1
|
Farrell HN, Alemseged Z. Locomotor adaptation in the hominoid clavicle through ontogeny. J Hum Evol 2025; 201:103652. [PMID: 39999513 DOI: 10.1016/j.jhevol.2025.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025]
Abstract
Reconstructions of the locomotor behavior of early hominins have been hindered by our incomplete understanding of the form-function relationship in the extant hominoid shoulder. Although extensive research has highlighted the role of the highly mobile shoulder in supporting the locomotor diversity and versatility observed in hominoids, the contribution of the clavicle and its morphological diversity to shoulder function remains significantly underexplored. In this study, we analyzed the cross-sectional geometry of the ape clavicle using a large ontogenetic sample to identify new osteological signals related to locomotor adaptation in the shoulder. We assessed the interspecific and intraspecific differences in cortical bone distribution, with ratios of cortical properties describing the relative eccentricity of the cross section (the ratio of the second moments of area about the maximum [IMAX] and minimum [IMIN] principal axes [IMAX/IMIN]), the orientation of the anatomical plane that eccentricity is occurring in (the ratio of the second moments of area relative to the craniocaudal [IX] and dorsoventral [IY] axes [IX/IY]), and the relative proportion of cortical bone in each section. Our analyses demonstrate that the hominoid clavicle holds strong signals of locomotor adaptation that can be identified both across taxa and through ontogeny. Gibbons and orangutans have a relatively uniform clavicular cortical geometry throughout life, with gibbon clavicles built to best withstand habitual, unidirectional bending forces and orangutan clavicles remodeled to resist unpredictable, multidirectional loading. Furthermore, we find a clear signal of increased clavicular bending in the same portion of the diaphysis through ontogeny in the cortical geometry of chimpanzees and gorillas, likely reflecting both the shifts toward terrestriality through ontogeny and bending rigidity needed for continued arboreality at a larger body mass. Ultimately, these results are promising for the identification of locomotor adaptation in the shoulder of early hominins, especially Australopithecus, and highlight the key structural role of the clavicle in ape locomotion.
Collapse
Affiliation(s)
- Hannah N Farrell
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA.
| | - Zeresenay Alemseged
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Spear JK. Phylogenetic comparative analysis of suspensory adaptations in primates. J Hum Evol 2025; 198:103616. [PMID: 39591816 DOI: 10.1016/j.jhevol.2024.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
The evolution of suspensory locomotion in primates has been of great interest to biological anthropologists since the early 20th century due to the contentious hypothesis that suspension in hominoids may have been a preadaptation for bipedalism. Studies of fossil hominoids regularly look for traits (or lack thereof) indicative of suspension, but many fossils exhibit potentially confusing mosaics of traits, and there is ongoing debate regarding whether certain traits are truly associated with suspension or whether they might more accurately represent allometric trends, developmental byproducts, or adaptation to cautious climbing. Here, I test the association between 27 morphological traits and forelimb suspension in extant primates using phylogenetically informed comparative methods, a broad comparative sample (nearly 1500 individuals representing 74 genera), and a systematic review of behavioral literature. I find that clavicle length, olecranon length, mediolateral scapula breadth (but not craniocaudal height), and glenoid and scapula spine angle are all strongly associated with suspension. The association is strongest for clavicle and olecranon lengths when the 'suspensory' category is highly exclusive, whereas it is strongest for scapula breadth, glenoid angle, and spine angle when the category is highly inclusive (i.e., also including taxa that use only limited amounts of suspension). Humeral head height above the greater tuberosity appears to be associated with nonquadrupedal locomotion generally rather than suspension specifically. Insertions for the biceps and deltoid muscles are significantly more distal in suspensory taxa only when size-standardized by a body size proxy, not when standardized by the length of the load arm. Overall, a majority of hypothesized traits are not actually associated with suspension in a phylogenetic comparative context. Morphological adaptations that do characterize suspension are expressed in a mosaic fashion that depends on the degree of suspension practiced, other behaviors used, and evolutionary history. Most of these traits may be related to an enhanced range of motion at the shoulder.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
3
|
Lee ECS, Lawrence RL, Rainbow MJ. Sexual dimorphism and allometry in human scapula shape. J Anat 2024; 245:674-685. [PMID: 39161228 PMCID: PMC11470781 DOI: 10.1111/joa.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Scapula shape is highly variable across humans and appears to be sexually dimorphic-differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.
Collapse
Affiliation(s)
- Erin C. S. Lee
- Department of Mechanical and Materials EngineeringQueen's UniversityKingstonOntarioCanada
| | - Rebekah L. Lawrence
- Program in Physical TherapyWashington University School of MedicineSt. LouisMissouriUSA
| | - Michael J. Rainbow
- Department of Mechanical and Materials EngineeringQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
4
|
Kralick AE, Zemel BS, Nolan C, Lin P, Tocheri MW. Relative leg-to-arm skeletal strength proportions in orangutans by species and sex. J Hum Evol 2024; 188:103496. [PMID: 38412694 DOI: 10.1016/j.jhevol.2024.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Among extant great apes, orangutans climb most frequently. However, Bornean orangutans (Pongo pygmaeus) exhibit higher frequencies of terrestrial locomotion than do Sumatran orangutans (Pongo abelii). Variation in long bone cross-sectional geometry is known to reflect differential loading of the limbs. Thus, Bornean orangutans should show greater relative leg-to-arm strength than their Sumatran counterparts. Using skeletal specimens from museum collections, we measured two cross-sectional geometric measures of bone strength: the polar section modulus (Zpol) and the ratio of maximum to minimum area moments of inertia (Imax/Imin), at the midshaft of long bones in Bornean (n = 19) and Sumatran adult orangutans (n = 12) using medical CT and peripheral quantitative CT scans, and compared results to published data of other great apes. Relative leg-to-arm strength was quantified using ratios of femur and tibia over humerus, radius, and ulna, respectively. Differences between orangutan species and between sexes in median ratios were assessed using Wilcoxon rank sum tests. The tibia of Bornean orangutans was stronger relative to the humerus and the ulna than in Sumatran orangutans (p = 0.008 and 0.025, respectively), consistent with behavioral studies that indicate higher frequencies of terrestrial locomotion in the former. In three Zpol ratios, adult female orangutans showed greater leg-to-arm bone strength compared to flanged males, which may relate to females using their legs more during arboreal locomotion than in adult flanged males. A greater amount of habitat discontinuity on Borneo compared to Sumatra has been posited as a possible explanation for observed interspecific differences in locomotor behaviors, but recent camera trap studies has called this into question. Alternatively, greater frequencies of terrestriality in Pongo pygmaeus may be due to the absence of tigers on Borneo. The results of this study are consistent with the latter explanation given that habitat continuity was greater a century ago when our study sample was collected.
Collapse
Affiliation(s)
- Alexandra E Kralick
- Studies of Women, Gender, and Sexuality, Harvard University, Cambridge, 02138, USA; Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Clara Nolan
- Fine Arts Department, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Phillip Lin
- Stockdale High School, Bakersfield, CA, 93311, USA
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada; Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20013, USA; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, NSW, 2522, Australia
| |
Collapse
|
5
|
Prang TC. The relative size of the calcaneal tuber reflects heel strike plantigrady in African apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24865. [PMID: 38058279 DOI: 10.1002/ajpa.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES The positional repertoire of the human-chimpanzee last common ancestor is critical for reconstructing the evolution of bipedalism. African apes and humans share a heel strike plantigrade foot posture associated with terrestriality. Previous research has established that modern humans have a relatively large and intrinsically robust calcaneal tuber equipped to withstand heel strike forces associated with bipedal walking and running. However, it is unclear whether African apes have a relatively larger calcaneal tuber than non-heel-striking primates, and how this trait might have evolved among anthropoids. Here, I test the hypothesis that heel-striking primates have a relatively larger calcaneal tuber than non-heel-striking primates. METHODS The comparative sample includes 331 individuals and 53 taxa representing hominoids, cercopithecoids, and platyrrhines. Evolutionary modeling was used to test for the effect of foot posture on the relative size of the calcaneal tuber in a phylogenetic framework that accounts for adaptation and inertia. Bayesian evolutionary modeling was used to identify selective regime shifts in the relative size of the calcaneal tuber among anthropoids. RESULTS The best fitting evolutionary model was a Brownian motion model with regime-dependent trends characterized by relatively large calcaneal tubers among African apes and humans. Evolutionary modeling provided support for an evolutionary shift toward a larger calcaneal tuber at the base of the African ape and human clade. CONCLUSIONS The results of this study support the view that African apes and humans share derived traits related to heel strike plantigrady, which implies that humans evolved from a semi-terrestrial quadrupedal ancestor.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Kralick AE, Canington SL, Eller AR, McGrath K. Specimens as individuals: Four interventions and recommendations for great ape skeletal collections research and curation. Evol Anthropol 2023; 32:336-355. [PMID: 37750542 DOI: 10.1002/evan.22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023]
Abstract
Extensive discourse surrounds the ethics of human skeletal research and curation, but there has yet to be a similar discussion of the treatment of great ape skeletal remains, despite the clear interest in their ethical treatment when alive. Here we trace the history of apes who were killed and collected for natural history museums during the early 20th century and showcase how the guiding research questions of the colonial era continue to influence scholarship. We discuss best practices for improving industry and academic standards of research on, and the curation of, ape remains. The suggested interventions involve restoring individual identity and narrative to great apes while engaging with contextual reflexivity and decolonial theory. The resulting recommendations include contextualizing the individual, piecing individuals back together, challenging/questioning the captive-wild dichotomy, and collaborative international conversations. Our objective is to encourage a conversation regarding ethical and theoretical considerations in great ape skeletal remains research.
Collapse
Affiliation(s)
- Alexandra E Kralick
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Canington
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea R Eller
- Department of Anthropology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Kate McGrath
- Department of Anthropology, SUNY Oneonta, Oneonta, New York, USA
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Lee ECS, Young NM, Rainbow MJ. A comparative approach for characterizing the relationship among morphology, range-of-motion and locomotor behaviour in the primate shoulder. Proc Biol Sci 2023; 290:20231446. [PMID: 37848066 PMCID: PMC10581761 DOI: 10.1098/rspb.2023.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Shoulder shape directly impacts forelimb function by contributing to glenohumeral (GH) range-of-motion (ROM). However, identifying traits that contribute most to ROM and visualizing how they do so remains challenging, ultimately limiting our ability to reconstruct function and behaviour in fossil species. To address these limitations, we developed an in silico proximity-driven model to simulate and visualize three-dimensional (3D) GH rotations in living primate species with diverse locomotor profiles, identify those shapes that are most predictive of ROM using geometric morphometrics, and apply subsequent insights to interpret function and behaviour in the fossil hominin Australopithecus sediba. We found that ROM metrics that incorporated 3D rotations best discriminated locomotor groups, and the magnitude of ROM (mobility) was decoupled from the anatomical location of ROM (e.g. high abduction versus low abduction). Morphological traits that enhanced mobility were decoupled from those that enabled overhead positions, and all non-human apes possessed the latter but not necessarily the former. Model simulation in A. sediba predicted high mobility and a ROM centred at lower abduction levels than in living apes but higher than in modern humans. Together these results identify novel form-to-function relationships in the shoulder and enhance visualization tools to reconstruct past function and behaviour.
Collapse
Affiliation(s)
- Erin C. S. Lee
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 2V9
| | - Nathan M. Young
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94110, USA
| | - Michael J. Rainbow
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 2V9
| |
Collapse
|
8
|
MacLean KFE, Langenderfer JE, Dickerson CR. A comparative probabilistic analysis of human and chimpanzee rotator cuff functional capacity. J Anat 2023; 243:431-447. [PMID: 37186281 PMCID: PMC10439372 DOI: 10.1111/joa.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Computational musculoskeletal modeling represents a valuable approach to examining biological systems in physical anthropology. Probabilistic modeling builds on computational musculoskeletal models by associating mathematical distributions of specific musculoskeletal features within known ranges of biological variability with functional outcomes. The purpose of this study was to determine if overlap in rotator cuff muscle force predictions would occur between species during the performance of an evolutionarily relevant horizontal bimanual arm suspension task. This necessitated creating novel probabilistic models of the human and chimpanzee glenohumeral joint through augmentation of previously published deterministic models. Glenohumeral musculoskeletal features of anthropological interest were probabilistically modeled to produce distributions of predicted human and chimpanzee rotator cuff muscle force that were representative of the specific anatomical manipulations. Musculoskeletal features modeled probabilistically included rotator cuff origins and deltoid insertion, glenoid inclination, and joint stability. Predicted human rotator cuff muscle force distributions were mostly limited to alternating between infraspinatus and teres minor, with both 100% and 0% muscle force predicted for both muscles. The chimpanzee model predicted low-to-moderate muscle force across all rotator cuff muscles. Rotator cuff muscle force predictions were most sensitive to changes of muscle origins and insertions. Results indicate that functional rotator cuff overlap is unlikely between chimpanzees and humans without greater modifications of the glenohumeral musculoskeletal phenotypes. The results also highlight the low efficacy of the human upper extremity in overhead, weight-bearing tasks, and propensity for rotator cuff injury.
Collapse
|
9
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
10
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Graham KE, Hobaiter C. Towards a great ape dictionary: Inexperienced humans understand common nonhuman ape gestures. PLoS Biol 2023; 21:e3001939. [PMID: 36693024 PMCID: PMC9873169 DOI: 10.1371/journal.pbio.3001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023] Open
Abstract
In the comparative study of human and nonhuman communication, ape gesturing provided the first demonstrations of flexible, intentional communication outside human language. Rich repertoires of these gestures have been described in all ape species, bar one: us. Given that the majority of great ape gestural signals are shared, and their form appears biologically inherited, this creates a conundrum: Where did the ape gestures go in human communication? Here, we test human recognition and understanding of 10 of the most frequently used ape gestures. We crowdsourced data from 5,656 participants through an online game, which required them to select the meaning of chimpanzee and bonobo gestures in 20 videos. We show that humans may retain an understanding of ape gestural communication (either directly inherited or part of more general cognition), across gesture types and gesture meanings, with information on communicative context providing only a marginal improvement in success. By assessing comprehension, rather than production, we accessed part of the great ape gestural repertoire for the first time in adult humans. Cognitive access to an ancestral system of gesture appears to have been retained after our divergence from other apes, drawing deep evolutionary continuity between their communication and our own.
Collapse
Affiliation(s)
- Kirsty E. Graham
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Catherine Hobaiter
- Wild Minds Lab, School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland, United Kingdom
| |
Collapse
|
13
|
Masi S, Pouydebat E, San-Galli A, Meulman E, Breuer T, Reeves J, Tennie C. Free hand hitting of stone-like objects in wild gorillas. Sci Rep 2022; 12:11981. [PMID: 35840637 PMCID: PMC9287431 DOI: 10.1038/s41598-022-15542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
The earliest stone tool types, sharp flakes knapped from stone cores, are assumed to have played a crucial role in human cognitive evolution. Flaked stone tools have been observed to be accidentally produced when wild monkeys use handheld stones as tools. Holding a stone core in hand and hitting it with another in the absence of flaking, free hand hitting, has been considered a requirement for producing sharp stone flakes by hitting stone on stone, free hand percussion. We report on five observations of free hand hitting behavior in two wild western gorillas, using stone-like objects (pieces of termite mound). Gorillas are therefore the second non-human lineage primate showing free-hand hitting behavior in the wild, and ours is the first report for free hand hitting behavior in wild apes. This study helps to shed light on the morphofunctional and cognitive requirements for the emergence of stone tool production as it shows that a prerequisite for free hand percussion (namely, free hand hitting) is part of the spontaneous behavioral repertoire of one of humans' closest relatives (gorillas). However, the ability to combine free hand hitting with the force, precision, and accuracy needed to facilitate conchoidal fracture in free hand percussion may still have been a critical watershed for hominin evolution.
Collapse
Affiliation(s)
- Shelly Masi
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| | - Emmanuelle Pouydebat
- Department Adaptations du Vivant, UMR7179 MECADEV CNRS, Muséum National d'Histoire Naturelle, 55 rue Buffon, Paris, France
| | - Aurore San-Galli
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | - Ellen Meulman
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | - Thomas Breuer
- Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY, 10460, USA
- World Wide Fund for Nature - Germany, Reinhardstrasse 18, 10117, Berlin, Germany
| | - Jonathan Reeves
- Department for Early Prehistory and Quaternary Ecology, University of Tübingen, 72070, Tübingen, Germany
| | - Claudio Tennie
- Department for Early Prehistory and Quaternary Ecology, University of Tübingen, 72070, Tübingen, Germany
| |
Collapse
|
14
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
15
|
Anthropological Prosociality via Sub-Group Level Selection. Integr Psychol Behav Sci 2021; 56:180-205. [PMID: 33893612 DOI: 10.1007/s12124-021-09606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
A perennial challenge of evolutionary psychology is explaining prosocial traits such as a preference for fairness rather than inequality, compassion towards suffering, and an instinctive ability to coordinate within small teams. Considering recent fossil evidence and a novel logical test, we deem present explanations insufficiently explanatory of the divergence of hominins. In answering this question, we focus on the divergence of hominins from the last common ancestor (LCA) shared with Pan. We consider recent fossil discoveries that indicate the LCA was bipedal, which reduces the cogency of this explanation for hominin development. We also review evolutionary theory that claims to explain how hominins developed into modern humans, however it is found that no mechanism differentiates hominins from other primates. Either the mechanism was available to the last common ancestor (LCA) (with P. troglodytes as its proxy), or because early hominins had insufficient cognition to utilise the mechanism. A novel mechanism, sub-group level selection (sGLS) is hypothesised by triangulating two pieces of data rarely considered by evolutionary biologists. These are behavioural dimorphism of Pan (chimpanzees and bonobos) that remain identifiable in modern humans, and the social behaviour of primate troops in a savannah ecology. We then contend that sGLS supplied an exponential effect which was available to LCA who left the forest, but was not sufficiently available to any other primates. In conclusion, while only indirectly supported by various evidence, sGLS is found to be singularly and persuasively explanatory of human's unique evolutionary story.
Collapse
|
16
|
Carlson KJ, Green DJ, Jashashvili T, Pickering TR, Heaton JL, Beaudet A, Stratford D, Crompton R, Kuman K, Bruxelles L, Clarke RJ. The pectoral girdle of StW 573 ('Little Foot') and its implications for shoulder evolution in the Hominina. J Hum Evol 2021; 158:102983. [PMID: 33888323 DOI: 10.1016/j.jhevol.2021.102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.
Collapse
Affiliation(s)
- Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa.
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Geology and Paleontology, Georgian National Museum, Tbilisi 0105, Georgia
| | - Travis R Pickering
- Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Jason L Heaton
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Robin Crompton
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Laurent Bruxelles
- TRACES, UMR 5608 of the French National Centre for Scientific Research, Jean Jaurès University, 31058 Toulouse, France; French National Institute for Preventive Archaeological Researches (INRAP), 30900 Nîmes, France; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Ronald J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| |
Collapse
|
17
|
Ben-Dor M, Sirtoli R, Barkai R. The evolution of the human trophic level during the Pleistocene. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:27-56. [PMID: 33675083 DOI: 10.1002/ajpa.24247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The human trophic level (HTL) during the Pleistocene and its degree of variability serve, explicitly or tacitly, as the basis of many explanations for human evolution, behavior, and culture. Previous attempts to reconstruct the HTL have relied heavily on an analogy with recent hunter-gatherer groups' diets. In addition to technological differences, recent findings of substantial ecological differences between the Pleistocene and the Anthropocene cast doubt regarding that analogy's validity. Surprisingly little systematic evolution-guided evidence served to reconstruct HTL. Here, we reconstruct the HTL during the Pleistocene by reviewing evidence for the impact of the HTL on the biological, ecological, and behavioral systems derived from various existing studies. We adapt a paleobiological and paleoecological approach, including evidence from human physiology and genetics, archaeology, paleontology, and zoology, and identified 25 sources of evidence in total. The evidence shows that the trophic level of the Homo lineage that most probably led to modern humans evolved from a low base to a high, carnivorous position during the Pleistocene, beginning with Homo habilis and peaking in Homo erectus. A reversal of that trend appears in the Upper Paleolithic, strengthening in the Mesolithic/Epipaleolithic and Neolithic, and culminating with the advent of agriculture. We conclude that it is possible to reach a credible reconstruction of the HTL without relying on a simple analogy with recent hunter-gatherers' diets. The memory of an adaptation to a trophic level that is embedded in modern humans' biology in the form of genetics, metabolism, and morphology is a fruitful line of investigation of past HTLs, whose potential we have only started to explore.
Collapse
Affiliation(s)
- Miki Ben-Dor
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | | | - Ran Barkai
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
García-Martínez D, Green DJ, Bermúdez de Castro JM. Evolutionary development of the Homo antecessor scapulae (Gran Dolina site, Atapuerca) suggests a modern-like development for Lower Pleistocene Homo. Sci Rep 2021; 11:4102. [PMID: 33602966 PMCID: PMC7892855 DOI: 10.1038/s41598-021-83039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Two well-preserved, subadult 800 ky scapulae from Gran Dolina belonging to Homo antecessor, provide a unique opportunity to investigate the ontogeny of shoulder morphology in Lower Pleistocene humans. We compared the H. antecessor scapulae with a sample of 98 P. troglodytes and 108 H. sapiens representatives covering seven growth stages, as well as with the DIK-1-1 (Dikika; Australopithecus afarensis), KNM-WT 15000 (Nariokotome; H. ergaster), and MH2 (Malapa; A. sediba) specimens. We quantified 15 landmarks on each scapula and performed geometric morphometric analyses. H. sapiens scapulae are mediolaterally broader with laterally oriented glenoid fossae relative to Pan and Dikika shoulder blades. Accordingly, H. antecessor scapulae shared more morphological affinities with modern humans, KNM-WT 15000, and even MH2. Both H. antecessor and modern Homo showed significantly more positive scapular growth trajectories than Pan (slopes: P. troglodytes = 0.0012; H. sapiens = 0.0018; H. antecessor = 0.0020). Similarities in ontogenetic trajectories between the H. antecessor and modern human data suggest that Lower Pleistocene hominin scapular development was already modern human-like. At the same time, several morphological features distinguish H. antecessor scapulae from modern humans along the entire trajectory. Future studies should include additional Australopithecus specimens for further comparative assessment of scapular growth trends.
Collapse
Affiliation(s)
- Daniel García-Martínez
- Centro Nacional para el Estudio de la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, Buies Creek, NC, 27506, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa
| | | |
Collapse
|
19
|
Prang TC, Ramirez K, Grabowski M, Williams SA. Ardipithecus hand provides evidence that humans and chimpanzees evolved from an ancestor with suspensory adaptations. SCIENCE ADVANCES 2021; 7:eabf2474. [PMID: 33627435 PMCID: PMC7904256 DOI: 10.1126/sciadv.abf2474] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The morphology and positional behavior of the last common ancestor of humans and chimpanzees are critical for understanding the evolution of bipedalism. Early 20th century anatomical research supported the view that humans evolved from a suspensory ancestor bearing some resemblance to apes. However, the hand of the 4.4-million-year-old hominin Ardipithecus ramidus purportedly provides evidence that the hominin hand was derived from a more generalized form. Here, we use morphometric and phylogenetic comparative methods to show that Ardipithecus retains suspensory adapted hand morphologies shared with chimpanzees and bonobos. We identify an evolutionary shift in hand morphology between Ardipithecus and Australopithecus that renews questions about the coevolution of hominin manipulative capabilities and obligate bipedalism initially proposed by Darwin. Overall, our results suggest that early hominins evolved from an ancestor with a varied positional repertoire including suspension and vertical climbing, directly affecting the viable range of hypotheses for the origin of our lineage.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA.
| | - Kristen Ramirez
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, CUNY Graduate Center, New York, NY 10016, USA
- Office of Medical Education, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Scott A Williams
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
20
|
Yegian AK, Tucker Y, Bramble DM, Lieberman DE. Neuromechanical linkage between the head and forearm during running. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:752-762. [PMID: 33491216 DOI: 10.1002/ajpa.24234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/04/2020] [Accepted: 12/20/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The main objective was to test the hypothesis of a neuromechanical link in humans between the head and forearm during running mediated by the biceps brachii and superior trapezius muscles. We hypothesized that this linkage helps stabilize the head and combats rapid forward pitching during running which may interfere with gaze stability. MATERIALS AND METHODS Thirteen human participants walked and ran on a treadmill while motion capture recorded body segment kinematics and electromyographic sensors recorded muscle activation. To test perturbations to the linkage system we compared participants running normally as well as with added mass to the face and the hand. RESULTS The results confirm the presence of a neuromechanical linkage between the head and forearm mediated by the biceps and superior trapezius during running but not during walking. In running, the biceps and superior trapezius activations were temporally linked during the stride cycle, and adding mass to either the head or hand increased activation in both muscles, consistent with our hypothesis. During walking the forces acting on the body segments and muscle activation levels were much smaller than during running, indicating no need for a linkage to keep the head and gaze stable. DISCUSSION The results suggest that the evolution of long distance running in early Homo may have favored selection for reduced rotational inertia of both the head and forearm through synergistic muscle activation, contributing to the transition from australopith head and forelimb morphology to the more human-like form of Homo erectus. Selective pressures from the evolution of bipedal walking were likely much smaller, but may explain in part the intermediate form of the australopith scapula between that of extant apes and humans.
Collapse
Affiliation(s)
- Andrew K Yegian
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yanish Tucker
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dennis M Bramble
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Spear JK, Williams SA. Mosaic patterns of homoplasy accompany the parallel evolution of suspensory adaptations in the forelimb of tree sloths (Folivora: Xenarthra). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
We examine how derived functional signal and phylogenetic inheritance interact in the forelimb of tree sloths, to understand the relative contribution of each in the evolution of a novel morphobehavioural suite. Molecular and craniodental data demonstrate that extant tree sloths evolved suspensory behaviours and associated morphologies from a non-suspensory ancestor independently of one another, making them a useful model system. We find that convergence in univariate traits is expressed mosaically, although the signal is largely functional. Three-dimensional analyses suggest there is greater conservatism of gross morphology in more proximal bones than in more distal elements. Convergence in some univariate scapular traits is independent of the gross morphology of the scapula itself, demonstrating that functionally relevant morphologies were mapped on to a more conserved scapular shape. Our results suggest that morphological homoplasy is expressed in a mosaic manner. The relationship between homoplasy and trait integration may be more nuanced than previously thought, even within a single adaptive system.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Center for the Study of Human Origins & Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, USA
| | - Scott A Williams
- Center for the Study of Human Origins & Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, USA
| |
Collapse
|
22
|
MacLean KFE, Dickerson CR. Development of a comparative chimpanzee musculoskeletal glenohumeral model: implications for human function. J Exp Biol 2020; 223:jeb225987. [PMID: 33071220 DOI: 10.1242/jeb.225987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
Abstract
Modern human shoulder function is affected by the evolutionary adaptations that have occurred to ensure survival and prosperity of the species. Robust examination of behavioral shoulder performance and injury risk can be holistically improved through an interdisciplinary approach that integrates anthropology and biomechanics. Coordination of these fields can allow different perspectives to contribute to a more complete interpretation of biomechanics of the modern human shoulder. The purpose of this study was to develop a novel biomechanical and comparative chimpanzee glenohumeral model, designed to parallel an existing human glenohumeral model, and compare predicted musculoskeletal outputs between the two models. The chimpanzee glenohumeral model consists of three modules - an external torque module, a musculoskeletal geometric module and an internal muscle force prediction module. Together, these modules use postural kinematics, subject-specific anthropometrics, a novel shoulder rhythm, glenohumeral stability ratios, hand forces, musculoskeletal geometry and an optimization routine to estimate joint reaction forces and moments, subacromial space dimensions, and muscle and tissue forces. Using static postural data of a horizontal bimanual suspension task, predicted muscle forces and subacromial space were compared between chimpanzees and humans. Compared with chimpanzees, the human model predicted a 2 mm narrower subacromial space, deltoid muscle forces that were often double those of chimpanzees and a strong reliance on infraspinatus and teres minor (60-100% maximal force) over other rotator cuff muscles. These results agree with previous work on inter-species differences that inform basic human rotator cuff function and pathology.
Collapse
Affiliation(s)
- Kathleen F E MacLean
- Division of Kinesiology, School of Health and Human Performance, Dalhousie University, 6260 South Street, Halifax, NS, Canada B3H 4R2
| | - Clark R Dickerson
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
23
|
Lee EC, Roach NT, Clouthier AL, Bicknell RT, Bey MJ, Young NM, Rainbow MJ. Three-dimensional scapular morphology is associated with rotator cuff tears and alters the abduction moment arm of the supraspinatus. Clin Biomech (Bristol, Avon) 2020; 78:105091. [PMID: 32580097 PMCID: PMC8161464 DOI: 10.1016/j.clinbiomech.2020.105091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus. METHODS Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm. FINDINGS Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction. INTERPRETATIONS Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears.
Collapse
Affiliation(s)
- Erin C.S. Lee
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada,Corresponding author at: Department of Mechanical and Materials Engineering and Human Mobility Research Centre, Queen’s University, 130 Stuart Street, Kingston, ON K7L 3N6, Canada., (E.C.S. Lee)
| | - Neil T. Roach
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Ryan T. Bicknell
- Department of Surgery, Kingston Health Sciences Centre, Kingston, Canada
| | - Michael J. Bey
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Nathan M. Young
- Department of Orthopaedic Surgery, University of California San Francisco, CA, USA
| | - Michael J. Rainbow
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
24
|
Landi F, Profico A, Veneziano A, De Groote I, Manzi G. Locomotion, posture, and the foramen magnum in primates: Reliability of indices and insights into hominin bipedalism. Am J Primatol 2020; 82:e23170. [PMID: 32639073 DOI: 10.1002/ajp.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 11/06/2022]
Abstract
The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion-prosthion (OP-PR) and the opisthocranion-glabella (OP-GL) indices, the basion-biporion (BA-BP) and basion-bicarotid chords, the foramen magnum angle (FMA), and the basion-sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA-BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP-PR, OP-GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings.
Collapse
Affiliation(s)
- Federica Landi
- CAHS, Centre for Anatomical and Human Sciences, Hull York Medical School, York, UK
| | - Antonio Profico
- Department of Archaeology, PalaeoHub, University of York, York, UK
| | - Alessio Veneziano
- SYRMEP, SYnchrotron Radiation for MEdical Physics, Elettra-Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
| | - Isabelle De Groote
- Department of Archaeology, Section Prehistory of Western Europe, Ghent University, Ghent, Belgium
| | - Giorgio Manzi
- Department of Environmental Biology, Faculty of Mathematics Physics and Natural Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
26
|
O'Neill MC, Demes B, Thompson NE, Umberger BR. Three-dimensional kinematics and the origin of the hominin walking stride. J R Soc Interface 2019; 15:rsif.2018.0205. [PMID: 30089686 DOI: 10.1098/rsif.2018.0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back and pelvis. While the last common ancestor of the Pan-Homo lineages has long been thought to be 'African ape-like', including in its lower back and ilia design, recent descriptions of early hominin and Miocene ape fossils have led to the proposal that its lower back and ilia were more similar to those of some Old World monkeys, such as macaques. Here, we compared three-dimensional kinematics of the pelvis and hind/lower limbs of bipedal macaques, chimpanzees and humans walking at similar dimensionless speeds to test the effects of lower back and ilia design on gait. Our results indicate that locomotor kinematics of bipedal macaques and chimpanzees are remarkably similar, with both species exhibiting greater pelvis motion and more flexed, abducted hind limbs than humans during walking. Some differences between macaques and chimpanzees in pelvis tilt and hip abduction were noted, but they were small in magnitude; larger differences were observed in ankle flexion. Our results suggest that if Pan and Homo diverged from a common ancestor whose lower back and ilia were either 'African ape-like' or more 'Old World monkey-like', at its origin, the hominin walking stride likely involved distinct (i.e. non-human-like) pelvis motion on flexed, abducted hind limbs.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
27
|
MacLean KF, Dickerson CR. Kinematic and EMG analysis of horizontal bimanual climbing in humans. J Biomech 2019; 92:11-18. [DOI: 10.1016/j.jbiomech.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
28
|
Prang TC. The African ape-like foot of Ardipithecus ramidus and its implications for the origin of bipedalism. eLife 2019; 8:44433. [PMID: 31038121 PMCID: PMC6491036 DOI: 10.7554/elife.44433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
Abstract
The ancestral condition from which humans evolved is critical for understanding the adaptive origin of bipedal locomotion. The 4.4 million-year-old hominin partial skeleton attributed to Ardipithecus ramidus preserves a foot that purportedly shares morphometric affinities with monkeys, but this interpretation remains controversial. Here I show that the foot of Ar. ramidus is most similar to living chimpanzee and gorilla species among a large sample of anthropoid primates. The foot morphology of Ar. ramidus suggests that the evolutionary precursor of hominin bipedalism was African ape-like terrestrial quadrupedalism and climbing. The elongation of the midfoot and phalangeal reduction in Ar. ramidus relative to the African apes is consistent with hypotheses of increased propulsive capabilities associated with an early form of bipedalism. This study provides evidence that the modern human foot was derived from an ancestral form adapted to terrestrial plantigrade quadrupedalism. Walking on two legs is considered to be one of the first steps towards becoming human. While some animals are also able to walk on two legs, such as kangaroos, birds, and some rodents, the way they move is nevertheless quite distinct to the way humans walk. How animals evolve traits is influenced by the characteristics of their ancestors. But what exactly was the common ancestor of humans and chimpanzees like? Most primates are suited for a life in the trees. But some also have skeletal characteristics associated with living on the ground. For example, the feet of chimpanzees and gorillas show adaptations that suit life on the ground, such as walking on the sole of the foot with a heel first foot posture. So far, it was unclear whether the ancestor of humans and chimpanzees was primarily adapted to living on the ground or in the trees. To investigate this further, Prang studied the oldest-known fossil foot (4.4 million years) attributed to the hominin Ardipithecus ramidus. This involved using evolutionary models to evaluate the relationship between foot bone proportions and the locomotory behaviour of monkeys and apes. The results revealed that humans evolved from an ancestor that had a foot similar to living chimpanzees and gorillas. The African ape foot is uniquely suited to life on the ground, including shorter toe bones, but also shows some adaptations to life in the trees, such as an elongated, grasping big toe. Therefore, the locomotion of our common ancestor probably bore a strong resemblance to these two ape species. Moreover, if the last common ancestor already had ground-living characteristics, the first step of the evolution of human bipedalism did not involve descending from the trees to the ground, as our ancestors had already achieved this milestone in some form and frequency. This is an important discovery. If this ancestor already had adaptations for life on the ground, why did only humans evolve to walk upright despite the retention of climbing capabilities in the earliest human relatives? A next step could be to investigate what selective pressures favored upright walking in a partly ground-living African ape. This may provide us with more insight into our own evolutionary story as well as the ways in which living primates evolve adaptations in an ecological context.
Collapse
Affiliation(s)
- Thomas Cody Prang
- Department of Anthropology, Center for the Study of Human Origins (CSHO), New York University, New York, United states.,New York Consortium in Evolutionary Primatology (NYCEP), New York, United States
| |
Collapse
|
29
|
Arias‐Martorell J. The morphology and evolutionary history of the glenohumeral joint of hominoids: A review. Ecol Evol 2019; 9:703-722. [PMID: 30680150 PMCID: PMC6342098 DOI: 10.1002/ece3.4392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 11/10/2022] Open
Abstract
The glenohumeral joint, the most mobile joint in the body of hominoids, is involved in the locomotion of all extant primates apart from humans. Over the last few decades, our knowledge of how variation in its morphological characteristics relates to different locomotor behaviors within extant primates has greatly improved, including features of the proximal humerus and the glenoid cavity of the scapula, as well as the muscles that function to move the joint (the rotator cuff muscles). The glenohumeral joint is a region with a strong morphofunctional signal, and hence, its study can shed light on the locomotor behaviors of crucial ancestral nodes in the evolutionary history of hominoids (e.g., the last common ancestor between humans and chimpanzees). Hominoids, in particular, are distinct in showing round and relatively big proximal humeri with lowered tubercles and flattened and oval glenoid cavities, morphology suited to engage in a wide range of motions, which enables the use of locomotor behaviors such as suspension. The comparison with extant taxa has enabled more informed functional interpretations of morphology in extinct primates, including hominoids, from the Early Miocene through to the emergence of hominins. Here, I review our current understanding of glenohumeral joint functional morphology and its evolution throughout the Miocene and Pleistocene, as well as highlighting the areas where a deeper study of this joint is still needed.
Collapse
Affiliation(s)
- Julia Arias‐Martorell
- Animal Postcranial Evolution LabSkeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
| |
Collapse
|
30
|
Scapular anatomy of Paranthropus boisei from Ileret, Kenya. J Hum Evol 2018; 125:181-192. [DOI: 10.1016/j.jhevol.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022]
|
31
|
Rein TR. A Geometric Morphometric Examination of Hominoid Third Metacarpal Shape and Its Implications for Inferring the Precursor to Terrestrial Bipedalism. Anat Rec (Hoboken) 2018; 302:983-998. [DOI: 10.1002/ar.23985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas R. Rein
- Department of Anthropology Central Connecticut State University New Britain Connecticut
| |
Collapse
|
32
|
Thompson NE, Rubinstein D, Larson SG. Great ape thorax and shoulder configuration-An adaptation for arboreality or knuckle-walking? J Hum Evol 2018; 125:15-26. [PMID: 30502892 DOI: 10.1016/j.jhevol.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Great apes exhibit a suite of morphological traits of the shoulder and upper thorax that have traditionally been linked to orthograde arborealism. Recently it has been proposed that these traits are instead adaptations for knuckle-walking, and more broadly, that knuckle-walking itself is an adaptation for shock absorption during terrestriality. Here we test several tenets of these hypotheses using kinematic and kinetic data from chimpanzees and macaques, and electromyographic data of shoulder muscle activity in chimpanzees. We collected 3D kinematic data to quantify motion of the acromion and trunk during quadrupedalism and vertical climbing in chimpanzees as well as ground reaction forces to investigate the presence and magnitude of impact transient forces during terrestrial locomotion in chimpanzees and macaques. We also investigated patterns of recruitment of select forelimb musculature (triceps brachii and serratus anterior) using previously collected data in chimpanzees to determine whether these muscles may function to absorb impact transient forces. We found that the acromion is significantly more elevated in vertical climbing than during knuckle-walking, while dorsoventral ranges and magnitudes of motion were similar between gaits. Ground reaction forces indicate that only a minority of strides in either chimpanzees or macaques have transient forces and, when present, these transient forces as well as loading rates are small. Electromyographic results show that activity of the triceps brachii may facilitate energy absorption while serratus anterior likely functions to support the trunk, as in other primates. Our data suggest there is little to no evidence supporting recent hypotheses that the African ape upper thorax and shoulder configuration is an adaptation for knuckle-walking, or more broadly, that knuckle-walking exists as an adaptation to absorb impact shock during terrestriality. We do however find some evidence that shoulder configuration allows greater scapular elevation in chimpanzees during arboreal behaviors (e.g., vertical climbing).
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Danielle Rubinstein
- New York Institute of Technology, College of Osteopathic Medicine, NY 11568 USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794-8081, USA
| |
Collapse
|
33
|
van Leeuwen T, Vanhoof MJM, Kerkhof FD, Stevens JMG, Vereecke EE. Insights into the musculature of the bonobo hand. J Anat 2018; 233:328-340. [PMID: 29938781 PMCID: PMC6081514 DOI: 10.1111/joa.12841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/01/2023] Open
Abstract
The human hand is well known for its unique dexterity which is largely facilitated by a highly mobile, long and powerful thumb that enables both tool manufacturing and use, a key component of human evolution. The bonobo (Pan paniscus), the closest extant relative to modern humans together with the chimpanzee (Pan troglodytes), also possesses good manipulative capabilities but with a lower level of dexterity compared with modern humans. Despite the close phylogenetic relationship between bonobos and humans, detailed quantitative data of the bonobo forelimb musculature remains largely lacking. To understand how morphology may influence dexterity, we investigated the functional anatomy of the bonobo hand using a unique sample of eight bonobo cadavers, along with one chimpanzee and one human (Homo sapiens) cadaver. We performed detailed dissections of unembalmed specimens to collect quantitative datasets of the extrinsic and intrinsic hand musculature, in addition to qualitative descriptions of the forelimb muscle configurations, allowing estimation of force-generating capacities for each functional group. Furthermore, we used medical imaging to quantify the articular surface of the trapeziometacarpal joint to estimate the intra-articular pressure. Our results show that the force-generating capacity for most functional groups of the extrinsic and intrinsic hand muscles in bonobos is largely similar to that of humans, with differences in relative importance of the extensors and rotators. The bonobo thumb musculature has a lower force-generating capacity than observed in the human specimen, but the estimated maximal intra-articular pressure is higher in bonobos. Most importantly, bonobos show a higher degree of functional coupling between the muscles of the thumb, index and lateral fingers than observed in humans. It is conceivable that differentiation and individualization of the hand muscles rather than relative muscle development explain the higher level of dexterity of humans compared with that of bonobos.
Collapse
Affiliation(s)
- Timo van Leeuwen
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Marie J. M. Vanhoof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Faes D. Kerkhof
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| | - Jeroen M. G. Stevens
- Centre for Research and ConservationRoyal Zoological Society AntwerpAntwerpBelgium
- Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpAntwerpBelgium
| | - Evie E. Vereecke
- Muscles & MovementBiomedical Sciences GroupUniversity of Leuven Campus KulakKortrijkBelgium
| |
Collapse
|
34
|
Lombardo MP, Deaner RO. On The Evolution of The Sex Differences in Throwing: Throwing is a Male Adaptation in Humans. QUARTERLY REVIEW OF BIOLOGY 2018. [DOI: 10.1086/698225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Spear JK, Williams SA. Scapular breadth is associated with forelimb-dominated suspensory behavior in Atelidae: Comments on Selby and Lovejoy (2017). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:194-196. [PMID: 29756202 DOI: 10.1002/ajpa.23599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York 10003.,New York Consortium in Evolutionary Primatology, New York, New York 10024
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York 10003.,New York Consortium in Evolutionary Primatology, New York, New York 10024
| |
Collapse
|
36
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
37
|
Grabowski M, Jungers WL. Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat Commun 2017; 8:880. [PMID: 29026075 PMCID: PMC5638852 DOI: 10.1038/s41467-017-00997-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/09/2017] [Indexed: 11/12/2022] Open
Abstract
Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA.The pattern of body size evolution in hominids can provide insight into historical human ecology. Here, Grabowski and Jungers use comparative phylogenetic analysis to reconstruct the likely size of the ancestor of humans and chimpanzees and the evolutionary history of selection on body size in primates.
Collapse
Affiliation(s)
- Mark Grabowski
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls University of Tübingen, Tübingen, Germany.
- Division of Anthropology, American Museum of Natural History, New York City, NY, 10024, USA.
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, 0316, Norway.
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA.
| | - William L Jungers
- Association Vahatra, Antananarivo 101, BP, 3972, Madagascar
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
38
|
The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales. Hum Mov Sci 2017; 55:156-171. [DOI: 10.1016/j.humov.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/06/2017] [Accepted: 08/14/2017] [Indexed: 01/12/2023]
|
39
|
Outomuro D, Johansson F. A potential pitfall in studies of biological shape: Does size matter? J Anim Ecol 2017; 86:1447-1457. [PMID: 28699246 DOI: 10.1111/1365-2656.12732] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The number of published studies using geometric morphometrics (GM) for analysing biological shape has increased steadily since the beginning of the 1990s, covering multiple research areas such as ecology, evolution, development, taxonomy and palaeontology. Unfortunately, we have observed that many published studies using GM do not evaluate the potential allometric effects of size on shape, which normally require consideration or assessment. This might lead to misinterpretations and flawed conclusions in certain cases, especially when size effects explain a large part of the shape variation. We assessed, for the first time and in a systematic manner, how often published studies that have applied GM consider the potential effects of allometry on shape. We reviewed the 300 most recent published papers that used GM for studying biological shape. We also estimated how much of the shape variation was explained by allometric effects in the reviewed papers. More than one-third (38%) of the reviewed studies did not consider the allometric component of shape variation. In studies where the allometric component was taken into account, it was significant in 88% of the cases, explaining up to 87.3% of total shape variation. We believe that one reason that may cause the observed results is a misunderstanding of the process that superimposes landmark configurations, i.e. the Generalized Procrustes Analysis, which removes isometric effects of size on shape, but not allometric effects. Allometry can be a crucial component of shape variation. We urge authors to address, and report, size effects in studies of biological shape. However, we do not propose to always remove size effects, but rather to evaluate the research question with and without the allometric component of shape variation. This approach can certainly provide a thorough understanding of how much size contributes to the observed shaped variation.
Collapse
Affiliation(s)
- David Outomuro
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Frank Johansson
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Hammond AS, Almécija S. Lower Ilium Evolution in Apes and Hominins. Anat Rec (Hoboken) 2017; 300:828-844. [PMID: 28406561 DOI: 10.1002/ar.23545] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/09/2016] [Indexed: 01/18/2023]
Abstract
Elucidating the pelvic morphology of the Pan-Homo last common ancestor (LCA) is crucial for understanding ape and human evolution. The pelvis of Ardipithecus ramidus has been the basis of controversial interpretations of the LCA pelvis. In particular, it was proposed that the lower ilium became elongate independently in the orangutan and chimpanzee clades, making these taxa poor analogues for the pelvis of the LCA. This study examines the variation in relative lower ilium height between and within living and fossil hominoid species (and other anthropoids), and models its evolution using available fossil hominoids as calibration points. We find nuanced differences in relative lower ilium height among living hominoids, particularly in regards to gorillas, which do not have elongate lower ilia (because they are likely to represent the plesiomorphic hominoid condition for this trait). We also show that differences in relative lower ilium height among hominoid taxa are not readily explained by differences in size between species. Our maximum likelihood ancestral state reconstructions support inferences that chimpanzees (Pan troglodytes in particular) and orangutans evolved their elongate lower ilia independently. We also find that the predicted lower ilium height of the Pan-Homo LCA is shorter than all great apes except gorillas. This study adds to a growing body of evidence that finds different regions of the body show different evolutionary histories in different hominoids, and underscores that the unique combinations of morphologies of each modern and fossil hominoid species should be considered when reconstructing the mosaic nature of the Pan-Homo LCA. Anat Rec, 300:828-844, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashley S Hammond
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052
| | - Sergio Almécija
- Center for Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, District of Columbia, 20052.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Lewton KL, Scott JE. Ischial Form as an Indicator of Bipedal Kinematics in Early Hominins: A Test Using Extant Anthropoids. Anat Rec (Hoboken) 2017; 300:845-858. [DOI: 10.1002/ar.23543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Kristi L. Lewton
- Department of Cell and Neurobiology, Keck School of Medicine; University of Southern California; Los Angeles California
- Department of Biological Sciences; University of Southern California; Los Angeles California
| | - Jeremiah E. Scott
- Department of Anthropology; Southern Illinois University; Carbondale Illinois
| |
Collapse
|
42
|
Selby MS, Lovejoy CO. Evolution of the hominoid scapula and its implications for earliest hominid locomotion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:682-700. [PMID: 28128440 DOI: 10.1002/ajpa.23158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The higher primate scapula has been subject to many explanations of the putative "adaptive value" of its individual traits. However, the shift from the bone's position in above branch quadrupeds to its more posterolateral position in recent hominoids obviously required fundamental changes to its general form. We hypothesize that most features argued to be individually adaptive are more likely secondary consequences of changes in its fundamental bauplan, a view more consistent with modern developmental biology. MATERIALS AND METHODS We tested this hypothesis with scapular metrics and angles from a broad anthropoid sample. RESULTS Our results support our hypothesis. Contrary to earlier predictions, vertebral border length differs little relative to body size in anthropoids, inferior angle position primarily reflects mediolateral scapular breadth, and supraspinous and infraspinous fossa sizes largely reflect scapular spine orientation. Suspensory taxa have cranially oriented glenoids, whereas slow clamberers and humans do not. Australopithecus most closely resembles the latter. DISCUSSION Most scapular features can be explained by only two primary changes: (1) reduction in mediolateral breadth and (2) change in the glenoid position relative to the vertebral border with increased reliance on suspension, which led to a more cranially angled scapular spine. Virtually all other scapular traits appear to be byproducts of these two changes. Based on fossil morphology, hominids1 were derived from a last common ancestor primarily adapted for clambering and not for suspension. Scapular form in early hominids such as Australopithecus is therefore primitive and largely reflects the genus's general clambering heritage.
Collapse
Affiliation(s)
- Michael S Selby
- Department of Biomedical Sciences, Georgia Campus - Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, 30024-2937
| | - C Owen Lovejoy
- Department of Anthropology, School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242-0001
| |
Collapse
|
43
|
Hilton HG, Blokhuis JH, Guethlein LA, Norman PJ, Parham P. Resurrecting KIR2DP1: A Key Intermediate in the Evolution of Human Inhibitory NK Cell Receptors That Recognize HLA-C. THE JOURNAL OF IMMUNOLOGY 2017; 198:1961-1973. [PMID: 28122963 DOI: 10.4049/jimmunol.1601835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
KIR2DP1 is an inactive member of the human lineage III KIR family, which includes all HLA-C-specific receptor genes. The lethal, and only, defect in KIR2DP1 is a nucleotide deletion in codon 88. Fixed in modern humans, the deletion is also in archaic human genomes. KIR2DP1 is polymorphic, with dimorphism at specificity-determining position 44. By repairing the deletion, we resurrected 11 alleles of KIR2DP1F , the functional antecedent of KIR2DP1 We demonstrate how K44-KIR2DP1F with lysine 44 recognized C1+HLA-C, whereas T44-KIR2DP1F recognized C2+HLA-C. Dimorphisms at 12 other KIR2DP1F residues modulate receptor avidity or signaling. KIR2DP1 and KIR2DL1 are neighbors in the centromeric KIR region and are in tight linkage disequilibrium. Like KIR2DL1, KIR2DP1 contributed to CenA and CenB KIR haplotype differences. Encoded on CenA, C1-specific K44-KIR2DP1F were stronger receptors than the attenuated C2-specific T44-KIR2DP1F encoded on CenB The last common ancestor of humans and chimpanzees had diverse lineage III KIR that passed on to chimpanzees but not to humans. Early humans inherited activating KIR2DS4 and an inhibitory lineage III KIR, likely encoding a C1-specific receptor. The latter spawned the modern family of HLA-C receptors. KIR2DP1F has properties consistent with KIR2DP1F having been the founder gene. The first KIR2DP1F alleles encoded K44-C1 receptors; subsequently KIR2DP1F alleles encoding T44-C2 receptors evolved. The emergence of dedicated KIR2DL2/3 and KIR2DL1 genes encoding C1 and C2 receptors, respectively, could have led to obsolescence of KIR2DP1F Alternatively, pathogen subversion caused its demise. Preservation of KIR2DP1F functional polymorphism was a side effect of fixation of the deletion in KIR2DP1F by micro gene conversion.
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305; and .,Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Jeroen H Blokhuis
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305; and.,Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305; and.,Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305; and.,Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305; and .,Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
44
|
Prang TC. Reevaluating the functional implications of Australopithecus afarensis navicular morphology. J Hum Evol 2016; 97:73-85. [DOI: 10.1016/j.jhevol.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022]
|
45
|
Scapular shape of extant hominoids and the African ape/modern human last common ancestor. J Hum Evol 2016; 94:1-12. [DOI: 10.1016/j.jhevol.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 02/01/2023]
|
46
|
Reply to Almécija: A new direction for reconstructing our last common ancestor with chimpanzees. Proc Natl Acad Sci U S A 2016; 113:E945. [PMID: 26862164 DOI: 10.1073/pnas.1525673113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Pitfalls reconstructing the last common ancestor of chimpanzees and humans. Proc Natl Acad Sci U S A 2016; 113:E943-4. [PMID: 26862165 DOI: 10.1073/pnas.1524165113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Reply to Melillo: Woranso-Mille is consistent with an australopithecine shoulder intermediate between African apes and Homo. Proc Natl Acad Sci U S A 2015; 112:E7160. [PMID: 26676585 DOI: 10.1073/pnas.1521824112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
|