1
|
Fu R, Li Z, Liu J, Xu B, Wen X, Zhang L. Potential mechanism of inhibitory effect of "medicine food homology" curcumin and its analogue EF24 on oral squamous cell carcinoma. Clin Transl Oncol 2025:10.1007/s12094-025-03871-8. [PMID: 40314923 DOI: 10.1007/s12094-025-03871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of head and neck with high incidence and poor prognosis. Curcumin, as a drug-food congener, has a broad spectrum of anticancer effects, and based on this property, we further focused on EF24, a small molecule compound using curcumin as a backbone, to study the effects of both in OSCC. METHODS Cell experiments were performed to test the inhibitory effect of curcumin and EF24 on OSCC cells. The potential mechanism was further analyzed by transcriptome sequencing, and the DEGs after drug treatment were determined. PPI networks were created using Cytoscape software. RESULTS Both curcumin and EF24 inhibit the viability, migration, and invasion, and induce apoptosis of OSCC cells and the IC50 of EF24 was much lower than that of curcumin. Analysis of DEGs identified 893 DEGs following curcumin treatment, of which 794 were up-regulated and 99 were down-regulated; 797 DEGs following EF24 treatment were identified, of which 665 were up-regulated and 132 were down-regulated. Curcumin and EF24 were found to down-regulate lipid metabolism by key enzymes that regulate fatty acid and cholesterol synthesis. Furthermore, the number of T cell CD4 + memory is up-regulated and the immune response is enhanced. CONCLUSIONS It is suggested that curcumin and EF24 inhibit the metabolic reprogramming of tumor cells and at the same time regulate TME, and improve the immunotherapy of tumors, which opens the way for the future treatment of OSCC with this approach alone or in conjunction with immune-checkpoint blocking.
Collapse
Affiliation(s)
- Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Ji'an Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Bo Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- National Center for Stomatology, Shanghai, People's Republic of China.
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.
- Kashagar District Second People's Hospital, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Yang Y, Wang L, Zeng Z, He C, Wang Y, Huang Y. Gain-of-Function Variant in Spleen Tyrosine Kinase Regulates Macrophage Migration and Functions to Promote Intestinal Inflammation. J Inflamm Res 2024; 17:8713-8726. [PMID: 39559401 PMCID: PMC11570706 DOI: 10.2147/jir.s488901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose Spleen tyrosine kinase (Syk) is a widely-expressed cytoplasmic non-receptor tyrosine kinase involved in regulating various signaling pathways and plays an important role in chronic inflammation and autoimmune diseases. Gain-of-function SYK variants have been implicated in pediatric inflammatory bowel diseases. This study aimed to investigate the effects of gain-of-function SYK variants on the susceptibility to experimental colitis and macrophage function. Methods Colitis was induced using dextran sodium sulfate and dinitrobenzene sulfonic acid in mice harboring a gain-of-function variant in SYK (SykS544Y). Intestinal inflammation was assessed via disease activity index, histological analysis, and Western blotting. The frequencies of macrophages, phagocytosis, and reactive oxygen species (ROS) production in bone marrow-derived macrophages (BMDM) were measured via flow cytometry. Chemokines and BMDM chemotaxis were analyzed using real-time quantitative reverse transcription polymerase chain reaction and Transwell assays. The expression of nucleotide-binding domain leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome-related proteins were detected using immunohistochemistry, enzyme-linked immunoassay and Western blotting. Results SykS544Y mice exhibited increased susceptibility to experimental colitis, and macrophage infiltration in colon tissues significantly increased. We observed increased expression of macrophage chemokines in colon tissues and enhanced chemotaxis in SykS544Y BMDM. Additionally, we detected increased levels of fluorescent microspheres and 2.7-dichloride-hydro fluorescein diacetate-labeled ROS in SykS544Y BMDM. Moreover, enhanced levels of NLRP3 inflammasome-related proteins were observed in the colon tissues and BMDM from SykS544Y mice. Conclusion Gain-of-function variant in SYK may contribute to the pathogenesis of pediatric inflammatory bowel diseases by promoting macrophage migration, phagocytosis, ROS production and activation of NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Ye Yang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Lin Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Zhiyang Zeng
- Department of Central Laboratory, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, People’s Republic of China
| | - Chunmeng He
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Yanqiu Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| |
Collapse
|
3
|
Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. Spatial host-microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol 2024; 42:1394-1403. [PMID: 37985876 PMCID: PMC11392810 DOI: 10.1038/s41587-023-01988-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2023] [Indexed: 11/22/2023]
Abstract
Mucosal and barrier tissues, such as the gut, lung or skin, are composed of a complex network of cells and microbes forming a tight niche that prevents pathogen colonization and supports host-microbiome symbiosis. Characterizing these networks at high molecular and cellular resolution is crucial for understanding homeostasis and disease. Here we present spatial host-microbiome sequencing (SHM-seq), an all-sequencing-based approach that captures tissue histology, polyadenylated RNAs and bacterial 16S sequences directly from a tissue by modifying spatially barcoded glass surfaces to enable simultaneous capture of host transcripts and hypervariable regions of the 16S bacterial ribosomal RNA. We applied our approach to the mouse gut as a model system, used a deep learning approach for data mapping and detected spatial niches defined by cellular composition and microbial geography. We show that subpopulations of gut cells express specific gene programs in different microenvironments characteristic of regional commensal bacteria and impact host-bacteria interactions. SHM-seq should enhance the study of native host-microbe interactions in health and disease.
Collapse
Affiliation(s)
- Britta Lötstedt
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- New York Genome Center, New York, NY, USA
| | | | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts, General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Sanja Vickovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- New York Genome Center, New York, NY, USA.
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
6
|
Huskey ALW, Merner ND. An investigation into the role of inherited CEACAM gene family variants and colorectal cancer risk. BMC Res Notes 2022; 15:26. [PMID: 35115044 PMCID: PMC8815132 DOI: 10.1186/s13104-022-05907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 01/03/2023] Open
Abstract
Objective This study was designed to determine if CEACAM mutations are associated with inherited risk of colorectal cancer. Recently, protein-truncating mutations in the CEACAM gene family were associated with inherited breast cancer risk. That discovery, along with aberrant expression of CEACAM genes in colorectal cancer tumors and that colorectal cancer and breast cancer share many risk factors, including genetics, inspired our team to search for inherited CEACAM mutations in colorectal cancer cases. Specifically utilizing The Cancer Genome Atlas (TCGA) blood-derived whole-exome sequencing data from the colorectal cancer cohort, rare protein-truncating variants and missense variants were investigated through single variant and aggregation analyses in European American and African American cases and compared to ethnic-matched controls. Results A total of 34 and 14 different CEACAM variants were identified in European American and African American colorectal cancer cases, respectively. Nine missense variants were individually associated with risk, two in African Americans and seven in European Americans. No identified protein-truncating variants were associated with CRC risk in either ethnicity. Gene family and gene-specific aggregation analyses did not yield any significant results. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05907-6.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 3306 Walker Building, Auburn, AL, 36849, USA
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Kotani T, Ihara N, Okamoto S, Setiawan J, Konno T, Saito Y, Murata Y, Matozaki T. Role of Ras in regulation of intestinal epithelial cell homeostasis and crosstalk with Wnt signaling. PLoS One 2021; 16:e0256774. [PMID: 34437645 PMCID: PMC8389409 DOI: 10.1371/journal.pone.0256774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cross talk between different signaling pathways is thought to be important for regulation of homeostasis of, as well as oncogenesis of, the intestinal epithelium. Expression of an active form of K-Ras specifically in intestinal epithelial cells (IECs) of mice (IEC-RasDA mice) resulted in the development of hyperplasia in the small intestine and colon of mice. IEC-RasDA mice also manifested the increased proliferation of IECs. In addition, the number of goblet cells markedly increased, while that of Paneth cells decreased in IEC-RasDA mice. Development of intestinal organoids was markedly enhanced for IEC-RasDA mice compared with control mice. Whereas, the expression of Wnt target genes was significantly reduced in the in intestinal crypts from IEC-RasDA mice compared with that apparent for the control. Our results thus suggest that K-Ras promotes the proliferation of IECs as well as generation of goblet cells. By contrast, Ras counter-regulates the Wnt signaling and thereby contribute to the proper regulation of intestinal epithelial cell homeostasis.
Collapse
Affiliation(s)
- Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriko Ihara
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Saki Okamoto
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jajar Setiawan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tasuku Konno
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
8
|
Gong W, Liu P, Zheng T, Wu X, Zhao Y, Ren J. The ubiquitous role of spleen tyrosine kinase (Syk) in gut diseases: From mucosal immunity to targeted therapy. Int Rev Immunol 2021; 41:552-563. [PMID: 34355656 DOI: 10.1080/08830185.2021.1962860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic non-receptor protein tyrosine kinase expressed in a variety of cells and play crucial roles in signal transduction. Syk mediates downstream signaling by recruiting to the dually phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the transmembrane adaptor molecule or the receptor chain itself. In gut diseases, Syk is observed to be expressed in intestinal epithelial cells, monocytes/macrophages, dendritic cells and mast cells. Activation of Syk in these cells can modulate intestinal mucosal immune response by promoting inflammatory cytokines and chemokines production, thus regulating gut homeostasis. Due to the restriction of specificity and selectivity for the development of Syk inhibitors, only a few such inhibitors are available in gut diseases, including intestinal ischemia/reperfusion damage, infectious disease, inflammatory bowel disease, etc. The promising outcomes of Syk inhibitors from both preclinical and clinical studies have shown to attenuate the progression of gut diseases thereby indicating a great potential in the development of Syk targeted therapy for treatment of gut diseases. This review depicts the characterization of Syk, summarizes the signal pathways of Syk, and discusses its potential targeted therapy for gut diseases.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jianan Ren
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China.,Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| |
Collapse
|
9
|
The High Expression of PTPRH Is Associated with Poor Prognosis of Human Lung Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9932088. [PMID: 34367321 PMCID: PMC8342145 DOI: 10.1155/2021/9932088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 01/30/2023]
Abstract
Objective The aim of the study is to explore the prognosis value of PTPRH in patients with lung adenocarcinoma (LUAD). Methods Oncomine, UALCAN, and GEPIA databases were employed to examine the differential expression of PTPRH between LUAD and adjacent tissues. 100 pairs of LUAD and adjacent tissue samples were involved in this study. qRT-PCR and immunohistochemical staining were performed. Meanwhile, we analyzed The Cancer Genome Atlas (TCGA) data to investigate the correlation between PTPRH gene expression and clinicopathological characteristics. Kaplan-Meier analysis and univariate and multivariate Cox analyses were performed to estimate the relationship between PTPRH expression and LUAD prognosis. The evaluation performance was verified by drawing a ROC curve. In addition, through GSEA, the changes of PTPRH expression were analyzed by GSEA to screen out primarily affected signaling pathway. Results Oncomine, UALCAN, and GEPIA databases showed that the mRNA expression of PTPRH in LUAD tissues was significantly higher than that in adjacent tissues. qRT-PCR and immunohistochemical staining indicated the mRNA and protein levels of PTPRH in LUAD tissues were markedly upregulated. TCGA data showed that the expression of PTPRH was significantly correlated with T stage and disease stage. Kaplan-Meier analysis showed that the patients with high PTPRH expression had a poor prognosis. Univariate and multivariate Cox analyses exhibited that PTPRH expression could act as an independent prognostic factor for LUAD. The ROC curve showed that PTPRH combined with various clinicopathological features could effectively predict the prognosis of LUAD. Finally, GSEA indicated that changes in PTPRH expression level may affect p53, VEGF, Notch, and mTOR cancer-related signaling pathways. Conclusion Our results demonstrated that PTPRH was highly expressed in LUAD and may be closely correlated with the poor prognosis of LUAD patients.
Collapse
|
10
|
Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M, Murakami A, Kamei Y, Takeda H, Takada Y, Higashiyama S. CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 2021; 4:4/9/e202101095. [PMID: 34187934 PMCID: PMC8321701 DOI: 10.26508/lsa.202101095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
CNKSR1 functions as a scaffold protein for activation of an EGFR phosphatase, PTPRH, at the plasma membrane through the exclusive interaction with RhoB-GTP which is constitutively degraded by the CUL3/KCTD10 E3 complex. Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.
Collapse
Affiliation(s)
- Kanako Nishiyama
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoya Nakagita
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Mami Chosei
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan.,Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|
11
|
Yang C, Chen SJ, Chen BW, Zhang KW, Zhang JJ, Xiao R, Li PG. Gene Expression Profile of the Human Colorectal Carcinoma LoVo Cells Treated With Sporamin and Thapsigargin. Front Oncol 2021; 11:621462. [PMID: 34113558 PMCID: PMC8185278 DOI: 10.3389/fonc.2021.621462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Si-Jia Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Bo-Wen Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China.,National Center for Child Nutriment Quality Supervision and Testing, China National Children's Center, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| |
Collapse
|
12
|
Park JH, Jung IK, Lee Y, Jin S, Yun HJ, Kim BW, Kwon HJ. Alcohol stimulates the proliferation of mouse small intestinal epithelial cells via Wnt signaling. Biochem Biophys Res Commun 2020; 534:639-645. [PMID: 33220923 DOI: 10.1016/j.bbrc.2020.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
The intestinal epithelium is one of the fastest renewing tissues in mammals and is a barrier against toxic substances such as alcohol. Excessive alcohol can induce intestinal damage leading to intestinal bowel diseases. Thus, the control of small intestinal epithelial cell (IEC) regeneration is thought to be important for homeostasis in response to epithelium damage. However, reports on how epithelial cells respond to small intestinal damage are scarce. We investigated the effects of alcohol consumption on small intestinal epithelial cells of mice. To verify that alcohol altered the small intestinal epithelium, we used 8-10 weeks old male C57BL/6J mice for models of chronic and binge alcohol consumption (the NIAAA model) in addition to an organoid model. Alcohol promoted the proliferative activity of IECs and intestinal stem cells (ISCs) in intestinal crypts. Alcohol consumption increased expression of the proliferation marker cyclin D1 and activated the p44/42 MAPK (Erk1/2) signaling pathway in small intestinal epithelial cells. The Wnt target genes were markedly increased in IECs from alcohol-treated mice. In the small intestinal organoid model exposed to alcohol, the organoid area and numbers of buds increased with alcohol concentrations up to 0.5% similar to in vivo observations. These results suggest that alcohol consumption stimulates the proliferation of small intestinal epithelial cells via Wnt signaling.
Collapse
Affiliation(s)
- Jung-Ha Park
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-eui University, Busan, 47340, South Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, South Korea.
| | - In Kyo Jung
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-eui University, Busan, 47340, South Korea; Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, 28159, South Korea
| | - Yongjun Lee
- Hongcheon Institute of Medicinal Herb, Hongcheon, 25142, South Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, South Korea
| | - Hee Jung Yun
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-eui University, Busan, 47340, South Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-eui University, Busan, 47340, South Korea; Blue-Bio Industry Regional Innovation Center, Dong-eui University, South Korea
| | - Hyun Ju Kwon
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-eui University, Busan, 47340, South Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, South Korea; Blue-Bio Industry Regional Innovation Center, Dong-eui University, South Korea.
| |
Collapse
|
13
|
Kotani T, Setiawan J, Konno T, Ihara N, Okamoto S, Saito Y, Murata Y, Noda T, Matozaki T. Regulation of colonic epithelial cell homeostasis by mTORC1. Sci Rep 2020; 10:13810. [PMID: 32796887 PMCID: PMC7427982 DOI: 10.1038/s41598-020-70655-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium-induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.
Collapse
Affiliation(s)
- Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jajar Setiawan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tasuku Konno
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriko Ihara
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Saki Okamoto
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuo Noda
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
14
|
Retinoid acid induced 16 deficiency aggravates colitis and colitis-associated tumorigenesis in mice. Cell Death Dis 2019; 10:958. [PMID: 31862898 PMCID: PMC6925230 DOI: 10.1038/s41419-019-2186-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Although some studies reported the roles of Retinoid acid induced 16 (RAI16) in the tumorigenesis of hepatocellular carcinoma and PKA signaling, the roles of RAI16 in IBD and CRC are undressed. RAI16−/− mice were generated and the roles of RAI16 were addressed in dextran sodium sulfate (DSS) or azoxymethane (AOM)-DSS induced IBD or CAC mouse models, respectively. At first, RAI16−/− mice were viable, fertile with no apparent defects. Then, it was found that RAI16−/− mice were more susceptibility to colitis induced by DSS than wild type (WT) littermates, which was evaluated by disease activity index and histological score. Furthermore, the expressions of tissues repair associated molecules Cox2, Ereg and MMP-10 were significantly decreased in RAI16−/− colon under DSS treatment. Gut barrier related genes including antimicrobial peptides Reg3b and Reg3g and intestinal mucus genes Muc4, Muc6 and Muc20 were reduced in RAI16−/− colon. These findings indicated that RAI16 may function to affect genes involved in intestinal barrier function and immunoprotective inflammation. Accordingly, RAI16−/− mice displayed significantly increased tumor burden compared with WT mice assessed in CAC model induced by AOM/DSS. Much more Ki67 + nuclei were observed in RAI16−/− tumors suggesting RAI16 to be critical in colonic cell proliferation during tumorigenesis. Conclusively, we demonstrate the roles of RAI16 in colonic inflammation and inflammation-associated tumorigenesis by using a novel RAI16−/− mouse model for the first time.
Collapse
|
15
|
Kelleher M, Singh R, O'Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine Growth Factor Rev 2019; 47:21-31. [PMID: 31133507 DOI: 10.1016/j.cytogfr.2019.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.
Collapse
Affiliation(s)
- Maebh Kelleher
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Department of Medicine, University College Cork, Cork, T12YT20, Ireland.
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland.
| |
Collapse
|
16
|
SETIAWAN JAJAR, KOTANI TAKENORI, KONNO TASUKU, SAITO YASUYUKI, MURATA YOJI, NODA TETSUO, MATOZAKI TAKASHI. Regulation of Small Intestinal Epithelial Homeostasis by Tsc2-mTORC1 Signaling. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 64:E200-E209. [PMID: 31327863 PMCID: PMC6668652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 06/10/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1), a protein complex containing the serine/threonine kinase mTOR, integrates various growth stimulating signals. mTORC1 is expressed in intestinal epithelial cells (IECs), whereas the physiological roles of this protein complex in homeostasis of IECs remain virtually unknown. We here generated mice, in which tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, was specifically ablated in IECs (Tsc2 CKO mice). Ablation of Tsc2 enhanced the phosphorylation of mTORC1 downstream molecules such as ribosomal S6 protein and 4E-BP1 in IECs. Tsc2 CKO mice manifested the enhanced proliferative activity of IECs in intestinal crypts as well as the promoted migration of these cells along the crypt-villus axis. The mutant mice also manifested the increased apoptotic rate of IECs as well as the increased ectopic Paneth cells, which are one of the major differentiated IECs. In addition, in vitro study showed that ablation of Tsc2 promoted the development of intestinal organoids without epidermal growth factor, while mTORC1 inhibitor, rapamycin, diminished this phenotype. Our results thus suggest that Tsc2-mTORC1 signaling regulates the proliferation, migration, and positioning of IECs, and thereby contributes to the proper regulation of intestinal homeostasis.
Collapse
Affiliation(s)
- JAJAR SETIAWAN
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - TAKENORI KOTANI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TASUKU KONNO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YASUYUKI SAITO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOJI MURATA
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TETSUO NODA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - TAKASHI MATOZAKI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Ibrahim ML, Klement JD, Lu C, Redd PS, Xiao W, Yang D, Browning DD, Savage NM, Buckhaults PJ, Morse HC, Liu K. Myeloid-Derived Suppressor Cells Produce IL-10 to Elicit DNMT3b-Dependent IRF8 Silencing to Promote Colitis-Associated Colon Tumorigenesis. Cell Rep 2018; 25:3036-3046.e6. [PMID: 30540937 PMCID: PMC6319669 DOI: 10.1016/j.celrep.2018.11.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
IL-10 functions as a suppressor of colitis and colitis-associated colon cancer, but it is also a risk locus associated with ulcerative colitis. The mechanism underlying the contrasting roles of IL-10 in inflammation and colon cancer is unknown. We report here that inflammation induces the accumulation of CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) that express high levels of IL-10 in colon tissue. IL-10 induces the activation of STAT3 that directly binds to the Dnmt1 and Dnmt3b promoters to activate their expression, resulting in DNA hypermethylation at the Irf8 promoter to silence IRF8 expression in colon epithelial cells. Mice with Irf8 deleted in colonic epithelial cells exhibit significantly higher inflammation-induced tumor incidence. Human colorectal carcinomas have significantly higher DNMT1 and DNMT3b and lower IRF8 expression, and they exhibit significantly higher IRF8 promoter DNA methylation than normal colon. Our data identify the MDSC-IL-10-STAT3-DNMT3b-IRF8 pathway as a link between chronic inflammation and colon cancer initiation.
Collapse
Affiliation(s)
- Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Phillip J Buckhaults
- Department of Drug Discovery and Biomedical Sciences, the University of South Carolina, Columbia, SC 29208, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
18
|
Sun C, Murata Y, Imada S, Konno T, Kotani T, Saito Y, Yamada H, Matozaki T. Role of Csk in intestinal epithelial barrier function and protection against colitis. Biochem Biophys Res Commun 2018; 504:109-114. [DOI: 10.1016/j.bbrc.2018.08.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
|
19
|
Pollard DJ, Berger CN, So EC, Yu L, Hadavizadeh K, Jennings P, Tate EW, Choudhary JS, Frankel G. Broad-Spectrum Regulation of Nonreceptor Tyrosine Kinases by the Bacterial ADP-Ribosyltransferase EspJ. mBio 2018; 9:e00170-18. [PMID: 29636436 PMCID: PMC5893879 DOI: 10.1128/mbio.00170-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine phosphorylation is key for signal transduction from exogenous stimuli, including the defense against pathogens. Conversely, pathogens can subvert protein phosphorylation to control host immune responses and facilitate invasion and dissemination. The bacterial effectors EspJ and SeoC are injected into host cells through a type III secretion system by enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Citrobacter rodentium, and Salmonella enterica, where they inhibit Src kinase by coupled amidation and ADP-ribosylation. C. rodentium, which is used to model EPEC and EHEC infections in humans, is a mouse pathogen triggering colonic crypt hyperplasia (CCH) and colitis. Enumeration of bacterial shedding and CCH confirmed that EspJ affects neither tolerance nor resistance to infection. However, comparison of the proteomes of intestinal epithelial cells isolated from mice infected with wild-type C. rodentium or C. rodentium encoding catalytically inactive EspJ revealed that EspJ-induced ADP-ribosylation regulates multiple nonreceptor tyrosine kinases in vivo Investigation of the substrate repertoire of EspJ revealed that in HeLa and A549 cells, Src and Csk were significantly targeted; in polarized Caco2 cells, EspJ targeted Src and Csk and the Src family kinase (SFK) Yes1, while in differentiated Thp1 cells, EspJ modified Csk, the SFKs Hck and Lyn, the Tec family kinases Tec and Btk, and the adapter tyrosine kinase Syk. Furthermore, Abl (HeLa and Caco2) and Lyn (Caco2) were enriched specifically in the EspJ-containing samples. Biochemical assays revealed that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, controls immune responses and the Src/Csk signaling axis.IMPORTANCE Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) strains cause significant mortality and morbidity worldwide. Citrobacter rodentium is a mouse pathogen used to model EPEC and EHEC pathogenesis in vivo Diarrheal disease is triggered following injection of bacterial effectors, via a type III secretion system (T3SS), into intestinal epithelial cells (IECs). While insights into the role of the effectors were historically obtained from pathological, immunologic, or cell culture phenotypes, subtle roles of individual effectors in vivo are often masked. The aim of this study was to elucidate the role and specificity of the ADP-ribosyltransferase effector EspJ. For the first time, we show that the in vivo processes affected by a T3SS effector can be studied by comparing the proteomes of IECs extracted from mice infected with wild-type C. rodentium or an espJ catalytic mutant. We show that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, regulates the host immune response in vivo.
Collapse
Affiliation(s)
- Dominic J Pollard
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Cedric N Berger
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Ernest C So
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Lu Yu
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | | | - Edward W Tate
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| |
Collapse
|
20
|
Mori S, Kamei N, Murata Y, Takayama K, Matozaki T, Takeda-Morishita M. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules. J Pharm Sci 2017; 106:2904-2908. [DOI: 10.1016/j.xphs.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
21
|
Orentas RJ, Sindiri S, Duris C, Wen X, He J, Wei JS, Jarzembowski J, Khan J. Paired Expression Analysis of Tumor Cell Surface Antigens. Front Oncol 2017; 7:173. [PMID: 28871274 PMCID: PMC5566986 DOI: 10.3389/fonc.2017.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023] Open
Abstract
Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs) is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19) or antibody-based therapy (anti-CD20) in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance) for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues). We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK) with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK1, GPR173, or with one another provided the most promising paired-hits. We propose that targeting these markers together would increase the specificity and thereby the safety of CAR-based therapy for neuroblastoma.
Collapse
Affiliation(s)
- Rimas J Orentas
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Sivasish Sindiri
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Christine Duris
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xinyu Wen
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jianbin He
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jun S Wei
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jason Jarzembowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Javed Khan
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Kotani T, Murata Y, Saito Y, Matozaki T. Future therapeutic potential of SAP-1 in inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2016; 10:1313-1315. [PMID: 27705005 DOI: 10.1080/17474124.2016.1245144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Takenori Kotani
- a Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Yoji Murata
- a Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Yasuyuki Saito
- a Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Takashi Matozaki
- a Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , Kobe , Japan
| |
Collapse
|
23
|
Zimmermann W, Kammerer R. Coevolution of paired receptors in Xenopus carcinoembryonic antigen-related cell adhesion molecule families suggests appropriation as pathogen receptors. BMC Genomics 2016; 17:928. [PMID: 27852220 PMCID: PMC5112662 DOI: 10.1186/s12864-016-3279-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023] Open
Abstract
Background In mammals, CEACAM1 and closely related members represent paired receptors with similar extracellular ligand-binding regions and cytoplasmic domains with opposing functions. Human CEACAM1 and CEACAM3 which have inhibitory ITIM/ITSM and activating ITAM-like motifs, respectively, in their cytoplasmic regions are such paired receptors. Various bacterial pathogens bind to CEACAM1 on epithelial and immune cells facilitating both entry into the host and down-regulation of the immune response whereas interaction with granulocyte-specific CEACAM3 leads to their uptake and destruction. It is unclear whether paired CEACAM receptors also exist in other vertebrate clades. Results We identified more than 80 ceacam genes in Xenopus tropicalis and X. laevis. They consist of two subgroups containing one or two putative paired receptor pairs each. Analysis of genomic sequences of paired receptors provide evidence that their highly similar ligand binding domains were adjusted by recent gene conversion events. In contrast, selection for diversification is observed among inhibitory receptor orthologs of the two frogs which split some 60 million years ago. The allotetraploid X. laevis arose later by hybridization of two closely related species. Interestingly, despite the conservation of the genomic landscape surrounding the homeologous ceacam loci only one locus resembles the one found in X. tropicalis. From the second X. laevis locus more than 80 % of the ceacam genes were lost including 5 of the 6 paired receptor genes. This suggests that once the gene for one of the paired receptors is lost the remaining gene cluster degrades rapidly probably due to lack of selection pressure exerted by pathogens. Conclusions The presence of paired receptors and selection for diversification suggests that also in amphibians CEACAM1-related inhibitory proteins are or were used as pathogen receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3279-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, University Clinic, Ludwig-Maximilians-University, Feodor-Lynen-Str. 19, 81377, Munich, Germany. .,Department of Urology, University Clinic, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler Institut, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
24
|
Role of Src Family Kinases in Regulation of Intestinal Epithelial Homeostasis. Mol Cell Biol 2016; 36:2811-2823. [PMID: 27550814 DOI: 10.1128/mcb.00311-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/21/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023] Open
Abstract
Proper regulation of epithelial cell turnover is important for the structural integrity and homeostasis of various tissues, including the intestine. Here we show that ablation of Csk, a negative regulator of Src family kinases (SFKs), specifically in intestinal epithelial cells (IECs) resulted in the development of hyperplasia throughout the intestinal epithelium of mice. Such conditional ablation of Csk also increased the proliferative activity and turnover of IECs, disturbed the differentiation of Paneth and goblet cells, reduced the number of intestinal stem cells, and attenuated the expression of Wnt target genes in the intestine. Moreover, the tyrosine phosphorylation of focal adhesion kinase (FAK) and the activities of both Rac and Yes-associated protein (YAP) were increased in intestinal crypts or organoids of the mutant mice, whereas inhibition of Rac or YAP activity rescued the mutant phenotypes. Our results thus suggest that SFKs promote the proliferation of IECs in intestinal crypts through activation of Rac or YAP and that they thereby contribute to the proper regulation of IEC turnover and intestinal homeostasis.
Collapse
|
25
|
Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, Usui Y, Hatano N, Shinohara M, Saito Y, Murata Y, Matozaki T. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS One 2016; 11:e0156334. [PMID: 27232601 PMCID: PMC4883796 DOI: 10.1371/journal.pone.0156334] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
The life span of intestinal epithelial cells (IECs) is short (3–5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen–free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs.
Collapse
Affiliation(s)
- Jung-ha Park
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (TM); (TK)
| | - Tasuku Konno
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jajar Setiawan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuaki Kitamura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Imada
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaro Usui
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (TM); (TK)
| |
Collapse
|
26
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|