesis and bone formation promoted by LIPUS. The polymerization of actin microfilaments and the mechanosensitive transient receptor potential melastatin 7 (TRPM7) ion channel play important roles in BMSCs osteogenesis promoted by LIPUS/cRGD-NBs. Moreover, the mutual regulation of TRPM7 and actin microfilaments promote the effect of LIPUS/cRGD-NBs. The extracellular Ca2 + influx, controlled partly by TRPM7, could participated in the effect of LIPUS/cRGD-NBs on BMSCs. CONCLUSIONS The nanomechanical force generators cRGD-NBs could promote osteogenesis of BMSCs and bone formation induced by LIPUS, through regulation TRPM7, actin cytoskeleton, and intracellular calcium oscillations. This study provides new directions for optimizing the efficacy of LIPUS for fracture healing, and a theoretical basis for the further application and development of LIPUS in clinical practice.
Collapse
Affiliation(s)
- Huan Yao
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.,Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shujin Yan
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yasha Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.
| |
Collapse
|
22
|
Fischer L, Nosratlo M, Hast K, Karakaya E, Ströhlein N, Esser TU, Gerum R, Richter S, Engel FB, Detsch R, Fabry B, Thievessen I. Calcium supplementation of bioinks reduces shear stress-induced cell damage during bioprinting. Biofabrication 2022; 14. [PMID: 35896101 DOI: 10.1088/1758-5090/ac84af] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
During bioprinting, cells are suspended in a viscous bioink and extruded under pressure through small diameter printing needles. The combination of high pressure and small needle diameter exposes cells to considerable shear stress, which can lead to cell damage and death. Approaches to monitor and control shear stress-induced cell damage are currently not well established. To visualize the effects of printing-induced shear stress on plasma membrane integrity, we add FM 1-43 to the bioink, a styryl dye that becomes fluorescent when bound to lipid membranes, such as the cellular plasma membrane. Upon plasma membrane disruption, the dye enters the cell and also stains intracellular membranes. Extrusion of alginate-suspended NIH/3T3 cells through a 200µm printing needle led to an increased FM 1-43 incorporation at high pressure, demonstrating that typical shear stresses during bioprinting can transiently damage the plasma membrane. Cell imaging in a microfluidic channel confirmed that FM 1-43 incorporation is caused by cell strain. Notably, high printing pressure also impaired cell survival in bioprinting experiments. Using cell types of different stiffnesses, we find that shear stress-induced cell strain, FM 1-43 incorporation and cell death were reduced in stiffer compared to softer cell types and demonstrate that cell damage and death correlate with shear stress-induced cell deformation. Importantly, supplementation of the suspension medium with physiological concentrations of CaCl2greatly reduced shear stress-induced cell damage and death but not cell deformation. As the sudden influx of calcium ions is known to induce rapid cellular vesicle exocytosis and subsequent actin polymerization in the cell cortex, we hypothesize that calcium supplementation facilitates the rapid resealing of plasma membrane damage sites. We recommend that bioinks should be routinely supplemented with physiological concentrations of calcium ions to reduce shear stress-induced cell damage and death during extrusion bioprinting.
Collapse
Affiliation(s)
- Lena Fischer
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mojtaba Nosratlo
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hast
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Ströhlein
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Richard Gerum
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Physics and Astronomy, York-University Toronto, Ontario, Canada
| | - Sebastian Richter
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - F B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
Calcium sparks enhance the tissue fluidity within epithelial layers and promote apical extrusion of transformed cells. Cell Rep 2022; 40:111078. [PMID: 35830802 DOI: 10.1016/j.celrep.2022.111078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.
Collapse
|
24
|
Kage F, Vicente-Manzanares M, McEwan BC, Kettenbach AN, Higgs HN. Myosin II proteins are required for organization of calcium-induced actin networks upstream of mitochondrial division. Mol Biol Cell 2022; 33:ar63. [PMID: 35427150 PMCID: PMC9561854 DOI: 10.1091/mbc.e22-01-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as calcium-induced actin polymerization (CIA). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that nonmuscle myosin II (NMII) is activated within 60 s of calcium stimulation and rapidly recruited to the CIA network. Knockout of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: endoplasmic-reticulum-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knockout is equally deleterious to CIA. On the basis of these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knockout causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.
Collapse
Affiliation(s)
- Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Miguel Vicente-Manzanares
- Centro de Investigacion del Cancer/Instituto de Biologia Molecular y Celular del Cancer, Centro Mixto Universidad de Salamanca, 37007 Salamanca, Spain
| | - Brennan C. McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
- Program in Cancer Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
25
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
26
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
27
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
28
|
Pothapragada SP, Gupta P, Mukherjee S, Das T. Matrix mechanics regulates epithelial defence against cancer by tuning dynamic localization of filamin. Nat Commun 2022; 13:218. [PMID: 35017535 PMCID: PMC8752856 DOI: 10.1038/s41467-021-27896-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
In epithelia, normal cells recognize and extrude out newly emerged transformed cells by competition. This process is the most fundamental epithelial defence against cancer, whose occasional failure promotes oncogenesis. However, little is known about what factors determine the success or failure of this defence. Here we report that mechanical stiffening of extracellular matrix attenuates the epithelial defence against HRasV12-transformed cells. Using photoconversion labelling, protein tracking, and loss-of-function mutations, we attribute this attenuation to stiffening-induced perinuclear sequestration of a cytoskeletal protein, filamin. On soft matrix mimicking healthy epithelium, filamin exists as a dynamically single population, which moves to the normal cell-transformed cell interface to initiate the extrusion of transformed cells. However, on stiff matrix mimicking fibrotic epithelium, filamin redistributes into two dynamically distinct populations, including a new perinuclear pool that cannot move to the cell-cell interface. A matrix stiffness-dependent differential between filamin-Cdc42 and filamin-perinuclear cytoskeleton interaction controls this distinctive filamin localization and hence, determines the success or failure of epithelial defence on soft versus stiff matrix. Together, our study reveals how pathological matrix stiffening leads to a failed epithelial defence at the initial stage of oncogenesis. Epithelial cells have the ability to competitively remove potentially cancerous cells from the tissue. Here the authors discover that pathological stiffening of extracellular matrix leads to the loss of this basic epithelial defence against cancer.
Collapse
Affiliation(s)
- Shilpa P Pothapragada
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Praver Gupta
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Soumi Mukherjee
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.,Department of Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.
| |
Collapse
|
29
|
Shevchenko GV, Krutovsky KV. Mechanical stress effects on transcriptional regulation of genes encoding microtubule- and actin-associated proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:17-30. [PMID: 35210715 PMCID: PMC8847523 DOI: 10.1007/s12298-021-01123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Plant cytoskeleton regulation has been studied using a new approach based on both (1) pharmacological analysis of tubulin and actin inhibitors and (2) mechanical stimulation achieved by using a slow-rotating (2 rpm) clinostat in combination with transcriptional analysis of genes encoding TUA6, ACT2, MAP65-1, CLASP, PLDδ, FH4 and FH1 proteins in Arabidopsis thaliana seedling roots. The obtained data suggest feedback between the organization of microtubule (MT) and actin filament (AF) networks and the expression of the ACT2, TUA6, MAP65-1, CLASP and FH1/FH4 genes. Different regulation of feedback between MT/AF organization and TUA6, ACT2, MAP65-1, CLASP, FH4 and FH1 gene expression was noted during slow clinorotation, possibly due to altered mechanical impact on the cortical cytoskeleton. For the first time, the expression of the tubulin-associated gene MAP65-1 was shown to be dependent upon the organization of AFs. TUA6, MAP65-1, CLASP, FH1 and FH4 likely participate in mechanical signal transduction. Our work demonstrated that slow clinorotation is able to cause mechanical stress.
Collapse
Affiliation(s)
- Galina V. Shevchenko
- Institute of Botany, National Academy of Sciences of Ukraine, Kiev, 01004 Ukraine
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russian Federation
- Department of Genomics and Bioinformatics, Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russian Federation
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russian Federation
| |
Collapse
|
30
|
Blonski S, Aureille J, Badawi S, Zaremba D, Pernet L, Grichine A, Fraboulet S, Korczyk PM, Recho P, Guilluy C, Dolega ME. Direction of epithelial folding defines impact of mechanical forces on epithelial state. Dev Cell 2021; 56:3222-3234.e6. [PMID: 34875225 DOI: 10.1016/j.devcel.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Cell shape dynamics during development is tightly regulated and coordinated with cell fate determination. Triggered by an interplay between biochemical and mechanical signals, epithelia form complex tissues by undergoing coordinated cell shape changes, but how such spatiotemporal coordination is controlled remains an open question. To dissect biochemical signaling from purely mechanical cues, we developed a microfluidic system that experimentally triggers epithelial folding to recapitulate stereotypic deformations observed in vivo. Using this system, we observe that the apical or basal direction of folding results in strikingly different mechanical states at the fold boundary, where the balance between tissue tension and torque (arising from the imposed curvature) controls the spread of folding-induced calcium waves at a short timescale and induces spatial patterns of gene expression at longer timescales. Our work uncovers that folding-associated gradients of cell shape and their resulting mechanical stresses direct spatially distinct biochemical responses within the monolayer.
Collapse
Affiliation(s)
- Slawomir Blonski
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Julien Aureille
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Sara Badawi
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Damian Zaremba
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Lydia Pernet
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Sandrine Fraboulet
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Piotr M Korczyk
- Institute of Fundamental Technological Research, IPPT, Polish Academy of Sciences, Department of Biosystems and Soft Matter, 02106 Warsaw, Poland
| | - Pierre Recho
- LIPhy, University Grenoble Alpes, CNRS UMR 5588, 38000 Grenoble, France
| | - Christophe Guilluy
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Monika E Dolega
- Institute for Advanced Biosciences, Department of Microenvironment, Cell Plasticity and Signaling, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.
| |
Collapse
|
31
|
Lim Y, Cho IT, Rennke HG, Cho G. β2-adrenergic receptor regulates ER-mitochondria contacts. Sci Rep 2021; 11:21477. [PMID: 34728663 PMCID: PMC8563895 DOI: 10.1038/s41598-021-00801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between the endoplasmic reticulum (ER) and mitochondria (Mito) are crucial for many cellular functions, and their interaction levels change dynamically depending on the cellular environment. Little is known about how the interactions between these organelles are regulated within the cell. Here we screened a compound library to identify chemical modulators for ER-Mito contacts in HEK293T cells. Multiple agonists of G-protein coupled receptors (GPCRs), beta-adrenergic receptors (β-ARs) in particular, scored in this screen. Analyses in multiple orthogonal assays validated that β2-AR activation promotes physical and functional interactions between the two organelles. Furthermore, we have elucidated potential downstream effectors mediating β2-AR-induced ER-Mito contacts. Together our study identifies β2-AR signaling as an important regulatory pathway for ER-Mito coupling and highlights the role of these contacts in responding to physiological demands or stresses.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
32
|
Liu X, Huuskonen S, Laitinen T, Redchuk T, Bogacheva M, Salokas K, Pöhner I, Öhman T, Tonduru AK, Hassinen A, Gawriyski L, Keskitalo S, Vartiainen MK, Pietiäinen V, Poso A, Varjosalo M. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol Syst Biol 2021; 17:e10396. [PMID: 34709727 PMCID: PMC8552907 DOI: 10.15252/msb.202110396] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS-CoV-2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP-MS) and the complementary proximity-based labeling MS method (BioID-MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS-CoV-2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image-based drug screen with infectious SARS-CoV-2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein-protein interactions.
Collapse
Affiliation(s)
- Xiaonan Liu
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sini Huuskonen
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Tuomo Laitinen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Taras Redchuk
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Mariia Bogacheva
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
- Department of VirologyUniversity of HelsinkiHelsinkiFinland
| | - Kari Salokas
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Ina Pöhner
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Tiina Öhman
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Antti Hassinen
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Lisa Gawriyski
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Salla Keskitalo
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Maria K Vartiainen
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Vilja Pietiäinen
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Antti Poso
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
- Department of Internal Medicine VIIIUniversity Hospital TübingenTübingenGermany
| | - Markku Varjosalo
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
33
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
34
|
Shoaib Z, Fan TM, Irudayaraj J. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol 2021; 179:201-217. [PMID: 34679192 PMCID: PMC9305477 DOI: 10.1111/bph.15713] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma (OS) is the one of the most common primary tumors of bone with less than a 20% 5-year survival rate after the development of metastases. OS is highly predisposed in Paget's disease (PD) of bone, and both have common characteristic skeletal features due to rapid bone remodeling. OS prognosis is location dependent which further emphasizes the likely contribution of the bone microenvironment in its pathogenesis. Mechanobiology is the phenomenon when mechanical cues from the changing physical microenvironment of bone are transduced to biological pathways through mechanosensitive cellular components. Mechanobiology-driven therapies have been used for curbing tumor progression by direct alteration of the physical microenvironment or inhibition of metastasis-associated mechanosensitive proteins. This review emphasizes the contribution of mechanobiology to OS progression, and sheds light on current mechanobiology-based therapies and potential new targets for improving disease management. Additionally, the variety of 3D models currently used to study OS mechanobiology are summarized.
Collapse
Affiliation(s)
- Zunaira Shoaib
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL, USA.,Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
35
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
36
|
Uslu FE, Davidson CD, Mailand E, Bouklas N, Baker BM, Sakar MS. Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102641. [PMID: 34363246 PMCID: PMC11481068 DOI: 10.1002/adma.202102641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.
Collapse
Affiliation(s)
- Fazil E. Uslu
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | | | - Erik Mailand
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
37
|
Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells. Sci Rep 2021; 11:18345. [PMID: 34526564 PMCID: PMC8443756 DOI: 10.1038/s41598-021-97869-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutations. The contribution of noncoding RNAs (ncRNAs) in the pathogenesis of lung cancer has since been demonstrated. Their dysregulation has been linked to cancer initiation and progression. A novel long noncoding RNA (lncRNA) called smoke and cancer-associated lncRNA 1 (SCAL1) was recently found upregulated in smoke-exposed adenocarcinomic alveolar epithelial cells. The present study characterized the phenotypic consequences of SCAL1 overexpression and knockdown using A549 cells as model system, with or without prior exposure to cigarette smoke extract (CSE). Increase in SCAL1 levels either by CSE treatment or SCAL1 overexpression led to increased cell migration, extensive cytoskeletal remodeling, and resistance to apoptosis. Further, SCAL1 levels were negatively correlated with intracellular levels of reactive oxygen species (ROS). In contrast, SCAL1 knockdown showed converse results for these assays. These results confirm the oncogenic function of SCAL1 and its role as a CSE-activated lncRNA that mediates ROS detoxification in A549 cells, thereby allowing them to develop resistance to and survive smoke-induced toxicity.
Collapse
|
38
|
Wei Y, Li W. Calcium, an Emerging Intracellular Messenger for the Hippo Pathway Regulation. Front Cell Dev Biol 2021; 9:694828. [PMID: 34268313 PMCID: PMC8275986 DOI: 10.3389/fcell.2021.694828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway is a conserved signaling network regulating organ development and tissue homeostasis. Dysfunction of this pathway may lead to various diseases, such as regeneration defect and cancer. Studies over the past decade have found various extracellular and intracellular signals that can regulate this pathway. Among them, calcium (Ca2+) is emerging as a potential messenger that can transduce certain signals, such as the mechanical cue, to the main signaling machinery. In this process, rearrangement of the actin cytoskeleton, such as calcium-activated actin reset (CaAR), may construct actin filaments at the cell cortex or other subcellular domains that provide a scaffold to launch Hippo pathway activators. This article will review studies demonstrating Ca2+-mediated Hippo pathway modulation and discuss its implication in understanding the role of actin cytoskeleton in regulating the Hippo pathway.
Collapse
Affiliation(s)
- Yiju Wei
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States.,Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
39
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
40
|
González-Barriga A, Lallemant L, Dincã DM, Braz SO, Polvèche H, Magneron P, Pionneau C, Huguet-Lachon A, Claude JB, Chhuon C, Guerrera IC, Bourgeois CF, Auboeuf D, Gourdon G, Gomes-Pereira M. Integrative Cell Type-Specific Multi-Omics Approaches Reveal Impaired Programs of Glial Cell Differentiation in Mouse Culture Models of DM1. Front Cell Neurosci 2021; 15:662035. [PMID: 34025359 PMCID: PMC8136287 DOI: 10.3389/fncel.2021.662035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a non-coding CTG repeat expansion in the DMPK gene. This mutation generates a toxic CUG RNA that interferes with the RNA processing of target genes in multiple tissues. Despite debilitating neurological impairment, the pathophysiological cascade of molecular and cellular events in the central nervous system (CNS) has been less extensively characterized than the molecular pathogenesis of muscle/cardiac dysfunction. Particularly, the contribution of different cell types to DM1 brain disease is not clearly understood. We first used transcriptomics to compare the impact of expanded CUG RNA on the transcriptome of primary neurons, astrocytes and oligodendrocytes derived from DMSXL mice, a transgenic model of DM1. RNA sequencing revealed more frequent expression and splicing changes in glia than neuronal cells. In particular, primary DMSXL oligodendrocytes showed the highest number of transcripts differentially expressed, while DMSXL astrocytes displayed the most severe splicing dysregulation. Interestingly, the expression and splicing defects of DMSXL glia recreated molecular signatures suggestive of impaired cell differentiation: while DMSXL oligodendrocytes failed to upregulate a subset of genes that are naturally activated during the oligodendroglia differentiation, a significant proportion of missplicing events in DMSXL oligodendrocytes and astrocytes increased the expression of RNA isoforms typical of precursor cell stages. Together these data suggest that expanded CUG RNA in glial cells affects preferentially differentiation-regulated molecular events. This hypothesis was corroborated by gene ontology (GO) analyses, which revealed an enrichment for biological processes and cellular components with critical roles during cell differentiation. Finally, we combined exon ontology with phosphoproteomics and cell imaging to explore the functional impact of CUG-associated spliceopathy on downstream protein metabolism. Changes in phosphorylation, protein isoform expression and intracellular localization in DMSXL astrocytes demonstrate the far-reaching impact of the DM1 repeat expansion on cell metabolism. Our multi-omics approaches provide insight into the mechanisms of CUG RNA toxicity in the CNS with cell type resolution, and support the priority for future research on non-neuronal mechanisms and proteomic changes in DM1 brain disease.
Collapse
Affiliation(s)
- Anchel González-Barriga
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Diana M Dincã
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Hélène Polvèche
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France.,Inserm/UEVE UMR 861, Université Paris Saclay I-STEM, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
41
|
Conrad L, Runser SVM, Fernando Gómez H, Lang CM, Dumond MS, Sapala A, Schaumann L, Michos O, Vetter R, Iber D. The biomechanical basis of biased epithelial tube elongation in lung and kidney development. Development 2021; 148:261770. [PMID: 33946098 PMCID: PMC8126414 DOI: 10.1242/dev.194209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lisa Conrad
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Steve Vincent Maurice Runser
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Harold Fernando Gómez
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Christine Michaela Lang
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Mathilde Sabine Dumond
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Aleksandra Sapala
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Laura Schaumann
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Odyssé Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| |
Collapse
|
42
|
Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res 2021; 9:16. [PMID: 33692342 PMCID: PMC7946898 DOI: 10.1038/s41413-020-00124-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanobiological stimuli, such as low-intensity pulsed ultrasound (LIPUS), have been shown to promote bone regeneration and fresh fracture repair, but the fundamental biophysical mechanisms involved remain elusive. Here, we propose that a mechanosensitive ion channel of Piezo1 plays a pivotal role in the noninvasive ultrasound-induced mechanical transduction pathway to trigger downstream cellular signal processes. This study aims to investigate the expression and role of Piezo1 in MC3T3-E1 cells after LIPUS treatment. Immunofluorescence analysis shows that Piezo1 was present on MC3T3-E1 cells and could be ablated by shRNA transfection. MC3T3-E1 cell migration and proliferation were significantly increased by LIPUS stimulation, and knockdown of Piezo1 restricted the increase in cell migration and proliferation. After labeling with Fluo-8, MC3T3-E1 cells exhibited fluorescence intensity traces with several high peaks compared with the baseline during LIPUS stimulation. No obvious change in the fluorescence intensity tendency was observed after LIPUS stimulation in shRNA-Piezo1 cells, which was similar to the results in the GsMTx4-treated group. The phosphorylation ratio of ERK1/2 in MC3T3-E1 cells was significantly increased (P < 0.01) after LIPUS stimulation. In addition, Phalloidin-iFluor-labeled F-actin filaments immediately accumulated in the perinuclear region after LIPUS stimulation, continued for 5 min, and then returned to their initial levels at 30 min. These results suggest that Piezo1 can transduce LIPUS-induced mechanical signals into intracellular calcium. The influx of Ca2+ serves as a second messenger to activate ERK1/2 phosphorylation and perinuclear F-actin filament polymerization, which regulate the proliferation of MC3T3-E1 cells.
Collapse
|
43
|
Focus on time: dynamic imaging reveals stretch-dependent cell relaxation and nuclear deformation. Biophys J 2021; 120:764-772. [PMID: 33524370 DOI: 10.1016/j.bpj.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Among the stimuli to which cells are exposed in vivo, it has been shown that tensile deformations induce specific cellular responses in musculoskeletal, cardiovascular, and stromal tissues. However, the early response of cells to sustained substrate-based stretch has remained elusive because of the short timescale at which it occurs. To measure the tensile mechanical properties of adherent cells immediately after the application of substrate deformations, we have developed a dynamic traction force microscopy method that enables subsecond temporal resolution imaging of transient subcellular events. The system employs a novel, to our knowledge, tracking approach with minimal computational overhead to compensate substrate-based, stretch-induced motion/drift of stretched single cells in real time, allowing capture of biophysical phenomena on multiple channels by fluorescent multichannel imaging on a single camera, thus avoiding the need for beam splitting with the associated loss of light. Using this tool, we have characterized the transient subcellular forces and nuclear deformations of single cells immediately after the application of equibiaxial strain. Our experiments reveal significant differences in the cell relaxation dynamics and in the intracellular propagation of force to the nuclear compartment in cells stretched at different strain rates and exposes the need for time control for the correct interpretation of dynamic cell mechanics experiments.
Collapse
|
44
|
Bayraktar S, Nehrig J, Menis E, Karli K, Janning A, Struk T, Halbritter J, Michgehl U, Krahn MP, Schuberth CE, Pavenstädt H, Wedlich-Söldner R. A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles. J Am Soc Nephrol 2021; 31:1296-1313. [PMID: 32444357 DOI: 10.1681/asn.2019111174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response-calcium mediated actin reset, or CaAR-that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot-Marie-Tooth disease that are accompanied by nephropathy, mostly FSGS. METHODS We used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot-Marie-Tooth disease. RESULTS We found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot-Marie-Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. CONCLUSIONS Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.
Collapse
Affiliation(s)
- Samet Bayraktar
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany.,Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Julian Nehrig
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Ekaterina Menis
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Kevser Karli
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Annette Janning
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Thaddäus Struk
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jan Halbritter
- Division of Nephrology, University of Leipzig, Leipzig, Germany
| | - Ulf Michgehl
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Christian E Schuberth
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | | | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
46
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
47
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
48
|
Fracchia A, Asraf T, Salmon-Divon M, Gerlitz G. Increased Lamin B1 Levels Promote Cell Migration by Altering Perinuclear Actin Organization. Cells 2020; 9:E2161. [PMID: 32987785 PMCID: PMC7598699 DOI: 10.3390/cells9102161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cell migration requires reposition and reshaping of the cell nucleus. The nuclear lamina is highly important for migration of both primary and cancer cells. B-type lamins are important for proper migration of epicardial cells and neurons and increased lamin B to lamin A ratio accelerates cancer cell migration through confined spaces. Moreover, a positive association between lamin B1 levels and tumor formation and progression is found in various cancer types. Still, the molecular mechanism by which B-type lamins promote cell migration is not fully understood. To better understand this mechanism, we tested the effects of lamin B1 on perinuclear actin organization. Here we show that induction of melanoma cell migration leads to the formation of a cytosolic Linker of Nucleoskeleton and Cytoskeleton (LINC) complex-independent perinuclear actin rim, which has not been detected in migrating cells, yet. Significantly, increasing the levels of lamin B1 but not the levels of lamin A prevented perinuclear actin rim formation while accelerated the cellular migration rate. To interfere with the perinuclear actin rim, we generated a chimeric protein that is localized to the outer nuclear membrane and cleaves perinuclear actin filaments in a specific manner without disrupting other cytosolic actin filaments. Using this tool, we found that disruption of the perinuclear actin rim accelerated the cellular migration rate in a similar manner to lamin B1 over-expression. Taken together, our results suggest that increased lamin B1 levels can accelerate cell migration by inhibiting the association of the nuclear envelope with actin filaments that may reduce nuclear movement and deformability.
Collapse
Affiliation(s)
- Andrea Fracchia
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| | - Tal Asraf
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| |
Collapse
|
49
|
Zhang D. Interplay between endoplasmic reticulum membrane contacts and actomyosin cytoskeleton. Cytoskeleton (Hoboken) 2020; 77:241-248. [PMID: 32543125 DOI: 10.1002/cm.21623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic membrane-bound organelles, exhibiting distinctive morphologies, dynamics and functions, are interconnected at membrane contact sites (MCSs) through numerous tethering machineries. MCSs are required for many fundamental cellular processes, such as non-vesicular lipid transfer, calcium transport and organelle homeostasis. Actin cytoskeleton and myosin motors are known to dynamically interact with different membrane boundaries, facilitating organelle movements and partitioning. Intriguingly, recent studies have pinpointed a special participation of actomyosin at various MCSs involving the endoplasmic reticulum (ER), the most extensive membranous organelle in the cell. Here, I summarize emerging roles of ER MCSs in modulating actomyosin structures and discuss feedback functions of such actomyosin regulation at these MCSs.
Collapse
Affiliation(s)
- Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Elad D, Zaretsky U, Kuperman T, Gavriel M, Long M, Jaffa A, Grisaru D. Tissue engineered endometrial barrier exposed to peristaltic flow shear stresses. APL Bioeng 2020; 4:026107. [PMID: 32548541 PMCID: PMC7269682 DOI: 10.1063/5.0001994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclic myometrial contractions of the non-pregnant uterus induce intra-uterine peristaltic flows, which have important roles in transport of sperm and embryos during early stages of reproduction. Hyperperistalsis in young females may lead to migration of endometrial cells and development of adenomyosis or endometriosis. We conducted an in vitro study of the biological response of a tissue engineered endometrial barrier exposed to peristaltic wall shear stresses (PWSSs). The endometrial barrier model was co-cultured of endometrial epithelial cells on top of myometrial smooth muscle cells (MSMCs) in custom-designed wells that can be disassembled for mechanobiology experiments. A new experimental setup was developed for exposing the uterine wall in vitro model to PWSSs that mimic the in vivo intra-uterine environment. Peristaltic flow was induced by moving a belt with bulges to deform the elastic cover of a fluid filled chamber that held the uterine wall model at the bottom. The in vitro biological model was exposed to peristaltic flows for 60 and 120 min and then stained for immunofluorescence studies of alternations in the cytoskeleton. Quantification of the F-actin mass in both layers revealed a significant increase with the length of exposure to PWSSs. Moreover, the inner layer of MSMCs that were not in direct contact with the fluid also responded with an increase in the F-actin mass. This new experimental approach can be expanded to in vitro studies of multiple structural changes and genetic expressions, while the tissue engineered uterine wall models are tested under conditions that mimic the in vivo physiological environment.
Collapse
Affiliation(s)
- David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tatyana Kuperman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mark Gavriel
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mian Long
- Center of Biomechanics and Bioengineering and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|