1
|
Long E, Williams J, Zhang H, Choi J. An evolving understanding of multiple causal variants underlying genetic association signals. Am J Hum Genet 2025; 112:741-750. [PMID: 39965570 DOI: 10.1016/j.ajhg.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding how genetic variation contributes to phenotypic variation is a fundamental question in genetics. Genome-wide association studies (GWASs) have discovered numerous genetic associations with various human phenotypes, most of which contain co-inherited variants in strong linkage disequilibrium (LD) with indistinguishable statistical significance. The experimental and analytical difficulty in identifying the "causal variant" among the co-inherited variants has traditionally led mechanistic studies to focus on relatively simple loci, where a single functional variant is presumed to explain most of the association signal and affect a target gene. The notion that a single causal variant is responsible for an association signal, while other variants in LD are merely correlated, has often been assumed in functional studies. However, emerging evidence powered by high-throughput experimental tools and context-specific functional databases argues that even a single independent signal may involve multiple functional variants in strong LD, each contributing to the observed genetic association. In this perspective, we articulate this evolving understanding of causal variants through examples from both traditional locus-by-locus approaches and more recent high-throughput functional studies. We then discuss the implications and prospects of this notion in understanding the genetic architecture of complex traits and interpreting the variant-level causality in GWAS follow-up studies.
Collapse
Affiliation(s)
- Erping Long
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jacob Williams
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
Cai L, Lyu Z, Zhang Y, Xie K, Chen M. Association between programmed death protein 1-related single-nucleotide polymorphisms and immune-related adverse events induced by programmed death protein 1 inhibitors-a pilot study. Int Immunopharmacol 2024; 143:113269. [PMID: 39357205 DOI: 10.1016/j.intimp.2024.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Programmed death protein 1 (PD-1) inhibitors have potent anti-tumor activities. However, they often result in immune-related adverse events (irAEs) of varying severity. Therefore, the factors affecting the incidence of irAEs warrant urgent investigation. This study aimed to identify specific and sensitive predictors of irAEs in a Chinese population. We conducted a genome-wide association study (GWAS) comprising 80 patients with malignant tumors to evaluate single-nucleotide polymorphism (SNP) loci associated with the incidence of irAEs. The SNP rs2157775 on the LOC339166 gene had the lowest P value but did not reach the significance threshold after Bonferroni correction. Therefore, potentially associated SNPs were further investigated through the mechanism-related PD-1 pathway using the ImmPort and PathCards Human Gene Databases. A binary logistic regression model revealed that CD3E (rs3782040) A/A was associated with a lower incidence of irAEs in patients with malignant tumors who received PD-1 inhibitors. In contrast, PTPN11 (rs143894582) C/CA was associated with a higher incidence of irAEs. These findings provide a basis for the verification and identification of new loci to provide insight into the etiology of irAEs.
Collapse
Affiliation(s)
- Linxuan Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Chengdu Hospital of Chongqing Medical University, Chengdu 610000, China
| | - Ziyan Lyu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Min Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
3
|
Zhang S, Wang C, Qin S, Chen C, Bao Y, Zhang Y, Xu L, Liu Q, Zhao Y, Li K, Tang Z, Liu Y. Analyzing super-enhancer temporal dynamics reveals potential critical enhancers and their gene regulatory networks underlying skeletal muscle development. Genome Res 2024; 34:2190-2202. [PMID: 39433439 PMCID: PMC11694746 DOI: 10.1101/gr.278344.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Super-enhancers (SEs) govern the expression of genes defining cell identity. However, the dynamic landscape of SEs and their critical constituent enhancers involved in skeletal muscle development remains unclear. In this study, using pig as a model, we employed cleavage under targets and tagmentation (CUT&Tag) to profile the enhancer-associated histone modification marker H3K27ac in skeletal muscle across two prenatal and three postnatal stages, and investigated how SEs influence skeletal muscle development. We identify three SE families with distinct temporal dynamics: continuous (Con, 397), transient (TS, 434), and de novo (DN, 756). These SE families are associated with different temporal gene expression trajectories, biological functions, and DNA methylation levels. Notably, several lines of evidence suggest a potential prominent role of Con SEs in regulating porcine muscle development and meat traits. To pinpoint key cis-regulatory units in Con SEs, we developed an integrative approach that leverages information from eRNA annotation, genome-wide association study (GWAS) signals, and high-throughput capture self-transcribing active regulatory region sequencing (STARR-seq) experiments. Within Con SEs, we identify 20 candidate critical enhancers with meat and carcass-associated DNA variations that affect enhancer activity, and infer their upstream transcription factors and downstream target genes. As a proof of concept, we experimentally validate the role of one such enhancer and its potential target gene during myogenesis. Our findings reveal the dynamic regulatory features of SEs in skeletal muscle development and provide a general integrative framework for identifying critical enhancers underlying the formation of complex traits.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhou Bao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yunxiang Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
4
|
Zheng X, Qin S, Zhong M, Xu Q, Huai C, Qiu X. PPP3R1 Promoter Polymorphism (Allelic Variation) Affects Tacrolimus Treatment Efficacy by Modulating E2F6 Binding Affinity. Biomedicines 2024; 12:2896. [PMID: 39767802 PMCID: PMC11727355 DOI: 10.3390/biomedicines12122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel PPP3R1 promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway. METHODS Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation. Electrophoretic mobility shift assays (EMSA) validated the altered binding of transcription factors. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blots were used to determine the immunosuppressive effect of tacrolimus. RESULTS Assays revealed that rs4519508 C > T markedly enhanced PPP3R1 promoter activity. EMSA assays validated the binding of E2F6 to rs4519508 C (wild-type) and the binding was significantly weaker to the rs4519508 T (mutant-type). The overexpression of E2F6 significantly reduced the transcriptional activity and expression of PPP3R1 when the rs4519508 site presented as major C allele, an effect that was not observed with the rs4519508 T allele. Furthermore, the downregulation of E2F6 raises the level of downstream immune cytokines inhibited by TAC. CONCLUSIONS This study proposed that E2F6 suppresses the expression of PPP3R1, while rs4519508 C > T impairs the binding of E2F6, and thus elevates the level of PPP3R1, so that the inhibition of the downstream immune cytokines by TAC is attenuated. Our findings reported the potential regulatory role of a novel polymorphism, PPP3R1 rs4519508 C > T, which may serve as pharmacodynamic-associated pharmacogenetic biomarker indicating individual response variability of tacrolimus, and thus aid the clinical management of transplant immunology.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| |
Collapse
|
5
|
Huang HH, Shiu TY, Chan DC, Chang CF, Lin HH, Lin JC, Chen PJ, Shih YL, Chang WK, Hsieh TY. Rs1347093 regulates microRNA-216/-217 expression and is associated with pancreatic cancer risk. Pancreatology 2024; 24:1294-1301. [PMID: 39500645 DOI: 10.1016/j.pan.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) rs1347093 shows statistically significant association with lung cancer risk, but there is no further rs1347093 expression quantitative trait loci (eQTL) effect information. SNP rs1347093 is located in microRNA-216/-217 (miR-216/-217) locus. In addition, miR-216/-217 have pancreas-enriched expressions. In this study, we examined a potential miR-216/-217 promoter region, and investigated the effect of rs1347093-A allele on the miR-216/-217 promoter activity. METHODS Bioinformatics analysis, quantitative real-time PCR, luciferase reporter assay, Western blotting, and cell counting kit-8 (CCK-8) assay were performed. RESULTS The miR-216/-217 expressions are down-regulated in pancreatic cancer. In pancreatic cancer patients carrying the rs1347093-A allele, miR-216/-217 expressions were more largely suppressed. We identified a potential promoter region in miR-216/-217 locus and further showed that rs1347093-A allele resulted in significantly reduced promoter activity in pancreatic cancer cells, which could be mediated by MEF2C activities. In terms of mechanism in the pathogenesis of pancreatic cancer, miR-216b-5p expression was down-regulated, thereby preventing it from interacting with beclin-1 mRNA while promoting the survival of pancreatic cancer cells. CONCLUSIONS This study may reveal the biological relevance underlying rs1347093-A allele with an increase in pancreatic cancer risk. SNP rs1347093 could be meaningful as a novel biomarker for pancreatic cancer risk.
Collapse
Affiliation(s)
- Hsin-Hung Huang
- Division of Gastroenterology, Department of Internal Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Tzu-Yue Shiu
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - De-Chuan Chan
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Feng Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Jen Chen
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhou X, Guo L, Yang Z, Xu H, Zhang Z, Zhang X. Impact of Chondroitin Sulfate Proteoglycan 4 Pseudogene 12 Genetic Variants on Colorectal Cancer Risk: A Case-Control Study. DNA Cell Biol 2024; 43:596-604. [PMID: 39421940 DOI: 10.1089/dna.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
This study aims to investigate the correlation between the chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) polymorphism and the risk of colorectal cancer (CRC). This case-control study involved 850 patients with CRC and 850 health controls. The genotypes of CSPG4P12 (rs2880765, rs6496932, and rs8040855) were determined by the TaqMan-MGB probe method. Logistic regression model was employed to evaluate the association of CSPG4P12 single-nucleotide polymorphisms (SNPs) with the risk of CRC by calculating the odds ratio (OR) and 95% confidence interval (CI). The CSPG4P12 exhibited lower expression in CRC tissues. Our data showed that the rs6496932 variant increased CRC risk (CA vs. CC: p = 0.006; CA + AA vs. CC: p = 0.005). In contrast, the rs8040855 variant reduced the risk of CRC (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001). Stratification by gender and age revealed that the rs8040855 variant decreased CRC risk; however, the rs6496932 variant increased CRC risk among males (CA vs. CC: p = 0.024; CA + AA vs. CC: p = 0.014) and younger individuals (CA vs. CC: p = 0.004; CA + AA vs. CC: p = 0.010). When stratified by smoking and drinking status, the rs8040855 variant decreased CRC risk among nonsmokers (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001) and nondrinkers (CA vs. CC: p = 0.002; CA + AA vs. CC: p = 0.004). The rs6496932 variant increased CRC risk among nonsmokers (CA vs. CC: p = 0.016; CA + AA vs. CC: p = 0.036) and nondrinkers (CG vs. CC: p < 0.001; CG + GG vs. CC: p < 0.001). Haplotype analysis showed that the CSPG4P12 Trs2880765Crs6496932Grs8040855 haplotype reduced the risk of CRC compared with the reference haplotype (CSPG4P12 Ars2880765Crs6496932Crs8040855) (OR = 0.46, 95% CI = 0.26-0.82, p = 0.049). These findings highlight the potential of these genetic variants as biomarkers for CRC susceptibility, offering insights into personalized prevention strategies.
Collapse
Affiliation(s)
- Xianlei Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
| | - Liwen Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
De Lima EU, Dos Santos FF, Da Silva IC, De Lima CRA, Frutuoso VS, Caso GF, De Oliveira PR, Bezerra AK, Cerutti JM, Tamura RE, Ramos HE, de Rubio IGS. Reduced expression of FOXE1 in differentiated thyroid cancer, the contribution of CPG methylation, and their clinical relevance. Front Endocrinol (Lausanne) 2024; 15:1454349. [PMID: 39588344 PMCID: PMC11586194 DOI: 10.3389/fendo.2024.1454349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Forkhead box E1 (FOXE1) is a transcription factor with a crucial role in thyroid morphogenesis and differentiation. Promoter hypermethylation downregulates FOXE1 expression in different tumor types; nevertheless, its expression and relationship with methylation status in differentiated thyroid cancer (DTC) remain unclear. Methods A total of 33 pairs of matched samples of PTC tumors and non-tumors were included. Tumor cell cultures were treated with either 5-Aza-2'-deoxycytidine demethylating agent or dimethyl sulfoxide (DMSO). A real-time polymerase chain reaction (RT-PCR) and Western blotting were performed to assess FOXE1 expression. The methylation status was quantified using bisulfite sequencing. A luciferase gene assay was used to determine CpG-island functionality. Gene expression and promoter methylation of FOXE1 and FOXE1-regulated genes were also analyzed with data from The Cancer Genome Atlas (TCGA) thyroid samples. Results After demethylating treatment, increased FOXE1 mRNA was observed concomitantly with reduced promoter methylation of CpGisland2. A negative correlation between mRNA downregulation and an increased methylation level of CpGisland2 was observed in tumors. Diminished protein expression was also detected in some DTC cell lines and in some tumor samples, suggesting the involvement of post-transcriptional regulatory mechanisms. CPGisland2 was proved to be an enhancer. TCGA data analysis showed low FOXE1 mRNA expression in tumors with a negative correlation with methylation status and a positive correlation with the expression of most of its target genes. Reduced FOXE1 expression, accompanied by a high methylation level, was associated with PTC aggressiveness (tall cell variant, advanced extra thyroid extension, T4 American Joint Committee on Cancer (AJCC) classification), age at diagnosis (over 45 years old), and presence of a BRAFV600E mutation. Conclusion FOXE1 mRNA was downregulated in DTC compared with non-tumors, followed by high CpGisland methylation. A coupling of low mRNA expression and high methylation status was related to characteristics of aggressiveness in DTC tumors.
Collapse
Affiliation(s)
- Erika Urbano De Lima
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Filipe Ferreira Dos Santos
- Centro de Oncologia Molecular (MOC), Hospital Sírio-Libanês - Instituto de Ensino e Pesquisa (HSL-IEP), São Paulo, Brazil
- Department of Biochemistry, Chemistry Institute (IQ), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Igor Campos Da Silva
- Departamento de Cirurgia de Cabeça e Pescoço, Monte Tabor – Hospital São Rafael, Salvador, Brazil
| | | | - Vitoria Sousa Frutuoso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Felisola Caso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paloma Ramos De Oliveira
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Janete Maria Cerutti
- Laboratório de Bases Genéticas dos Tumores da Tiroide, Departamento de Morfologia e Genética Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Esaki Tamura
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Helton Estrela Ramos
- Laboratório de Estudos da Tireoide, Departamento de Bioregulação, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Ileana Gabriela Sanchez de Rubio
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Jiang YJ, Xia Y, Han ZJ, Hu YX, Huang T. Chromosomal localization of mutated genes in non-syndromic familial thyroid cancer. Front Oncol 2024; 14:1286426. [PMID: 38571492 PMCID: PMC10987779 DOI: 10.3389/fonc.2024.1286426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) is a type of thyroid cancer characterized by genetic susceptibility, representing approximately 5% of all non-medullary thyroid carcinomas. While some cases of FNMTC are associated with familial multi-organ tumor predisposition syndromes, the majority occur independently. The genetic mechanisms underlying non-syndromic FNMTC remain unclear. Initial studies utilized SNP linkage analysis to identify susceptibility loci, including the 1q21 locus, 2q21 locus, and 4q32 locus, among others. Subsequent research employed more advanced techniques such as Genome-wide Association Study and Whole Exome Sequencing, leading to the discovery of genes such as IMMP2L, GALNTL4, WDR11-AS1, DUOX2, NOP53, MAP2K5, and others. But FNMTC exhibits strong genetic heterogeneity, with each family having its own pathogenic genes. This is the first article to provide a chromosomal landscape map of susceptibility genes associated with non-syndromic FNMTC and analyze their potential associations. It also presents a detailed summary of variant loci, characteristics, research methodologies, and validation results from different countries.
Collapse
Affiliation(s)
- Yu-jia Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuo-jun Han
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xuan Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Bhardwaj A, Prasad D, Mukherjee S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 2024; 82:91-105. [PMID: 37853249 DOI: 10.1007/s12013-023-01191-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Ananya Bhardwaj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Divya Prasad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
10
|
Pires C, Saramago A, Moura MM, Li J, Donato S, Marques IJ, Belo H, Machado AC, Cabrera R, Grünewald TGP, Leite V, Cavaco BM. Identification of Germline FOXE1 and Somatic MAPK Pathway Gene Alterations in Patients with Malignant Struma Ovarii, Cleft Palate and Thyroid Cancer. Int J Mol Sci 2024; 25:1966. [PMID: 38396644 PMCID: PMC10888156 DOI: 10.3390/ijms25041966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants in the FOXE1 transcription factor have been associated with thyroid ectopy, cleft palate (CP) and thyroid cancer (TC). Here, we aimed to clarify the role of FOXE1 in Portuguese families (F1 and F2) with members diagnosed with malignant struma ovarii (MSO), an ovarian teratoma with ectopic malignant thyroid tissue, papillary TC (PTC) and CP. Two rare germline heterozygous variants in the FOXE1 promoter were identified: F1) c.-522G>C, in the proband (MSO) and her mother (asymptomatic); F2) c.9C>T, in the proband (PTC), her sister and her mother (CP). Functional studies using rat normal thyroid (PCCL3) and human PTC (TPC-1) cells revealed that c.9C>T decreased FOXE1 promoter transcriptional activity in both cell models, while c.-522G>C led to opposing activities in the two models, when compared to the wild type. Immunohistochemistry and RT-qPCR analyses of patients' thyroid tumours revealed lower FOXE1 expression compared to adjacent normal and hyperplastic thyroid tissues. The patient with MSO also harboured a novel germline AXIN1 variant, presenting a loss of heterozygosity in its benign and malignant teratoma tissues and observable β-catenin cytoplasmic accumulation. The sequencing of the F1 (MSO) and F2 (PTC) probands' tumours unveiled somatic BRAF and HRAS variants, respectively. Germline FOXE1 and AXIN1 variants might have a role in thyroid ectopy and cleft palate, which, together with MAPK pathway activation, may contribute to tumours' malignant transformation.
Collapse
Affiliation(s)
- Carolina Pires
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
- NOVA Medical School (NMS)-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
| | - Margarida M. Moura
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
| | - Jing Li
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany; (J.L.); (T.G.P.G.)
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sara Donato
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal;
| | - Inês J. Marques
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
- NOVA Medical School (NMS)-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Hélio Belo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
| | - Ana C. Machado
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (A.C.M.); (R.C.)
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (A.C.M.); (R.C.)
| | - Thomas G. P. Grünewald
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany; (J.L.); (T.G.P.G.)
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal;
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal; (C.P.); (A.S.); (M.M.M.); (I.J.M.); (H.B.); (V.L.)
| |
Collapse
|
11
|
Saenko V, Mitsutake N. Radiation-Related Thyroid Cancer. Endocr Rev 2024; 45:1-29. [PMID: 37450579 PMCID: PMC10765163 DOI: 10.1210/endrev/bnad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Radiation is an environmental factor that elevates the risk of developing thyroid cancer. Actual and possible scenarios of exposures to external and internal radiation are multiple and diverse. This article reviews radiation doses to the thyroid and corresponding cancer risks due to planned, existing, and emergency exposure situations, and medical, public, and occupational categories of exposures. Any exposure scenario may deliver a range of doses to the thyroid, and the risk for cancer is addressed along with modifying factors. The consequences of the Chornobyl and Fukushima nuclear power plant accidents are described, summarizing the information on thyroid cancer epidemiology, treatment, and prognosis, clinicopathological characteristics, and genetic alterations. The Chornobyl thyroid cancers have evolved in time: becoming less aggressive and driver shifting from fusions to point mutations. A comparison of thyroid cancers from the 2 areas reveals numerous differences that cumulatively suggest the low probability of the radiogenic nature of thyroid cancers in Fukushima. In view of continuing usage of different sources of radiation in various settings, the possible ways of reducing thyroid cancer risk from exposures are considered. For external exposures, reasonable measures are generally in line with the As Low As Reasonably Achievable principle, while for internal irradiation from radioactive iodine, thyroid blocking with stable iodine may be recommended in addition to other measures in case of anticipated exposures from a nuclear reactor accident. Finally, the perspectives of studies of radiation effects on the thyroid are discussed from the epidemiological, basic science, and clinical points of view.
Collapse
Affiliation(s)
- Vladimir Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
12
|
Yang Z, Chen J, Han H, Wang Y, Shi X, Zhang B, Mao Y, Li AN, Yuan W, Yao J, Li MD. Single nucleotide polymorphisms rs148582811 regulates its host gene ARVCF expression to affect nicotine-associated hippocampus-dependent memory. iScience 2023; 26:108335. [PMID: 38025780 PMCID: PMC10679859 DOI: 10.1016/j.isci.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Although numerous susceptibility loci are nominated for nicotine dependence (ND), no report showed any association of ARVCF with ND. Through genome-wide sequencing analysis, we first identified genetic variants associated nominally with ND and then replicated them in an independent sample. Of the six replicated variants, rs148582811 in ARVCF located in the enhancer-associated marker peak is attractive. The effective-median-based Mendelian randomization analysis indicated that ARVCF is a causal gene for ND. RNA-seq analysis detected decreased ARVCF expression in smokers compared to nonsmokers. Luciferase reporter assays indicated that rs148582811 and its located DNA fragment allele-specifically regulated ARVCF expression. Immunoprecipitation analysis revealed that transcription factor X-ray repair cross-complementing protein 5 (XRCC5) bound to the DNA fragment containing rs148582811 and allele-specifically regulated ARVCF expression at the mRNA and protein levels. With the Arvcf knockout mouse model, we showed that Arvcf deletion not only impairs hippocampus-dependent learning and memory, but also alleviated nicotine-induced memory deficits.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Andria N. Li
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianhua Yao
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Motawea MM, Zaki MES, Saif M, Osman AOBS, Nada AM. Study of single nucleotide polymorphism of vascular endothelium factor in patients with differentiated thyroid cancer. Clin Diabetes Endocrinol 2022; 8:9. [PMID: 36517920 PMCID: PMC9753302 DOI: 10.1186/s40842-022-00146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic alterations and high levels of the vascular endothelial growth factor (VEGF) are presumptive risk factors for differentiated thyroid cancer (DTC). OBJECTIVE This work aims to study the presence of - 634G/C polymorphism of vascular endothelial growth factor (rs2010963) and its' serum level in patients with DTC and comparing these results with those of the control subjects. MATERIAL AND METHOD The study was a retrograde case-control study that included seventy patients with DTCin addition to seventy apparently healthy control subjects. Blood sample was taken and subjected to study of - 634G/C VEGF polymorphism (rs2010963) by real time PCR and measurement of its' plasma level by immunoassay kit (ELISA). RESULTS Regarding genotyping of VEGFA - 634G/C (rs2010963) polymorphism, there was significant increase in CG and GG genotypes (28.6%, 18.6% respectively) among patients compared to control subjects (20.0%, 4.3% respectively) and significant increase in CC genotype in control subjects (75.7%) compared to patients (52.9%), P = 0.001. The VEGF mean ± SD level was significantly elevated in patients compared to control subjects (1215.81 ± 225.78 versus 307.16 ± 91.81, P = 0.006). Moreover, there was significant increase in VEGF levels in patients with CG and GG genotypes (1295.9 ± 68.74, 1533.08 ± 109.95, respectively) compared to patients with CC genotype (1061 163.25), P = 0.001). CONCLUSION There was significant increase in GG and CG genotypes in patients with DTC compared to control subjects which may suggest a predisposing role for these genotypes in development of DTC. Moreover, there was significant increase in serum level of vascular endothelial growth factor in patients with GG and CG genotypes which may reflect the mechanism of these genotypes in development of DTC.
Collapse
Affiliation(s)
- Mohamad Mohsen Motawea
- grid.10251.370000000103426662Internal Medicine Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- grid.10251.370000000103426662Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Saif
- grid.10251.370000000103426662Oncology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa Osama BS Osman
- grid.252487.e0000 0000 8632 679XClinical Pathology Department, Assuit Faculty of Medicine, Assuit University, Assiut, Egypt
| | - Aml Mohamed Nada
- grid.10251.370000000103426662Internal Medicine Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers (Basel) 2022; 14:5636. [PMID: 36428729 PMCID: PMC9688512 DOI: 10.3390/cancers14225636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, and, being a genetic disease, it is highly heritable. Over the past few decades, genome-wide association studies (GWAS) have identified many risk-associated loci harboring hundreds of single nucleotide polymorphisms (SNPs). Some of these cancer-associated SNPs have been revealed as causal, and the functional characterization of the mechanisms underlying the cancer risk association has been illuminated in some instances. In this review, based on the different positions of SNPs and their modes of action, we discuss the mechanisms underlying how SNPs regulate the expression of target genes to consequently affect tumorigenesis and the development of cancer.
Collapse
Affiliation(s)
- Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
15
|
Pudjihartono M, Perry JK, Print C, O'Sullivan JM, Schierding W. Interpretation of the role of germline and somatic non-coding mutations in cancer: expression and chromatin conformation informed analysis. Clin Epigenetics 2022; 14:120. [PMID: 36171609 PMCID: PMC9520844 DOI: 10.1186/s13148-022-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There has been extensive scrutiny of cancer driving mutations within the exome (especially amino acid altering mutations) as these are more likely to have a clear impact on protein functions, and thus on cell biology. However, this has come at the neglect of systematic identification of regulatory (non-coding) variants, which have recently been identified as putative somatic drivers and key germline risk factors for cancer development. Comprehensive understanding of non-coding mutations requires understanding their role in the disruption of regulatory elements, which then disrupt key biological functions such as gene expression. MAIN BODY We describe how advancements in sequencing technologies have led to the identification of a large number of non-coding mutations with uncharacterized biological significance. We summarize the strategies that have been developed to interpret and prioritize the biological mechanisms impacted by non-coding mutations, focusing on recent annotation of cancer non-coding variants utilizing chromatin states, eQTLs, and chromatin conformation data. CONCLUSION We believe that a better understanding of how to apply different regulatory data types into the study of non-coding mutations will enhance the discovery of novel mechanisms driving cancer.
Collapse
Affiliation(s)
| | - Jo K Perry
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Cris Print
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Yuan K, Song W, Liu Z, Lin GN, Yu S. Mendelian Randomization and GWAS Meta Analysis Revealed the Risk-Increasing Effect of Schizophrenia on Cancers. BIOLOGY 2022; 11:1345. [PMID: 36138824 PMCID: PMC9495962 DOI: 10.3390/biology11091345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The causal relationship between cancer and Schizophrenia (SCZ) remains controversial. Some researchers have found that SCZ is a cancer-preventive factor in cohort studies or meta-analyses, whereas others have found the opposite. To understand more about this issue, we used two-sample Mendelian randomization (2SMR) on available GWAS summary results to evaluate potential genetic connections between SCZ and 13 cancers. We discovered that the genetic susceptibility to schizophrenia lead to an increasing risk of breast cancer (odds ratio [OR] per log-odds increase in schizophrenia risk: 1.049, 95% confidence interval [CI]:1.023-1.075; p = 0.00012; FDR = 0.0017), ovarian cancer (OR, 1.326; 95% CI, 1.267-1.387; p = 0.0007; FDR = 0.0045), and thyroid cancer (OR, 1.575; 95% CI, 1.048-2.365; p = 0.0285; FDR = 0.123). Secondly, we performed a meta-analysis based on the GWAS summary statistics of SCZ and the three significant cancers. Next, we associated genetic variants to genes using two gene mapping strategies: (a) positional mapping based on genomic proximity and (b) expression quantitative trait loci (eQTL) mapping based on gene expression linkage across multiple tissues. As a result, we identified 114 shared loci and 437 shared genes in three groups, respectively. Functional enrichment analysis shows that the most enriched biological pathways are related to epigenetic modification. In addition, we noticed that SCZ would affect the level of thyroid-stimulating hormone (OR, 1.095; 95% CI, 1.006-1.191; p = 0.0354; FDR = 0.177), which may further affect the level of estrogen and the risk of the above three cancers. In conclusion, our findings under the 2SMR assumption provide crucial insights into the risk-increasing effect of SCZ on three cancers' risk. Furthermore, these results may provide insights into understanding the genetic predisposition and underlying biological pathways of comorbid SCZ and cancers.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Zhe Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
17
|
Genetic predisposition to papillary thyroid carcinoma is mediated by a long non-coding RNA TINCR enhancer polymorphism. Int Immunopharmacol 2022; 109:108796. [PMID: 35489191 DOI: 10.1016/j.intimp.2022.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the enhancer region have been demonstrated to confer to altered enhancer activities, aberrant gene expression, and cancer susceptibility. In this study, we aimed to examine the association between an SNP, rs8101923, within terminal differentiation-induced non-coding RNA (TINCR) and the risk of papillary thyroid carcinoma (PTC). Blood samples from 559 patients with PTC and 445 healthy individuals were collected. The rs8101923 was genotyped by using polymerase chain reaction-restriction fragment length polymorphism assay. The impact of the rs8101923 on TINCR expression and enhancer activity was evaluated by quantitative real-time PCR and dual-luciferase reporter assay. The binding of AP-2α to TINCR enhancer was determined by chromatin immunoprecipitation. The rs8101923 G allele was significantly associated with a higher risk of PTC (adjusted OR = 1.37; 95% CI: 1.15-1.64). Mechanistically, the rs8101923 was related to increased transcriptional levels and enhancer activities (P < 0.05). Transcription factor AP-2α binds to the enhancer region of TINCR containing the rs8101923 locus, and promotes cell proliferation in PTC. These findings suggest the rs8101923 as a risk factor in the pathogenesis of PTC, which provides evidence for explaining the mechanism of the rs8101923 risk allele predisposing to PTC.
Collapse
|
18
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
19
|
Kamani T, Charkhchi P, Zahedi A, Akbari MR. Genetic susceptibility to hereditary non-medullary thyroid cancer. Hered Cancer Clin Pract 2022; 20:9. [PMID: 35255942 PMCID: PMC8900298 DOI: 10.1186/s13053-022-00215-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Non-medullary thyroid cancer (NMTC) is the most common type of thyroid cancer. With the increasing incidence of NMTC in recent years, the familial form of the disease has also become more common than previously reported, accounting for 5-15% of NMTC cases. Familial NMTC is further classified as non-syndromic and the less common syndromic FNMTC. Although syndromic NMTC has well-known genetic risk factors, the gene(s) responsible for the vast majority of non-syndromic FNMTC cases are yet to be identified. To date, several candidate genes have been identified as susceptibility genes in hereditary NMTC. This review summarizes genetic predisposition to non-medullary thyroid cancer and expands on the role of genetic variants in thyroid cancer tumorigenesis and the level of penetrance of NMTC-susceptibility genes.
Collapse
Affiliation(s)
- Tina Kamani
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Afshan Zahedi
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5T 3M7, Canada.
| |
Collapse
|
20
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Suzuki A, Guerrini MM, Yamamoto K. Functional genomics of autoimmune diseases. Ann Rheum Dis 2021; 80:689-697. [PMID: 33408079 DOI: 10.1136/annrheumdis-2019-216794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.
Collapse
Affiliation(s)
- Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Matteo Maurizio Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
22
|
Chang H, Cai X, Li HJ, Liu WP, Zhao LJ, Zhang CY, Wang JY, Liu JW, Ma XL, Wang L, Yao YG, Luo XJ, Li M, Xiao X. Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Biol Psychiatry 2021; 89:246-255. [PMID: 33246552 DOI: 10.1016/j.biopsych.2020.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have reported hundreds of genomic loci associated with schizophrenia, yet identifying the functional risk variations is a key step in elucidating the underlying mechanisms. METHODS We applied multiple bioinformatics and molecular approaches, including expression quantitative trait loci analyses, epigenome signature identification, luciferase reporter assay, chromatin conformation capture, homology-directed genome editing by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9), RNA sequencing, and ATAC-Seq (assay for transposase-accessible chromatin using sequencing). RESULTS We found that the schizophrenia GWAS risk variations at 16p11.2 were significantly associated with messenger RNA levels of multiple genes in human brain, and one of the leading expression quantitative trait loci genes, MAPK3, is located ∼200 kb away from these risk variations in the genome. Further analyses based on the epigenome marks in human brain and cell lines suggested that a noncoding single nucleotide polymorphism, rs4420550 (p = 2.36 × 10-9 in schizophrenia GWAS), was within a DNA enhancer region, which was validated via in vitro luciferase reporter assays. The chromatin conformation capture experiment showed that the rs4420550 region physically interacted with the MAPK3 promoter and TAOK2 promoter. Precise CRISPR/Cas9 editing of a single base pair in cells followed by RNA sequencing further confirmed the regulatory effects of rs4420550 on the transcription of 16p11.2 genes, and ATAC-Seq demonstrated that rs4420550 affected chromatin accessibility at the 16p11.2 region. The rs4420550-[A/A] cells showed significantly higher proliferation rates compared with rs4420550-[G/G] cells. CONCLUSIONS These results together suggest that rs4420550 is a functional risk variation, and this study illustrates an example of comprehensive functional characterization of schizophrenia GWAS risk loci.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun-Yang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Lei Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
FOXE1 Gene Dosage Affects Thyroid Cancer Histology and Differentiation In Vivo. Int J Mol Sci 2020; 22:ijms22010025. [PMID: 33375029 PMCID: PMC7792778 DOI: 10.3390/ijms22010025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The transcription factor Forkhead box E1 (FOXE1) is a key player in thyroid development and function and has been identified by genome-wide association studies as a susceptibility gene for papillary thyroid cancer. Several cancer-associated polymorphisms fall into gene regulatory regions and are likely to affect FOXE1 expression levels. However, the possibility that changes in FOXE1 expression modulate thyroid cancer development has not been investigated. Here, we describe the effects of FOXE1 gene dosage reduction on cancer phenotype in vivo. Mice heterozygous for FOXE1 null allele (FOXE1+/−) were crossed with a BRAFV600E-inducible cancer model to develop thyroid cancer in either a FOXE1+/+ or FOXE1+/− genetic background. In FOXE1+/+ mice, cancer histological features are quite similar to that of human high-grade papillary thyroid carcinomas, while cancers developed with reduced FOXE1 gene dosage maintain morphological features resembling less malignant thyroid cancers, showing reduced proliferation index and increased apoptosis as well. Such cancers, however, appear severely undifferentiated, indicating that FOXE1 levels affect thyroid differentiation during neoplastic transformation. These results show that FOXE1 dosage exerts pleiotropic effects on thyroid cancer phenotype by affecting histology and regulating key markers of tumor differentiation and progression, thus suggesting the possibility that FOXE1 could behave as lineage-specific oncogene in follicular cell-derived thyroid cancer.
Collapse
|
24
|
Hoang T, Song D, Lee J, Lee EK, Hwangbo Y, Kim J. Association among Body Mass Index, Genetic Variants of FTO, and Thyroid Cancer Risk: A Hospital-Based Case-Control Study of the Cancer Screenee Cohort in Korea. Cancer Res Treat 2020; 53:857-873. [PMID: 33285050 PMCID: PMC8291195 DOI: 10.4143/crt.2020.720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Obesity has been determined to be associated with fat mass and obesity-associated (FTO) gene and thyroid cancer risk. However, the effect of combined interactions between obesity and the FTO gene on thyroid cancer needs further investigation. This study aimed to examine whether interactions between body mass index (BMI) and the FTO gene are associated with an increased risk of thyroid cancer. Materials and Methods A total of 705 thyroid cancer cases and 705 sex- and age-matched normal controls were selected from the Cancer Screenee Cohort in National Cancer Center, Korea. A conditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the measure of associations and the combined effect of BMI and FTO gene on thyroid cancer. Results BMI was associated with an increased risk of thyroid cancer in subclasses of overweight (23–24.9 kg/m2; adjusted OR, 1.50; 95% CI, 1.12 to 2.00) and obese (≥ 25 kg/m2) (adjusted OR, 1.62; 95% CI, 1.23 to 2.14). There were positive associations between the FTO genetic variants rs8047395 and rs8044769 and an increased risk of thyroid cancer. Additionally, the combination of BMI subclasses and FTO gene variants was significantly associated with thyroid cancer risk in the codominant (rs17817288), dominant (rs9937053, rs12149832, rs1861867, and rs7195539), and recessive (rs17817288 and rs8044769) models. Conclusion Findings from this study identified the effects of BMI on thyroid cancer risk among individuals carrying rs17817288, rs9937053, rs12149832, rs1861867, rs7195539, and rs8044769, whereas the effects of BMI may be modified according to individual characteristics of other FTO variants.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Dayoung Song
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Yul Hwangbo
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
25
|
Implications of venous thromboembolism GWAS reported genetic makeup in the clinical outcome of ovarian cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 21:222-232. [PMID: 33161412 DOI: 10.1038/s41397-020-00201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) represents the most lethal gynaecological neoplasia. Conversely, venous thromboembolism (VTE) and OC are intricately connected, with many haemostatic components favouring OC progression. In light of this bilateral relationship, genome-wide association studies (GWAS) have reported several single-nucleotide polymorphisms (SNPs) associated with VTE risk that could be used as predictors of OC clinical outcome for better therapeutic management strategies. Thus, the present study aimed to analyse the impact of VTE GWAS-identified SNPs on the clinical outcome of 336 epithelial ovarian cancer (EOC) patients. Polymorphism genotyping was performed using the TaqMan® Allelic Discrimination methodology. Carriers with the ZFPM2 rs4734879 G allele presented a significantly higher 5-year OS, 10-year OS and disease-free survival (DFS) compared to AA genotype patients with FIGO I/II stages (P = 0.009, P = 0.001 and P = 0.003, respectively). Regarding SLC19A2 rs2038024 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS, 10-year OS and DFS compared to A allele carriers in the same FIGO subgroup (P < 0.001, P = 0.004 and P = 0.005, respectively). As for CNTN6 rs6764623 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS compared to A allele carriers with FIGO I/II stages (P = 0.015). As for OTUD7A rs7164569, F11 rs4253417 and PROCR rs10747514, no significant impact on EOC patients' survival was observed. However, future studies are required to validate these results and uncover the biological mechanisms underlying our results.
Collapse
|
26
|
Wang X, Hayes JE, Xu X, Gao X, Mehta D, Lilja HG, Klein RJ. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing. Gene 2020; 768:145265. [PMID: 33122083 DOI: 10.1016/j.gene.2020.145265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
GWAS have identified numerous SNPs associated with prostate cancer risk. One such SNP is rs10993994. It is located in the β-microseminoprotein (MSMB) promoter region, mediates MSMB prostate secretion levels, and is linked to mRNA expression changes in both MSMB and the adjacent gene NCOA4. In addition, our previous work showed a second SNP, rs7098889, is in positive linkage disequilibrium with rs10993994 and associated with MSMB expression independent of rs10993994. Here, we generate a series of clones with single alleles removed by double guide RNA (gRNA) mediated CRISPR/Cas9 deletions, through which we demonstrate that each of these SNPs independently and greatly alters MSMB expression in an allele-specific manner. We further show that these SNPs have no substantial effect on the expression of NCOA4. These data demonstrate that a single SNP can have a large effect on gene expression and illustrate the importance of functional validation studies to deconvolute observed correlations. The method we have developed is generally applicable to test any SNP for which a relevant heterozygous cell line is available. AUTHOR SUMMARY: In pursuing the underlying biological mechanism of prostate cancer pathogenesis, scientists utilized the existence of common single nucleotide polymorphisms (SNPs) in the human genome as genetic markers to perform large scale genome wide association studies (GWAS) and have so far identified more than a hundred prostate cancer risk variants. Such variants provide an unbiased and systematic new venue to study the disease mechanism, and the next big challenge is to translate these genetic associations to the causal role of altered gene function in oncogenesis. The majority of these variants are waiting to be studied and lots of them may act in oncogenesis through gene expression regulation. To prove the concept, we took rs10993994 and its linked rs7098889 as an example and engineered single cell clones by allelic-specific CRISPR/Cas9 deletion to separate the effect of each allele. We observed that a single nucleotide difference would lead to surprisingly high level of MSMB gene expression change in a gene specific and cell-type specific manner. Our study strongly supports the notion that differential level of gene expression caused by risk variants and their associated genetic locus play a major role in oncogenesis and also highlights the importance of studying the function of MSMB encoded β-MSP in prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Xing Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James E Hayes
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Program in Cancer Biology and Genetics and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Graduate School of Biomedical Sciences, Weill Cornell Medical College, New York, NY, United States
| | - Xing Xu
- Program in Cancer Biology and Genetics and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Graduate School of Biomedical Sciences, Weill Cornell Medical College, New York, NY, United States
| | - Xiaoni Gao
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Program in Cancer Biology and Genetics and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Dipti Mehta
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hans G Lilja
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Departments of Laboratory Medicine and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK and Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Robert J Klein
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Program in Cancer Biology and Genetics and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
27
|
Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M, Shen Y, Zhang N, Liu J, Hua H, Wang B, An C, Yang M. LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene 2020; 39:6664-6676. [PMID: 32939012 DOI: 10.1038/s41388-020-01460-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is the major adverse feature for recurrence and death of thyroid cancer patients. To identify lncRNAs involved in thyroid cancer metastasis, we systemically screened differentially expressed lncRNAs in lymph node metastasis, thyroid cancer, and normal tissues via RNAseq. We found that lncRNA SLC26A4-AS1 was continuously, significantly down-regulated in normal tissues, thyroid cancer, and lymph node metastasis specimens. Low SLC26A4-AS1 levels in tissues were significantly associated with poor prognosis of thyroid cancer patients. LncRNA SLC26A4-AS1 markedly inhibited migration, invasion, and metastasis capability of cancer cells in vitro and in vivo. Intriguingly, SLC26A4-AS1 could simultaneously interact with DDX5 and the E3 ligase TRIM25, which promoting DDX5 degradation through the ubiquitin-proteasome pathway. In particular, SLC26A4-AS1 inhibited expression of multiple DNA double-strand breaks (DSBs) repair genes, especially genes coding proteins in the MRE11/RAS50/NBS1 (MRN) complex. Enhanced interaction between DDX5 and transcriptional factor E2F1 due to silencing of SLC26A4-AS1 promoted binding of the DDX5-E2F1 complex at promoters of the MRN genes and, thus, stimulate the MRN/ATM dependent DSB signaling and thyroid cancer metastasis. Our study uncovered new insights into the biology driving thyroid cancer metastasis and highlights potentials of lncRNAs as future therapeutic targets again cancer metastasis.
Collapse
Affiliation(s)
- Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenting Pan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yankang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
28
|
Peng X, Zhang K, Ma L, Xu J, Chang W. The Role of Long Non-Coding RNAs in Thyroid Cancer. Front Oncol 2020; 10:941. [PMID: 32596158 PMCID: PMC7300266 DOI: 10.3389/fonc.2020.00941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer, the most common endocrine malignancy, has become the most commonly diagnosed malignant solid tumor. Moreover, some cases have poor prognosis, and the survival period is only 3-5 months. Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules more than 200 nucleotides in length that lack the ability to encode protein but participate in all aspects of gene regulation. Functionally, many lncRNAs play essential roles in epigenetic regulation at transcriptional and post-transcriptional levels via various molecular mechanisms. Recent studies have discovered important roles for lncRNAs during the complex process of carcinogenesis in thyroid cancer. In this review, we focus on lncRNAs dysregulated in thyroid cancer and summarize recently reported associations between lncRNAs and thyroid cancer in order to demonstrate the significant value of lncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Xuejiao Peng
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Medical Research Center, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Li Ma
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Junfeng Xu
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Weiqin Chang
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Walavalkar K, Notani D. Beyond the coding genome: non-coding mutations and cancer. Front Biosci (Landmark Ed) 2020; 25:1828-1838. [PMID: 32472759 DOI: 10.2741/4879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Latest advancements in genomics involving individuals from different races and geographical locations has led to the identification of thousands of common as well as rare genetic variants and copy number variations (CNVs). These studies have surprisingly revealed that the majority of genetic variation is not present within the coding region but rather in the non-coding region of the genome, which is also termed as "Medical Genome". This short review describes how mutations/variations within; regulatory sequences, architectural proteins and transcriptional regulators give rise to the aberrant gene expression profiles that drives cellular transformations and malignancies.
Collapse
Affiliation(s)
- Kaivalya Walavalkar
- Department of Cellular Organization and Signaling, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Dimple Notani
- Department of Cellular Organization and Signaling, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India,
| |
Collapse
|
30
|
Zou H, Wu LX, Tan L, Shang FF, Zhou HH. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front Cell Dev Biol 2020; 8:347. [PMID: 32523949 PMCID: PMC7261909 DOI: 10.3389/fcell.2020.00347] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide variants (SNVs) are the most common genetic variants and universally present in the human genome. Genome-wide association studies (GWASs) have identified a great number of disease or trait-associated variants, many of which are located in non-coding regions. Long intergenic non-protein coding RNAs (lincRNAs) are the major subtype of long non-coding RNAs; lincRNAs play crucial roles in various disorders and cellular models via multiple mechanisms. With rapid growth in the number of the identified lincRNAs and genetic variants, there is great demand for an investigation of SNVs in lincRNAs. Hence, in this article, we mainly summarize the significant role of SNVs within human lincRNA regions. Some pivotal variants may serve as risk factors for the development of various disorders, especially cancer. They may also act as important regulatory signatures involved in the modulation of lincRNAs in a tissue- or disorder-specific manner. An increasing number of researches indicate that lincRNA variants would potentially provide additional options for genetic testing and disease risk assessment in the personalized medicine era.
Collapse
Affiliation(s)
- Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Factor DC, Barbeau AM, Allan KC, Hu LR, Madhavan M, Hoang AT, Hazel KEA, Hall PA, Nisraiyya S, Najm FJ, Miller TE, Nevin ZS, Karl RT, Lima BR, Song Y, Sibert AG, Dhillon GK, Volsko C, Bartels CF, Adams DJ, Dutta R, Gallagher MD, Phu W, Kozlenkov A, Dracheva S, Scacheri PC, Tesar PJ, Corradin O. Cell Type-Specific Intralocus Interactions Reveal Oligodendrocyte Mechanisms in MS. Cell 2020; 181:382-395.e21. [PMID: 32246942 PMCID: PMC7426147 DOI: 10.1016/j.cell.2020.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/18/2019] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Anna M Barbeau
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucille R Hu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - An T Hoang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kathryn E A Hazel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parker A Hall
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sagar Nisraiyya
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Fadi J Najm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tyler E Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zachary S Nevin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert T Karl
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Bruna R Lima
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yanwei Song
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gursimran K Dhillon
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christina Volsko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cynthia F Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - William Phu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Kudhair BK, Alabid NN, Taheri-Kafrani A, Lafta IJ. Correlation of GSTP1 gene variants of male Iraqi waterpipe (Hookah) tobacco smokers and the risk of lung cancer. Mol Biol Rep 2020; 47:2677-2684. [DOI: 10.1007/s11033-020-05359-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
|
33
|
Morillo-Bernal J, Fernández LP, Santisteban P. FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1. Endocr Relat Cancer 2020; 27:137-151. [PMID: 31846430 PMCID: PMC6993207 DOI: 10.1530/erc-19-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Correspondence should be addressed to P Santisteban:
| |
Collapse
|
34
|
Dorris ER, Linehan E, Trenkmann M, Veale DJ, Fearon U, Wilson AG. Association of the Rheumatoid Arthritis Severity Variant rs26232 with the Invasive Activity of Synovial Fibroblasts. Cells 2019; 8:cells8101300. [PMID: 31652652 PMCID: PMC6829881 DOI: 10.3390/cells8101300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
rs26232, located in intron one of C5orf30, is associated with the susceptibility to and severity of rheumatoid arthritis (RA). Here, we investigate the relationship between this variant and the biological activities of rheumatoid arthritis synovial fibroblasts (RASFs). RASFs were isolated from the knee joints of 33 RA patients. The rs26232 genotype was determined and cellular migration, invasion, and apoptosis were compared using in vitro techniques. The production of adhesion molecules, chemokines, and proteases was measured by ELISA or flow cytometry. Cohort genotypes were CC n = 16; CT n = 14; TT n = 3. In comparison with the RASFs of the CT genotype, the CC genotype showed a 1.48-fold greater invasiveness in vitro (p = 0.02), 1.6-fold higher expression intracellular adhesion molecule (ICAM)-1 (p = 0.001), and 5-fold IFN-γ inducible protein-10 (IP-10) (p = 0.01). There was no association of the rs26232 genotype with the expression levels of either total C5orf30 mRNA or any of the three transcript variants. The rs26232 C allele, which has previously been associated with both the risk and severity of RA, is associated with greater invasive activity of RASFs in vitro, and with higher expression of ICAM-1 and IP-10. In resting RASFs, rs26232 is not a quantitative trait locus for C5orf30 mRNA, indicating a more complex mechanism underlying the genotype‒phenotype relationship.
Collapse
Affiliation(s)
- Emma R Dorris
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Eimear Linehan
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Michelle Trenkmann
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Douglas J Veale
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D06 R590, Ireland.
| | - Anthony G Wilson
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| |
Collapse
|
35
|
Bann DV, Jin Q, Sheldon KE, Houser KR, Nguyen L, Warrick JI, Baker MJ, Broach JR, Gerhard GS, Goldenberg D. Genetic Variants Implicate Dual Oxidase-2 in Familial and Sporadic Nonmedullary Thyroid Cancer. Cancer Res 2019; 79:5490-5499. [PMID: 31501191 DOI: 10.1158/0008-5472.can-19-0721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
Abstract
Highly penetrant hereditary thyroid cancer manifests as familial nonmedullary thyroid cancer (FNMTC), whereas low-penetrance hereditary thyroid cancer manifests as sporadic disease and is associated with common polymorphisms, including rs965513[A]. Whole-exome sequencing of an FNMTC kindred identified a novel Y1203H germline dual oxidase-2 (DUOX2) mutation. DUOX2Y1203H is enzymatically active, with increased production of reactive oxygen species. Furthermore, patients with sporadic thyroid cancer homozygous for rs965513[A] demonstrated higher DUOX2 expression than heterozygous rs965513[A/G] or homozygous rs965513[A]-negative patients. These data suggest that dysregulated hydrogen peroxide metabolism is a common mechanism by which high- and low-penetrance genetic factors increase thyroid cancer risk. SIGNIFICANCE: This study provides novel insights into the genetic and molecular mechanisms underlying familial and sporadic thyroid cancers.
Collapse
Affiliation(s)
- Darrin V Bann
- Department of Otolaryngology-Head & Neck Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Institute for Personalized Medicine, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Qunyan Jin
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kathryn E Sheldon
- Institute for Personalized Medicine, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Kenneth R Houser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Lan Nguyen
- Institute for Personalized Medicine, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joshua I Warrick
- Department of Pathology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Maria J Baker
- Department of Medicine, Division of Hematology/Oncology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - James R Broach
- Institute for Personalized Medicine, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Glenn S Gerhard
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - David Goldenberg
- Department of Otolaryngology-Head & Neck Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
36
|
Genetic Variation in Long-Range Enhancers. Curr Top Behav Neurosci 2019; 42:35-50. [PMID: 31396896 DOI: 10.1007/7854_2019_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cis-regulatory elements (CREs), including insulators, promoters, and enhancers, play critical roles in the establishment and maintenance of normal cellular function. Within each cell, the 3D structure of chromatin is arranged in specific patterns to expose the CREs required for optimal spatiotemporal regulation of gene expression. CREs can act over large distances along the linear genome, facilitated by looping of the intervening chromatin to allow direct interaction between distal regulatory elements and their target genes. A number of pathologies are associated with dysregulation of CRE function, including developmental disorders, cancers, and neuropsychiatric disease. A majority of known neuropsychiatric disease risk loci are noncoding, and increasing evidence suggests that they contribute to disease through disruption of CREs. As such, rather than directly altering the amino acid content of proteins, these variants are instead thought to affect where, when, and to what extent a given gene is expressed. The distances over which CREs can operate often render their target genes difficult to identify. Furthermore, as many risk loci contain multiple variants in high linkage disequilibrium, identification of the causative single nucleotide polymorphism(s) therein is not straightforward. Thus, deciphering the genetic etiology of complex neuropsychiatric disorders presents a significant challenge.
Collapse
|
37
|
Nishizaki SS, Ng N, Dong S, Porter RS, Morterud C, Williams C, Asman C, Switzenberg JA, Boyle AP. Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 2019; 36:364-372. [PMID: 31373606 PMCID: PMC7999143 DOI: 10.1093/bioinformatics/btz612] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Genome-wide association studies have revealed that 88% of disease-associated single-nucleotide polymorphisms (SNPs) reside in noncoding regions. However, noncoding SNPs remain understudied, partly because they are challenging to prioritize for experimental validation. To address this deficiency, we developed the SNP effect matrix pipeline (SEMpl). RESULTS SEMpl estimates transcription factor-binding affinity by observing differences in chromatin immunoprecipitation followed by deep sequencing signal intensity for SNPs within functional transcription factor-binding sites (TFBSs) genome-wide. By cataloging the effects of every possible mutation within the TFBS motif, SEMpl can predict the consequences of SNPs to transcription factor binding. This knowledge can be used to identify potential disease-causing regulatory loci. AVAILABILITY AND IMPLEMENTATION SEMpl is available from https://github.com/Boyle-Lab/SEM_CPP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie Ng
- Department of Human Genetics, Stanford University, Stanford, CA 94305, USA
| | - Shengcheng Dong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cody Morterud
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colten Williams
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Courtney Asman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
38
|
Hińcza K, Kowalik A, Kowalska A. Current Knowledge of Germline Genetic Risk Factors for the Development of Non-Medullary Thyroid Cancer. Genes (Basel) 2019; 10:genes10070482. [PMID: 31247975 PMCID: PMC6678600 DOI: 10.3390/genes10070482] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
The thyroid is the most common site of endocrine cancer. One type of thyroid cancer, non-medullary thyroid cancer (NMTC), develops from follicular cells and represents approximately 90% of all thyroid cancers. Approximately 5%–15% of NMTC cases are thought to be of familial origin (FNMTC), which is defined as the occurrence of the disease in three or more first-degree relatives of the patient. It is often divided into two groups: Syndrome-associated and non-syndromic. The associated syndromes include Cowden syndrome, familial adenomatous polyposis, Gardner syndrome, Carney complex and Werner syndrome. The hereditary factors contributing to the unfavorable course of FNMTC remain poorly understood; therefore, considerable effort is being expended to identify contributing loci. Research carried out to date identifies fourteen genes (DICER1, FOXE1, PTCSC2, MYH9, SRGAP1, HABP2, BRCA1, CHEK2, ATM, RASAL1, SRRM2, XRCC1, TITF-1/NKX2.1, PTCSC3) associated with vulnerability to FNMTC that are not related to hereditary syndromes. In this review, we summarize FNMTC studies to date, and provide information on genes involved in the development of non-syndromic familial non-medullary thyroid cancers, and the significance of mutations in these genes as risk factors. Moreover, we discuss whether the genetic polymorphism rs966423 in DIRC3 has any potential as a prognostic factor of papillary thyroid cancer.
Collapse
Affiliation(s)
- Kinga Hińcza
- Department Molecular Diagnostics, Holycross Centre, 25-734 Kielce, Poland.
| | - Artur Kowalik
- Department Molecular Diagnostics, Holycross Centre, 25-734 Kielce, Poland
| | - Aldona Kowalska
- The Faculty of Health Sciences of the Jan Kochanowski University, 25-317 Kielce, Poland
- Endocrinology Clinic of Holycross Cancer Centre, 25-734 Kielce, Poland
| |
Collapse
|
39
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
40
|
Wang K, Hui Y, Zhang S, Wang M, Yan H, Zhu H, Qu L, Lan X, Pan C. A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Anim Biotechnol 2019; 31:174-180. [DOI: 10.1080/10495398.2018.1561459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hailong Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
41
|
Whalen S, Pollard KS. Most chromatin interactions are not in linkage disequilibrium. Genome Res 2019; 29:334-343. [PMID: 30617125 PMCID: PMC6396425 DOI: 10.1101/gr.238022.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Chromatin interactions and linkage disequilibrium (LD) are both pairwise measurements between genomic loci that show block patterns along mammalian chromosomes. Their values are generally high for sites that are nearby in the linear genome but abruptly drop across block boundaries. One function of chromatin boundaries is to insulate regulatory domains from one another. Since recombination is depressed within genes and between distal regulatory elements and their promoters, we hypothesized that LD and chromatin contact frequency might be correlated genome-wide with the boundaries of LD blocks and chromatin domains frequently coinciding. To comprehensively address this question, we compared chromatin contacts in 22 cell types to LD across billions of pairs of loci in the human genome. These computationally intensive analyses revealed that there is no concordance between LD and chromatin interactions, even at genomic distances below 25 kilobases (kb) where both tend to be high. At genomic distances where LD is approximately zero, chromatin interactions are frequent. While LD is somewhat elevated between distal regulatory elements and their promoters, LD block boundaries are depleted—not enriched—at chromatin boundaries. Finally, gene expression and ontology data suggest that chromatin contacts identify regulatory variants more reliably than do LD and genomic proximity. We conclude that the genomic architectures of genetic and physical interactions are independent, with important implications for gene regulatory evolution, interpretation of genetic association studies, and precision medicine.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, San Francisco, California 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, California 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California San Francisco, San Francisco, California 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
42
|
Gorbacheva AM, Kuprash DV, Mitkin NA. Glucocorticoid Receptor Binding Inhibits an Intronic IL33 Enhancer and is Disrupted by rs4742170 (T) Allele Associated with Specific Wheezing Phenotype in Early Childhood. Int J Mol Sci 2018; 19:ijms19123956. [PMID: 30544846 PMCID: PMC6321062 DOI: 10.3390/ijms19123956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) is a cytokine constitutively expressed by various cells of barrier tissues that contribute to the development of inflammatory immune responses. According to its function as an alarmin secreted by lung and airway epithelium, IL-33 plays a significant role in pathogenesis of allergic disorders. IL-33 is strongly involved in the pathogenesis of asthma, anaphylaxis, allergy and dermatitis, and genetic variations in IL33 locus are associated with increased susceptibility to asthma. Genome-wide association studies have identified risk "T" allele of the single-nucleotide polymorphism rs4742170 located in putative IL33 enhancer area as susceptible variant for development of specific wheezing phenotype in early childhood. Here, we demonstrate that risk "T" rs4742170 allele disrupts binding of glucocorticoid receptor (GR) transcription factor to IL33 putative enhancer. The IL33 promoter/enhancer constructs containing either 4742170 (T) allele or point mutations in the GR-binding site, were significantly more active and did not respond to cortisol in a pulmonary epithelial cell line. At the same time, the constructs containing rs4742170 (C) allele with a functional GR-binding site were less active and further inhibitable by cortisol. The latter effect was GR-dependent as it was completely abolished by GR-specific siRNA. This mechanism may explain the negative effect of the rs4742170 (T) risk allele on the development of wheezing phenotype that strongly correlates with allergic sensitization in childhood.
Collapse
Affiliation(s)
- Alisa M Gorbacheva
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Dmitry V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Nikita A Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
43
|
Zou H, Zhou HH. WITHDRAWN: Single nucleotide polymorphism, a putative driver for the role of long intergeneric non-coding RNA. Cancer Lett 2018:S0304-3835(18)30691-8. [PMID: 30503557 DOI: 10.1016/j.canlet.2018.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Umlauf D, Mourad R. The 3D genome: From fundamental principles to disease and cancer. Semin Cell Dev Biol 2018; 90:128-137. [PMID: 30030142 DOI: 10.1016/j.semcdb.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of this 3D organization is detrimental to the organism and can give rise to a broad range of diseases such as cancers. Here, we review recent advances in the field. We first describe how the genome is packed in 3D to form chromosome territories, compartments and domains. We also give an overview of the recent techniques that allow to map the genome in 3D up to the kilobase resolution. We then discuss potential mechanisms by which genome misfolding can affect proper gene expression by distal enhancers, and how the 3D genome influences the formation of genomic rearrangements.
Collapse
Affiliation(s)
- David Umlauf
- LBME, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | - Raphaël Mourad
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
45
|
Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschênes G, Ronco P. Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome. J Am Soc Nephrol 2018; 29:2000-2013. [PMID: 29903748 PMCID: PMC6050942 DOI: 10.1681/asn.2017111185] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background Steroid-sensitive nephrotic syndrome (SSNS) is a childhood disease with unclear pathophysiology and genetic architecture. We investigated the genomic basis of SSNS in children recruited in Europe and the biopsy-based North American NEPTUNE cohort.Methods We performed three ancestry-matched, genome-wide association studies (GWAS) in 273 children with NS (Children Cohort Nephrosis and Virus [NEPHROVIR] cohort: 132 European, 56 African, and 85 Maghrebian) followed by independent replication in 112 European children, transethnic meta-analysis, and conditional analysis. GWAS alleles were used to perform glomerular cis-expression quantitative trait loci studies in 39 children in the NEPTUNE cohort and epidemiologic studies in GWAS and NEPTUNE (97 children) cohorts.Results Transethnic meta-analysis identified one SSNS-associated single-nucleotide polymorphism (SNP) rs1063348 in the 3' untranslated region of HLA-DQB1 (P=9.3×10-23). Conditional analysis identified two additional independent risk alleles upstream of HLA-DRB1 (rs28366266, P=3.7×10-11) and in the 3' untranslated region of BTNL2 (rs9348883, P=9.4×10-7) within introns of HCG23 and LOC101929163 These three risk alleles were independent of the risk haplotype DRB1*07:01-DQA1*02:01-DQB1*02:02 identified in European patients. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS. Increased burden of risk alleles across independent loci was associated with higher odds of SSNS, with younger age of onset across all cohorts, and with increased odds of complete remission across histologies in NEPTUNE children. rs1063348 associated with decreased glomerular expression of HLA-DRB1, HLA-DRB5, and HLA-DQB1.Conclusions Transethnic GWAS empowered discovery of three independent risk SNPs for pediatric SSNS. Characterization of these SNPs provide an entry for understanding immune dysregulation in NS and introducing a genomically defined classification.
Collapse
Affiliation(s)
- Hanna Debiec
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France
| | | | - Eric Letouzé
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | - Christopher E Gillies
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Marina Vivarelli
- Nephrology and Dialysis Department, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Rosemary K Putler
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Evelyne Jacqz-Aigrain
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
| | - Valery Elie
- Pediatric Pharmacology and Pharmacogenetics, CIC1426, Hôpital Robert Debré, Paris, France
| | - Manuela Colucci
- Nephrology and Dialysis Department, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stéphanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, Unité Mixte de Recherche 1219, CHU Bordeaux, Bordeaux, France
| | - Philippe Amouyel
- University of Lille, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE, Lille, France
| | - Siham C Elalaoui
- Department of Medical Genetics, Institut National d'Hygiène, Rabat, Morocco
| | - Abdelaziz Sefiani
- Human Genomic Center, Faculté de Médecine et de Pharmacie Rabat, Université Mohamed V. Rabat, Rabat, Morocco
| | - Valérie Dubois
- Etablissement Français du Sang Rhone-Alpes, Lyon, Rhone-Alpes, France
| | - Tabassome Simon
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Department of Clinical Pharmacology, Unité de Recherche Clinique, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1148, Paris, France
| | - Matthias Kretzler
- Department of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan;
| | - Jose Ballarin
- Department of Nephrology, Fundación Puigvert, Barcelona, Spain
| | - Francesco Emma
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew G Sampson
- Pediatric Nephrology, University of Michigan School of Medicine, Ann Arbor, Michigan;
| | - Georges Deschênes
- Department of Paediatric Nephrology and
- Institut National de la Santé et de la Recherche Médicale U1149, Unité de Formation et de Recherche de Médecine Xavier Bichat, Université Sorbonne Paris Cité, Paris, France; and
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France;
- Assistance Publique-Hôpitaux de Paris, Nephrology and Dialysis Department, Tenon Hospital, Paris, France
| |
Collapse
|
46
|
Bullock M, Lim G, Li C, Choi IH, Kochhar S, Liddle C, Zhang L, Clifton-Bligh RJ. Thyroid transcription factor FOXE1 interacts with ETS factor ELK1 to co-regulate TERT. Oncotarget 2018; 7:85948-85962. [PMID: 27852061 PMCID: PMC5349888 DOI: 10.18632/oncotarget.13288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although FOXE1 was initially recognized for its role in thyroid organogenesis, more recently a strong association has been identified between the FOXE1 locus and thyroid cancer. The role of FOXE1 in adult thyroid, and in particular regarding cancer risk, has not been well established. We hypothesised that discovering key FOXE1 transcriptional partners would in turn identify regulatory pathways relevant to its role in oncogenesis. RESULTS In a transcription factor-binding array, ELK1 was identified to bind FOXE1. We confirmed this physical association in heterologously transfected cells by IP and mammalian two-hybrid assays. In thyroid tissue, endogenous FOXE1 was shown to bind ELK1, and using ChIP assays these factors bound thyroid-relevant gene promoters TPO and TERT in close proximity to each other. Using a combination of electromobility shift assays, TERT promoter assays and siRNA-silencing, we found that FOXE1 positively regulated TERT expression in a manner dependent upon its association with ELK1. Treating heterologously transfected thyroid cells with MEK inhibitor U0126 inhibited FOXE1-ELK1 interaction, and reduced TERT and TPO promoter activity. METHODOLOGY We investigated FOXE1 interactions within in vitro thyroid cell models and human thyroid tissue using a combination of immunoprecipitation (IP), chromatin IP (ChIP) and gene reporter assays. CONCLUSIONS FOXE1 interacts with ELK1 on thyroid relevant gene promoters, establishing a new regulatory pathway for its role in adult thyroid function. Co-regulation of TERT suggests a mechanism by which allelic variants in/near FOXE1 are associated with thyroid cancer risk.
Collapse
Affiliation(s)
- Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Grace Lim
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Cheng Li
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - In Ho Choi
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Shivansh Kochhar
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Chris Liddle
- University of Sydney, Sydney, Australia.,Storr Liver Centre, Westmead Millennium Institute for Medical Research, Westmead Hospital, Sydney, Australia
| | - Lei Zhang
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia.,Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
47
|
Wang F, Yan D, Ji X, Han J, Chen M, Qiao H, Zhang S. rs965513 polymorphism as a common risk marker is associated with papillary thyroid cancer. Oncotarget 2018; 7:41336-41345. [PMID: 27191655 PMCID: PMC5173063 DOI: 10.18632/oncotarget.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. With the rapid development of genome-wide association studies (GWAS), many genome variants associated with susceptibility to PTC have been identified, including the single nucleotide polymorphism rs965513 (9q22.33) near FOXE1. To evaluate the association between rs965513 and PTC in different ethnicities and countries, we conducted a meta-analysis using relatively large-scale samples from 23 studies (N = 163,136; 20,736 cases and 142,400 controls) by searching the PubMed and Google Scholar databases. Significant heterogeneity caused by different populations among the selected studies was observed. The A allele of rs965513 polymorphism was shown to be highly associated with risk of thyroid cancer, with odds ratios of 1.58 (95% CI 1.32–1.90) in all populations, 1.65 (95% CI 1.31–2.07)) in Caucasian populations and 1.49 in Asian populations. Compared to the dominant and recessive models, we observed the highest odds ratio (OR = 2.80, 95% CI 2.12–3.69) in the homozygous model. These results revealed that the rs965513 polymorphism is a risk factor for thyroid cancer
Collapse
Affiliation(s)
- Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Dehui Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xu Ji
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jun Han
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Meijun Chen
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Hong Qiao
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Shaojun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
48
|
Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Mol Cancer 2017; 16:173. [PMID: 29149895 PMCID: PMC5693495 DOI: 10.1186/s12943-017-0741-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Exploring gene function is critical for understanding the complexity of life. DNA sequences and the three-dimensional organization of chromatin (chromosomal interactions) are considered enigmatic factors underlying gene function, and interactions between two distant fragments can regulate transactivation activity via mediator proteins. Thus, a series of chromosome conformation capture techniques have been developed, including chromosome conformation capture (3C), circular chromosome conformation capture (4C), chromosome conformation capture carbon copy (5C), and high-resolution chromosome conformation capture (Hi-C). The application of these techniques has expanded to various fields, but cancer remains one of the major topics. Interactions mediated by proteins or long noncoding RNAs (lncRNAs) are typically found using 4C-sequencing and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Currently, Hi-C is used to identify chromatin loops between cancer risk-associated single-nucleotide polymorphisms (SNPs) found by genome-wide association studies (GWAS) and their target genes. Chromosomal conformations are responsible for altered gene regulation through several typical mechanisms and contribute to the biological behavior and malignancy of different tumors, particularly prostate cancer, breast cancer and hematologic neoplasms. Moreover, different subtypes may exhibit different 3D-chromosomal conformations. Thus, C-tech can be used to help diagnose cancer subtypes and alleviate cancer progression by destroying specific chromosomal conformations. Here, we review the fundamentals and improvements in chromosome conformation capture techniques and their clinical applications in cancer to provide insight for future research.
Collapse
Affiliation(s)
- Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| |
Collapse
|
49
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
50
|
Nongmaithem SS, Joglekar CV, Krishnaveni GV, Sahariah SA, Ahmad M, Ramachandran S, Gandhi M, Chopra H, Pandit A, Potdar RD, H D Fall C, Yajnik CS, Chandak GR. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum Mol Genet 2017; 26:2551-2564. [PMID: 28334792 PMCID: PMC5886186 DOI: 10.1093/hmg/ddx071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 01/26/2023] Open
Abstract
Vitamin B12 is an important cofactor in one-carbon metabolism whose dysregulation is associated with various clinical conditions. Indians have a high prevalence of B12 deficiency but little is known about the genetic determinants of circulating B12 concentrations in Indians. We performed a genome-wide association study in 1001 healthy participants in the Pune Maternal Nutrition Study (PMNS), replication studies in 3418 individuals from other Indian cohorts and by meta-analysis identified new variants, rs3760775 (P = 1.2 × 10−23) and rs78060698 (P = 8.3 × 10−17) in FUT6 to be associated with circulating B12 concentrations. Although in-silico analysis replicated both variants in Europeans, differences in the effect allele frequency, effect size and the linkage disequilibrium structure of credible set variants with the reported variants suggest population-specific characteristics in this region. We replicated previously reported variants rs602662, rs601338 in FUT2, rs3760776, rs708686 in FUT6, rs34324219 in TCN1 (all P < 5 × 10−8), rs1131603 in TCN2 (P = 3.4 × 10−5), rs12780845 in CUBN (P = 3.0 × 10−3) and rs2270655 in MMAA (P = 2.0 × 10−3). Circulating B12 concentrations in the PMNS and Parthenon study showed a significant decline with increasing age (P < 0.001), however, the genetic contribution to B12 concentrations remained constant. Luciferase reporter and electrophoretic-mobility shift assay for the FUT6 variant rs78060698 using HepG2 cell line demonstrated strong allele-specific promoter and enhancer activity and differential binding of HNF4α, a key regulator of expression of various fucosyltransferases. Hence, the rs78060698 variant, through regulation of fucosylation may control intestinal host-microbial interaction which could influence B12 concentrations. Our results suggest that in addition to established genetic variants, population-specific variants are important in determining plasma B12 concentrations.
Collapse
Affiliation(s)
- Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Charudatta V Joglekar
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ghattu V Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka 570 021, India
| | - Sirazul A Sahariah
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Meraj Ahmad
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Swetha Ramachandran
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Meera Gandhi
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Harsha Chopra
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Anand Pandit
- Department of Pediatrics, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ramesh D Potdar
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Caroline H D Fall
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Chittaranjan S Yajnik
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India.,Human Genetics Unit, Genome Institute of Singapore, Biopolis, 138 672, Singapore
| |
Collapse
|