1
|
Aoki H, Tomita H, Hara A, Kunisada T. Conditional heterozygous loss of kit receptor tyrosine kinase in neural crest cell lineage is associated with midline cleft lip and bifid nose deformity. J Oral Biosci 2025; 67:100572. [PMID: 39426597 DOI: 10.1016/j.job.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The receptor tyrosine kinase Kit is expressed in cells derived from the trunk neural crest (NC), such as melanocytes; however, its role in cranial NC cell development is not fully understood. METHODS We investigated the effects of the heterozygous loss of Kit in NC cells during embryonic development by mating Kit2lox/+ mice with Wnt1-Cre mice to produce Wnt1-Cre; Kit2lox/+ embryos. In addition, Wnt1-Cre mice were mated with Rosa26R-yellow fluorescent protein (YFP) mice to visualize the tissue regions expressing Cre recombinase. Histological studies of the craniofacial regions of these mice were performed using samples from embryonic day (E) 12.5 and postnatal day (P) 1. Cellular apoptosis and proliferation were both analyzed through the immunostaining of tissue sections collected on E13.5 and E14.5 using anti-cleaved caspase 3 (CC3) to detect apoptosis and anti-Ki67 to detect proliferation. Cells from YFP-positive tissue regions of the facial areas of Wnt1-Cre; Kit+/+; Rosa26R-YFP embryos and Wnt1-Cre; Kit2lox/+; Rosa26R-YFP embryos collected on E12.5 and E15.5 were cultured and evaluated for cell proliferation. RESULTS Compared with control littermates, Wnt1-Cre; Kit2lox/+ embryos exhibited midline cleft lip and bifid nose deformities. Substantial early (P1) postnatal lethality was observed in Wnt1-Cre; Kit2lox/+ mice, with none surviving to 3 weeks of age. YFP-positive cells from the maxillary regions of Wnt1-Cre; Kit2lox/+; Rosa26R-YFP embryos exhibited defective cell growth and self-renewal in vitro. CONCLUSION Conditional heterozygous loss of Kit in Wnt1-Cre; Kit2lox/+ embryos is associated with craniofacial dysplasia and exhibit defective NC development in vitro and in vivo.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan.
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
2
|
Dulce RA, Hatzistergos KE, Kanashiro-Takeuchi RM, Takeuchi LM, Balkan W, Hare JM. Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system. Rev Endocr Metab Disord 2025:10.1007/s11154-024-09939-0. [PMID: 39883351 DOI: 10.1007/s11154-024-09939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling. Studies performed in small and large animal models have demonstrated the efficacy of these compounds in diverse cardiomyopathies, suggesting their potential as promising therapeutic agents. However, the clinical translation of GHRH synthetic analogs still faces challenges related to the route of administration and potential side effects mainly associated with activation of the GH/IGF-I axis. Despite these hurdles, the compelling evidence supporting their role in cardiac repair makes GHRH analogs attractive candidates for clinical testing in the treatment of various cardiac diseases.
Collapse
Affiliation(s)
- Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Konstantinos E Hatzistergos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
4
|
Donato G, Mignogna C, Santise G, Presta I, Ferrazzo T, Garo V, Maselli D, Curcio A, De Rosa S, Spaccarotella C, Mollace V, Gentile F, Indolfi C, Malara N. Distinctive phenogroup to differentiate diagnosis of cardiac myxoma vs cardiovascular disease examining blood-based circulating cell biomarkers. Sci Rep 2023; 13:20357. [PMID: 37990043 PMCID: PMC10663517 DOI: 10.1038/s41598-023-47639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Cardiac myxoma (CM) is a potentially life-threatening disease because frequently asymptomatic or debuts with aspecific manifestations. Definitive diagnosis is established by histopathological assessment including tumor and endothelial cell markers. To derive a specific panel of circulating cells antigenically detectable, pre-surgery peripheral blood samples of CM patients were analyzed. Pre-surgery peripheral blood samples from patients with CM were simultaneously analyzed for Circulating tumor cells (CTCs) and circulating endothelial cells (CECs) that were matched with tumor tissue profiles and with patient-derived xenografts (PDXs) distinguishing tumor regions. Moreover, CECs values in CM patients were further matched with CEC's levels in cardiovascular disease and control subjects. The blood-derived cytological specimens detected at least 1-3 CTCs/ml in 10 tested CM samples (p = 0.0001) showing specific CM features preserved in the central zones of the tumor. The central zone of the primary tumor, supported by a vessel density rate (55 ± 7%), with a proliferative profile of 32 ± 3% and a percentage of Calretininpos cells (p = 0.03), is the principal site of CTCs (r = 00) dissemination. The subsets of endothelial cells recognized in the blood were indifferent to their topological distribution within the tumor and corresponding PDXs. With further refinement and validation in large cohorts, multiparametric liquid biopsies can optimally integrate clinically informative datasets and maximize their utility in pre-surgery evaluation of CM patients. Blood-derived culture's protocol provides a versatile method capable of viable analysis of CTCs of non-hematological rare tumors which conventional antibody-mediated analytical platform is unable to perform. Distinctive blood- based cell phenotype contributes to differentiate CM from other differentials assuring its prompt surgical resection by combining blood-based cell biomarkers integrated with clinically informative datasets.
Collapse
Affiliation(s)
- Giuseppe Donato
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Chiara Mignogna
- Interdipartimentale Service Center, University Magna Graecia, Catanzaro, Italy
| | - Gianluca Santise
- Cardiothoracic Surgery Unit, Sant'Anna Hospital, Via Pio X, 111, Catanzaro, Italy
| | - Ivan Presta
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Teresa Ferrazzo
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Virginia Garo
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Daniele Maselli
- Cardiothoracic Surgery Unit, Sant'Anna Hospital, Via Pio X, 111, Catanzaro, Italy
| | - Antonio Curcio
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Carmen Spaccarotella
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Francesco Gentile
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy.
| |
Collapse
|
5
|
Kaushal S, Hare JM, Shah AM, Pietris NP, Bettencourt JL, Piller LB, Khan A, Snyder A, Boyd RM, Abdullah M, Mishra R, Sharma S, Slesnick TC, Si MS, Chai PJ, Davis BR, Lai D, Davis ME, Mahle WT. Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome (CHILD Study). Pediatr Cardiol 2022; 43:1481-1493. [PMID: 35394149 DOI: 10.1007/s00246-022-02872-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Mortality in infants with hypoplastic left heart syndrome (HLHS) is strongly correlated with right ventricle (RV) dysfunction. Cell therapy has demonstrated potential improvements of RV dysfunction in animal models related to HLHS, and neonatal human derived c-kit+ cardiac-derived progenitor cells (CPCs) show superior efficacy when compared to adult human cardiac-derived CPCs (aCPCs). Neonatal CPCs (nCPCs) have yet to be investigated in humans. The CHILD trial (Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome) is a Phase I/II trial aimed at investigating intramyocardial administration of autologous nCPCs in HLHS infants by assessing the feasibility, safety, and potential efficacy of CPC therapy. Using an open-label, multicenter design, CHILD investigates nCPC safety and feasibility in the first enrollment group (Group A/Phase I). In the second enrollment group, CHILD uses a randomized, double-blinded, multicenter design (Group B/Phase II), to assess nCPC efficacy based on RV functional and structural characteristics. The study plans to enroll 32 patients across 4 institutions: Group A will enroll 10 patients, and Group B will enroll 22 patients. CHILD will provide important insights into the therapeutic potential of nCPCs in patients with HLHS.Clinical Trial Registration https://clinicaltrials.gov/ct2/home NCT03406884, First posted January 23, 2018.
Collapse
Affiliation(s)
- Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA.
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA.
| | - Aakash M Shah
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Nicholas P Pietris
- Division of Pediatric Cardiology, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | | | - Linda B Piller
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA
| | - Abigail Snyder
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Riley M Boyd
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Mohamed Abdullah
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Rachana Mishra
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Sudhish Sharma
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Timothy C Slesnick
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA
| | - Ming-Sing Si
- University of Michigan, CS Mott Children's Hospital, 1540 E. Hospital Drive, 11-735, Ann Arbor, MI, 48109, USA
| | - Paul J Chai
- Department of Cardiac Surgery, Emory University Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Barry R Davis
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Dejian Lai
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA.,Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| | - William T Mahle
- Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Assessment of Myocardial Diastolic Dysfunction as a Result of Myocardial Infarction and Extracellular Matrix Regulation Disorders in the Context of Mesenchymal Stem Cell Therapy. J Clin Med 2022; 11:jcm11185430. [PMID: 36143077 PMCID: PMC9502668 DOI: 10.3390/jcm11185430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The decline in cardiac contractility due to damage or loss of cardiomyocytes is intensified by changes in the extracellular matrix leading to heart remodeling. An excessive matrix response in the ischemic cardiomyopathy may contribute to the elevated fibrotic compartment and diastolic dysfunction. Fibroproliferation is a defense response aimed at quickly closing the damaged area and maintaining tissue integrity. Balance in this process is of paramount importance, as the reduced post-infarction response causes scar thinning and more pronounced left ventricular remodeling, while excessive fibrosis leads to impairment of heart function. Under normal conditions, migration of progenitor cells to the lesion site occurs. These cells have the potential to differentiate into myocytes in vitro, but the changed micro-environment in the heart after infarction does not allow such differentiation. Stem cell transplantation affects the extracellular matrix remodeling and thus may facilitate the improvement of left ventricular function. Studies show that mesenchymal stem cell therapy after infarct reduces fibrosis. However, the authors did not specify whether they meant the reduction of scarring as a result of regeneration or changes in the matrix. Research is also necessary to rule out long-term negative effects of post-acute infarct stem cell therapy.
Collapse
|
7
|
Abstract
Tissue-resident macrophages are present in all tissues where they perform homeostatic and immune surveillance functions. In many tissues, resident macrophages develop from embryonic progenitors, which mature into a self-maintaining population through local proliferation. However, tissue-resident macrophages can be supported by recruited monocyte-derived macrophages during scenarios such as tissue growth, infection, or sterile inflammation. Circulating blood monocytes arise from hematopoietic stem cell progenitors and possess unique gene profiles that support additional functions within the tissue. Determining cell origins (ontogeny) and cellular turnover within tissues has become important to understanding monocyte and macrophage contributions to tissue homeostasis and disease. Fate mapping, or lineage tracing, is a promising approach to tracking cells based on unique gene expression driving reporter systems, often downstream of a Cre-recombinase-mediated excision event, to express a fluorescent protein. This approach is typically deployed temporally with developmental stage, disease onset, or in association with key stages of inflammation resolution. Importantly, myeloid fate mapping can be combined with many emerging technologies, including single-cell RNA-sequencing and spatial imaging. The application of myeloid cell fate mapping approaches has allowed for impactful discoveries regarding myeloid ontogeny, tissue residency, and monocyte fate within disease models. This protocol outline will discuss a variety of myeloid fate mapping approaches, including constitutive and inducible labeling approaches in adult and embryo tissues. This article outlines basic approaches and models used in mice for fate mapping macrophages. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Adult Fate Mapping Basic Protocol 2: Embryonic Fate Mapping.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| | - Patricia R. Schrank
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| | - Jesse W. Williams
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| |
Collapse
|
8
|
Chen W, Liu X, Li W, Shen H, Zeng Z, Yin K, Priest JR, Zhou Z. Single-cell transcriptomic landscape of cardiac neural crest cell derivatives during development. EMBO Rep 2021; 22:e52389. [PMID: 34569705 PMCID: PMC8567227 DOI: 10.15252/embr.202152389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The migratory cardiac neural crest cells (CNCCs) contribute greatly to cardiovascular development. A thorough understanding of the cell lineages, developmental chronology, and transcriptomic states of CNCC derivatives during normal development is essential for deciphering the pathogenesis of CNCC‐associated congenital anomalies. Here, we perform single‐cell transcriptomic sequencing of 34,131 CNCC‐derived cells in mouse hearts covering eight developmental stages between E10.5 and P7. We report the presence of CNCC‐derived mural cells that comprise pericytes and microvascular smooth muscle cells (mVSMCs). Furthermore, we identify the transition from the CNCC‐derived pericytes to mVSMCs and the key regulators over the transition. In addition, our data support that many CNCC derivatives had already committed or differentiated to a specific lineage when migrating into the heart. We explore the spatial distribution of some critical CNCC‐derived subpopulations with single‐molecule fluorescence in situ hybridization. Finally, we computationally reconstruct the differentiation path and regulatory dynamics of CNCC derivatives. Our study provides novel insights into the cell lineages, developmental chronology, and regulatory dynamics of CNCC derivatives during development.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayan Shen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James R Priest
- Stanford University School of Medicine, Stanford, CA, USA
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Vaka R, Davis DR. State-of-play for cellular therapies in cardiac repair and regeneration. Stem Cells 2021; 39:1579-1588. [PMID: 34448513 PMCID: PMC9290630 DOI: 10.1002/stem.3446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the primary cause of death around the world. For almost two decades, cell therapy has been proposed as a solution for heart disease. In this article, we report on the “state‐of‐play” of cellular therapies for cardiac repair and regeneration. We outline the progression of new ideas from the preclinical literature to ongoing clinical trials. Recent data supporting the mechanics and mechanisms of myogenic and paracrine therapies are evaluated in the context of long‐term cardiac engraftment. This discussion informs on promising new approaches to indicate future avenues for the field.
Collapse
Affiliation(s)
- Ramana Vaka
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Darryl R Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
10
|
Arora H, Lavin AC, Balkan W, Hare JM, White IA. Neuregulin-1, in a Conducive Milieu with Wnt/BMP/Retinoic Acid, Prolongs the Epicardial-Mediated Cardiac Regeneration Capacity of Neonatal Heart Explants. J Stem Cells Regen Med 2021; 17:18-27. [PMID: 34434004 DOI: 10.46582/jsrm.1701003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Rationale: Cardiac sympathetic nerves are required for endogenous repair of the mammalian neonatal heart in vivo, but the underlying mechanism is unclear. Objective: We tested the hypothesis that a combination of cardiac developmental growth factors Wnt3a, BMP4 and Neuregulin (NRG-1), compensate for denervation and support cardiac regeneration in explanted neonatal mammalian hearts. Methods and Results: Hearts from 2-day old neonatal mice were harvested, lesioned at the apex and grown ex vivo for 21 days under defined conditions. Hearts grown in canonical cardiomyocyte culture media underwent complete coagulative necrosis, a process resembling ischemic cell death, by day 14. However, the addition of Wnt3a, BMP-4 and NRG-1, maintained cellular integrity and restored the endogenous regenerative program. None of these factors alone, or in any paired combination, were sufficient to induce regeneration in culture. rNRG-1 alone significantly reduced the accumulation of double strand DNA damage at Day 3; (-NRG-1: 60±12%; +NRG-1: 8±3%; P<0.01) and prevented coagulative necrosis at Day 14. Short-term addition of rWnt3a and rBMP-4 (day 0-3, NRG-1+) increased WT1 expression (a marker of epicardial cells) 7-fold, epicardial proliferation (78±17 cells vs. 21±9 cells; P<0.05), migration and recellularization (80±22 vs. zero cells; P<0.01; n=6) at the injury site on day 14. Conclusions: A novel explant culture system maintains three-dimensional neonatal mouse hearts and the mammalian neonatal cardiac regenerative program ex vivo. We identified that rNRG-1, plus short-term activation of Wnt- and BMP-signaling, promotes cardiac repair via epicardial cell activation, their proliferation and migration to the injury site, followed by putative cardiomyocyte recruitment. This novel technique will facilitate future studies of mammalian cardiac regeneration and may be useful in cardiac-specific drug testing.
Collapse
Affiliation(s)
- Himanshu Arora
- Interdisciplinary Stem Cell Institute and Departments of.,Urology and
| | | | - Wayne Balkan
- Interdisciplinary Stem Cell Institute and Departments of.,Medicine, University of Miami Miller School of Medicine, Miami FL, 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute and Departments of.,Medicine, University of Miami Miller School of Medicine, Miami FL, 33136, USA
| | - Ian A White
- Interdisciplinary Stem Cell Institute and Departments of.,Neobiosis, LLC, 12085 Research Dr, Alachua, FL 32615, USA
| |
Collapse
|
11
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
12
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
13
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
14
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
15
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
16
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Tang W, Bronner ME. Neural crest lineage analysis: from past to future trajectory. Development 2020; 147:147/20/dev193193. [PMID: 33097550 DOI: 10.1242/dev.193193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
19
|
Wang BJ, Alvarez R, Muliono A, Sengphanith S, Monsanto MM, Weeks J, Sacripanti R, Sussman MA. Adaptation within embryonic and neonatal heart environment reveals alternative fates for adult c-kit + cardiac interstitial cells. Stem Cells Transl Med 2020; 9:620-635. [PMID: 31891237 PMCID: PMC7180292 DOI: 10.1002/sctm.19-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiac interstitial cells (CICs) perform essential roles in myocardial biology through preservation of homeostasis as well as response to injury or stress. Studies of murine CIC biology reveal remarkable plasticity in terms of transcriptional reprogramming and ploidy state with important implications for function. Despite over a decade of characterization and in vivo utilization of adult c-Kit+ CIC (cCIC), adaptability and functional responses upon delivery to adult mammalian hearts remain poorly understood. Limitations of characterizing cCIC biology following in vitro expansion and adoptive transfer into the adult heart were circumvented by delivery of the donated cells into early cardiogenic environments of embryonic, fetal, and early postnatal developing hearts. These three developmental stages were permissive for retention and persistence, enabling phenotypic evaluation of in vitro expanded cCICs after delivery as well as tissue response following introduction to the host environment. Embryonic blastocyst environment prompted cCIC integration into trophectoderm as well as persistence in amniochorionic membrane. Delivery to fetal myocardium yielded cCIC perivascular localization with fibroblast-like phenotype, similar to cCICs introduced to postnatal P3 heart with persistent cell cycle activity for up to 4 weeks. Fibroblast-like phenotype of exogenously transferred cCICs in fetal and postnatal cardiogenic environments is consistent with inability to contribute directly toward cardiogenesis and lack of functional integration with host myocardium. In contrast, cCICs incorporation into extra-embryonic membranes is consistent with fate of polyploid cells in blastocysts. These findings provide insight into cCIC biology, their inherent predisposition toward fibroblast fates in cardiogenic environments, and remarkable participation in extra-embryonic tissue formation.
Collapse
Affiliation(s)
- Bingyan J. Wang
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Roberto Alvarez
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Alvin Muliono
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Sharon Sengphanith
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Megan M. Monsanto
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Joi Weeks
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Roberto Sacripanti
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| | - Mark A. Sussman
- SDSU Heart Institute and Department of BiologySan Diego State UniversitySan DiegoCalifornia
| |
Collapse
|
20
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
21
|
Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. Molecular Characterization of Embryonic Stem Cell-Derived Cardiac Neural Crest-Like Cells Revealed a Spatiotemporal Expression of an Mlc-3 Isoform. Int J Stem Cells 2020; 13:65-79. [PMID: 31887845 PMCID: PMC7119212 DOI: 10.15283/ijsc19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Pluripotent embryonic stem (ES) cells represent a perfect model system for the investigation of early developmental processes. Besides their differentiation into derivatives of the three primary germ layers, they can also be differentiated into derivatives of the ‘fourth’ germ layer, the neural crest (NC). Due to its multipotency, extensive migration and outstanding capacity to generate a remarkable number of different cell types, the NC plays a key role in early developmental processes. Cardiac neural crest (CNC) cells are a subpopulation of the NC, which are of crucial importance for precise cardiovascular and pharyngeal glands’ development. CNC-associated malformations are rare, but always severe and life-threatening. Appropriate cell models could help to unravel underlying pathomechanisms and to develop new therapeutic options for relevant heart malformations. Methods Murine ES cells were differentiated according to a mesodermal-lineage promoting protocol. Expression profiles of ES cell-derived progeny at various differentiation stages were investigated on transcript and protein level. Results Comparative expression profiling of murine ES cell multilineage progeny versus undifferentiated ES cells confirmed differentiation into known cell derivatives of the three primary germ layers and provided evidence that ES cells have the capacity to differentiate into NC/CNC-like cells. Applying the NC/CNC cell-specific marker, 4E9R, an unambiguous identification of ES cell-derived NC/CNC-like cells was achieved. Conclusions Our findings will facilitate the establishment of an ES cell-derived CNC cell model for the investigation of molecular pathways during cardiac development in health and disease.
Collapse
Affiliation(s)
- Stefanie Schmitteckert
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Cornelia Ziegler
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Gudrun A Rappold
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.,Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
22
|
How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7874109. [PMID: 32190680 PMCID: PMC7073483 DOI: 10.1155/2020/7874109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, and miRNA. Notably, both mRNA and miRNA can enter into the extracellular space either in soluble form or packed into membrane vesicles. Stem cell-derived paracrine factors have been shown to suppress inflammation and apoptosis, stimulate angiogenesis, and amplify the proliferation and differentiation of resident cardiac stem cells (CSCs). Such features have led to exosomes being considered as potential drug candidates affording myocardial regeneration. The search for chemical signals capable of stimulating cardiomyogenesis is ongoing despite continuous debates regarding the ability of mature cardiomyocytes to divide or dedifferentiate, transdifferentiation of other cells into cardiomyocytes, and the ability of CSCs to differentiate into cardiomyocytes. Future research is aimed at identifying novel cell candidates capable of differentiating into cardiomyocytes. The observation that CSCs can undergo intracellular development with the formation of “cell-in-cell structure” and subsequent release of transitory amplifying cells with the capacity to differentiate into cardiomyocytes may provide clues for stimulating regenerative cardiomyogenesis.
Collapse
|
23
|
Substance P Administered after Myocardial Infarction Upregulates Microphthalmia-Associated Transcription Factor, GATA4, and the Expansion of c-Kit + Cells. Stem Cells Int 2020; 2020:1835950. [PMID: 32104183 PMCID: PMC7035579 DOI: 10.1155/2020/1835950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor, can govern gene expression by binding to E box elements in the promoter region of its target gene. Although high levels of MITF have been observed in cardiomyocytes and the heart, the role of MITF after myocardial infarction (MI) remains unclear. We investigated the association between substance P (SP)/neurokinin-1 receptor (NK1R) signaling and MITF expression after MI. Male Sprague-Dawley rats (8 weeks) were randomly divided in two groups: ischemia/reperfusion injury (I/R) and SP injection (5 nmol/kg, SP+I/R). At the end of 7 days, the left ventricle (LV; LV7daysI/R, LV7daysSP+I/R) and infarct-related areas (IA; IA7daysI/R, IA7daysSP+I/R) from the hearts were collected. Immunofluorescence staining demonstrated that the LV7daysSP+I/R had a larger population of c-Kit+ GATA4high cells, which markedly upregulated MITF, c-Kit, and GATA4. c-Kit+ cells in the explant-derived cells (EDCs) derived from IA7daysSP+I/R migrated more widely than EDCs IA7daysI/R. Immunofluorescence staining, western blot analysis, and qRT-PCR assay showed that SP-treated c-Kit+ cells exhibited a high expression of c-Kit, GATA4, and MITF. FTY720 (a MITF inhibitor), RP67580 (NK1R inhibitor), or both inhibited the migration and proliferation of c-Kit+ cells increased by SP and blocked the upregulation of c-Kit, GATA4, and MITF. Overall, we suggest that MITF might be a potential regulator in SP-mediated c-Kit+ cell expansion post-MI via c-Kit and GATA4.
Collapse
|
24
|
Balkan W, Gidwani S, Hatzistergos K, Hare JM. Cardiac progenitor cells, tissue homeostasis, and regeneration. PRINCIPLES OF TISSUE ENGINEERING 2020:579-591. [DOI: 10.1016/b978-0-12-818422-6.00032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Lebedev TD, Vagapova ER, Popenko VI, Leonova OG, Spirin PV, Prassolov VS. Two Receptors, Two Isoforms, Two Cancers: Comprehensive Analysis of KIT and TrkA Expression in Neuroblastoma and Acute Myeloid Leukemia. Front Oncol 2019; 9:1046. [PMID: 31681584 PMCID: PMC6813278 DOI: 10.3389/fonc.2019.01046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
Pediatric cancers represent a wide variety of different tumors, though they have unique features that distinguish them from adult cancers. Receptor tyrosine kinases KIT and TrkA functions in AML and NB, respectively, are well-characterized. Though expression of these receptors is found in both tumors, little is known about KIT function in NB and TrkA in AML. By combining gene enrichment analysis with multidimensional scaling we showed that pediatric AMLs with t(8;21) or inv16 and high KIT expression levels stand out from other AML subtypes as they share prominent transcriptomic features exclusively with KIT-overexpressing NBs. We showed that AML cell lines had a predominant expression of an alternative TrkAIII isoform, which reportedly has oncogenic features, while NB cell lines had dominating TrkAI-II isoforms. NB cells, on the other hand, had an abnormal ratio of KIT isoforms as opposed to AML cells. Both SCF and NGF exerted protective action against doxorubicin and cytarabine for t(8;21) AML and NB cells. We identified several gene sets both unique and common for pediatric AML and NB, and this expression is associated with KIT or TrkA levels. NMU, DUSP4, RET, SUSD5, NOS1, and GABRA5 genes are differentially expressed in NBs with high KIT expression and are associated with poor survival in NB. We identified HOXA10, BAG3, and MARCKS genes that are connected with TrkA expression and are marker genes of poor outcome in AML. We also report that SLC18A2, PLXNC1, and MRPL33 gene expression is associated with TrkA or KIT expression levels in both AML and NB, and these genes have a prognostic value for both cancers. Thus, we have provided a comprehensive characterization of TrkA and KIT expression along with the oncogenic signatures of these genes across two pediatric tumors.
Collapse
Affiliation(s)
- Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Elmira R Vagapova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir I Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Olga G Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| |
Collapse
|
26
|
Vagnozzi RJ, Sargent MA, Lin SCJ, Palpant NJ, Murry CE, Molkentin JD. Genetic Lineage Tracing of Sca-1 + Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation 2019; 138:2931-2939. [PMID: 29991486 DOI: 10.1161/circulationaha.118.035210] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Michelle A Sargent
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Suh-Chin J Lin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia (N.J.P.)
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle (C.E.M.)
| | - Jeffery D Molkentin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH.,Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
27
|
Zhou B, Wu SM. Reassessment of c-Kit in Cardiac Cells: A Complex Interplay Between Expression, Fate, and Function. Circ Res 2019; 123:9-11. [PMID: 29929968 DOI: 10.1161/circresaha.118.313215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (B.Z.)
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (S.M.W.)
| |
Collapse
|
28
|
Gude NA, Sussman MA. Cardiac regenerative therapy: Many paths to repair. Trends Cardiovasc Med 2019; 30:338-343. [PMID: 31515053 DOI: 10.1016/j.tcm.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease remains the primary cause of death in the United States and in most nations worldwide, despite ongoing intensive efforts to promote cardiac health and treat heart failure. Replacing damaged myocardium represents perhaps the most promising treatment strategy, but also the most challenging given that the adult mammalian heart is notoriously resistant to endogenous repair. Cardiac regeneration following pathologic challenge would require proliferation of surviving tissue, expansion and differentiation of resident progenitors, or transdifferentiation of exogenously applied progenitor cells into functioning myocardium. Adult cardiomyocyte proliferation has been the focus of investigation for decades, recently enjoying a renaissance of interest as a therapeutic strategy for reversing cardiomyocyte loss due in large part to ongoing controversies and frustrations with myocardial cell therapy outcomes. The promise of cardiac cell therapy originated with reports of resident adult cardiac stem cells that could be isolated, expanded and reintroduced into damaged myocardium, producing beneficial effects in preclinical animal models. Despite modest functional improvements, Phase I clinical trials using autologous cardiac derived cells have proven safe and effective, setting the stage for an ongoing multi-center Phase II trial combining autologous cardiac stem cell types to enhance beneficial effects. This overview will examine the history of these two approaches for promoting cardiac repair and attempt to provide context for current and future directions in cardiac regenerative research.
Collapse
Affiliation(s)
- Natalie A Gude
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
29
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
30
|
Cardiac fibrosis: potential therapeutic targets. Transl Res 2019; 209:121-137. [PMID: 30930180 PMCID: PMC6545256 DOI: 10.1016/j.trsl.2019.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease is a leading cause of mortality in the world and is exacerbated by the presence of cardiac fibrosis, defined by the accumulation of noncontractile extracellular matrix proteins. Cardiac fibrosis is directly linked to cardiac dysfunction and increased risk of arrhythmia. Despite its prevalence, there is a lack of efficacious therapies for inhibiting or reversing cardiac fibrosis, largely due to the complexity of the cell types and signaling pathways involved. Ongoing research has aimed to understand the mechanisms of cardiac fibrosis and develop new therapies for treating scar formation. Major approaches include preventing the formation of scar tissue and replacing fibrous tissue with functional cardiomyocytes. While targeting the renin-angiotensin-aldosterone system is currently used as the standard line of therapy for heart failure, there has been increased interest in inhibiting the transforming growth factor-β signaling pathway due its established role in cardiac fibrosis. Significant advances in cell transplantation therapy and biomaterials engineering have also demonstrated potential in regenerating the myocardium. Novel techniques, such as cellular direct reprogramming, and molecular targets, such as noncoding RNAs and epigenetic modifiers, are uncovering novel therapeutic options targeting fibrosis. This review provides an overview of current approaches and discuss future directions for treating cardiac fibrosis.
Collapse
|
31
|
Abushouk AI, Salem AMA, Saad A, Afifi AM, Afify AY, Afify H, Salem HS, Ghanem E, Abdel-Daim MM. Mesenchymal Stem Cell Therapy for Doxorubicin-Induced Cardiomyopathy: Potential Mechanisms, Governing Factors, and Implications of the Heart Stem Cell Debate. Front Pharmacol 2019; 10:635. [PMID: 31258475 PMCID: PMC6586740 DOI: 10.3389/fphar.2019.00635] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, researchers have reported several mechanisms for doxorubicin (DOX)-induced cardiomyopathy, including oxidative stress, inflammation, and apoptosis. Another mechanism that has been suggested is that DOX interferes with the cell cycle and induces oxidative stress in C-kit+ cells (commonly known as cardiac progenitor cells), reducing their regenerative capacity. Cardiac regeneration through enhancing the regenerative capacity of these cells or administration of other stem cells types has been the axis of several studies over the past 20 years. Several experiments revealed that local or systemic injections with mesenchymal stem cells (MSCs) were associated with significantly improved cardiac function, ameliorated inflammatory response, and reduced myocardial fibrosis. They also showed that several factors can affect the outcome of MSC treatment for DOX cardiomyopathy, including the MSC type, dose, route, and timing of administration. However, there is growing evidence that the C-kit+ cells do not have a cardiac regenerative potential in the adult mammalian heart. Similarly, the protective mechanisms of MSCs against DOX-induced cardiomyopathy are not likely to include direct differentiation into cardiomyocytes and probably occur through paracrine secretion, antioxidant and anti-inflammatory effects. Better understanding of the involved mechanisms and the factors governing the outcomes of MSCs therapy are essential before moving to clinical application in patients with DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Anas Saad
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Hesham Afify
- Wake Forest University, Winston-Salem, NC, United States
| | | | - Esraa Ghanem
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
32
|
Affiliation(s)
- Onur Kanisicak
- From the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, OH (O.K., R.J.V., J.D.M.)
| | - Ronald J Vagnozzi
- From the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, OH (O.K., R.J.V., J.D.M.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center and Howard Hughes Medical Institute, OH (O.K., R.J.V., J.D.M.).
| |
Collapse
|
33
|
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL.
| | - Anastasia Vedenko
- From the Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL
| |
Collapse
|
34
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
35
|
Lampert MA, Orogo AM, Najor RH, Hammerling BC, Leon LJ, Wang BJ, Kim T, Sussman MA, Gustafsson ÅB. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy 2019; 15:1182-1198. [PMID: 30741592 DOI: 10.1080/15548627.2019.1580095] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-based therapies represent a very promising strategy to repair and regenerate the injured heart to prevent progression to heart failure. To date, these therapies have had limited success due to a lack of survival and retention of the infused cells. Therefore, it is important to increase our understanding of the biology of these cells and utilize this information to enhance their survival and function in the injured heart. Mitochondria are critical for progenitor cell function and survival. Here, we demonstrate the importance of mitochondrial autophagy, or mitophagy, in the differentiation process in adult cardiac progenitor cells (CPCs). We found that mitophagy was rapidly induced upon initiation of differentiation in CPCs. We also found that mitophagy was mediated by mitophagy receptors, rather than the PINK1-PRKN/PARKIN pathway. Mitophagy mediated by BNIP3L/NIX and FUNDC1 was not involved in regulating progenitor cell fate determination, mitochondrial biogenesis, or reprogramming. Instead, mitophagy facilitated the CPCs to undergo proper mitochondrial network reorganization during differentiation. Abrogating BNIP3L- and FUNDC1-mediated mitophagy during differentiation led to sustained mitochondrial fission and formation of donut-shaped impaired mitochondria. It also resulted in increased susceptibility to cell death and failure to survive the infarcted heart. Finally, aging is associated with accumulation of mitochondrial DNA (mtDNA) damage in cells and we found that acquiring mtDNA mutations selectively disrupted the differentiation-activated mitophagy program in CPCs. These findings demonstrate the importance of BNIP3L- and FUNDC1-mediated mitophagy as a critical regulator of mitochondrial network formation during differentiation, as well as the consequences of accumulating mtDNA mutations. Abbreviations: Baf: bafilomycin A1; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CPCs: cardiac progenitor cells; DM: differentiation media; DNM1L: dynamin 1 like; EPCs: endothelial progenitor cells; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FUNDC1: FUN14 domain containing 1; HSCs: hematopoietic stem cells; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MFN1/2: mitofusin 1/2; MSCs: mesenchymal stem cells; mtDNA: mitochondrial DNA; OXPHOS: oxidative phosphorylation; PPARGC1A: PPARG coactivator 1 alpha; PHB2: prohibitin 2; POLG: DNA polymerase gamma, catalytic subunit; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester.
Collapse
Affiliation(s)
- Mark A Lampert
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| | - Amabel M Orogo
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| | - Rita H Najor
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| | - Babette C Hammerling
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| | - Leonardo J Leon
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| | - Bingyan J Wang
- b San Diego Heart Research Institute and the Department of Biology , San Diego State University , San Diego , CA , USA
| | - Taeyong Kim
- b San Diego Heart Research Institute and the Department of Biology , San Diego State University , San Diego , CA , USA
| | - Mark A Sussman
- b San Diego Heart Research Institute and the Department of Biology , San Diego State University , San Diego , CA , USA
| | - Åsa B Gustafsson
- a Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , CA , USA
| |
Collapse
|
36
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
37
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
38
|
Abdul-Wajid S, Demarest BL, Yost HJ. Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish. Nat Commun 2018; 9:4603. [PMID: 30389937 PMCID: PMC6214924 DOI: 10.1038/s41467-018-07054-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Neural crest cells migrate to the embryonic heart and transform into a small number of cardiomyocytes, but their functions in the developing and adult heart are unknown. Here, we show that neural crest derived cardiomyocytes (NC-Cms) in the zebrafish ventricle express Notch ligand jag2b, are adjacent to Notch responding cells, and persist throughout life. Genetic ablation of NC-Cms during embryogenesis results in diminished jag2b, altered Notch signaling and aberrant trabeculation patterns, but is not detrimental to early heart function or survival to adulthood. However, embryonic NC-Cm ablation results in adult fish that show severe hypertrophic cardiomyopathy (HCM), altered cardiomyocyte size, diminished adult heart capacity and heart failure in cardiac stress tests. Adult jag2b mutants have similar cardiomyopathy. Thus, we identify a cardiomyocyte population and genetic pathway that are required to prevent adult onset HCM and provide a zebrafish model of adult-onset HCM and heart failure.
Collapse
Affiliation(s)
- Sarah Abdul-Wajid
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Bradley L Demarest
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - H Joseph Yost
- University of Utah, Molecular Medicine Program, Eccles Institute of Human Genetics, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
39
|
A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci Rep 2018; 8:14453. [PMID: 30262904 PMCID: PMC6160450 DOI: 10.1038/s41598-018-32802-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Site-specific recombinases (SSR) are utilized as important genome engineering tools to precisely modify the genome of mice and other model organisms. Reporter mice that mark cells that at any given time had expressed the enzyme are frequently used for lineage tracing and to characterize newly generated mice expressing a recombinase from a chosen promoter. With increasing sophistication of genome alteration strategies, the demand for novel SSR systems that efficiently and specifically recombine their targets is rising and several SSR-systems are now used in combination to address complex biological questions in vivo. Generation of reporter mice for each one of these recombinases is cumbersome and increases the number of mouse lines that need to be maintained in animal facilities. Here we present a multi-reporter mouse line for loci-of-recombination (X) (MuX) that streamlines the characterization of mice expressing prominent recombinases. MuX mice constitutively express nuclear green fluorescent protein after recombination by either Cre, Flp, Dre or Vika recombinase, rationalizing the number of animal lines that need to be maintained. We also pioneer the use of the Vika/vox system in mice, illustrating its high efficacy and specificity, thereby facilitating future designs of sophisticated recombinase-based in vivo genome engineering strategies.
Collapse
|
40
|
Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, Tan JJ. Guided evaluation and standardisation of mesenchymal stem cell culture conditions to generate conditioned medium favourable to cardiac c-kit cell growth. Cell Tissue Res 2018; 375:383-396. [PMID: 30232595 DOI: 10.1007/s00441-018-2918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mimi Zulaikha Umar Fuaad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Maisura Azmi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yin Yee Leong
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
41
|
Ding Y, Ma J, Langenbacher AD, Baek KI, Lee J, Chang CC, Hsu JJ, Kulkarni RP, Belperio J, Shi W, Ranjbarvaziri S, Ardehali R, Tintut Y, Demer LL, Chen JN, Fei P, Packard RRS, Hsiai TK. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight 2018; 3:e121396. [PMID: 30135307 PMCID: PMC6141183 DOI: 10.1172/jci.insight.121396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jianguo Ma
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Adam D. Langenbacher
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Kyung In Baek
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Juhyun Lee
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | | - Jeffrey J. Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Rajan P. Kulkarni
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Linda L. Demer
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Peng Fei
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | | | - Tzung K. Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| |
Collapse
|
42
|
Affiliation(s)
- Annarosa Leri
- From the Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine, University of Zurich, Lugano, Switzerland.
| | - Piero Anversa
- From the Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine, University of Zurich, Lugano, Switzerland
| |
Collapse
|
43
|
Debbache J, Parfejevs V, Sommer L. Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis 2018; 56:e23105. [PMID: 29673028 PMCID: PMC6099459 DOI: 10.1002/dvg.23105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023]
Abstract
The neural crest is one of the embryonic structures with the broadest developmental potential in vertebrates. Morphologically, neural crest cells emerge during neurulation in the dorsal folds of the neural tube before undergoing an epithelial‐to‐mesenchymal transition (EMT), delaminating from the neural tube, and migrating to multiple sites in the growing embryo. Neural crest cells generate cell types as diverse as peripheral neurons and glia, melanocytes, and so‐called mesectodermal derivatives that include craniofacial bone and cartilage and smooth muscle cells in cardiovascular structures. In mice, the fate of neural crest cells has been determined mainly by means of transgenesis and genome editing technologies. The most frequently used method relies on the Cre‐loxP system, in which expression of Cre‐recombinase in neural crest cells or their derivatives genetically enables the expression of a Cre‐reporter allele, thus permanently marking neural crest‐derived cells. Here, we provide an overview of the Cre‐driver lines used in the field and discuss to what extent these lines allow precise neural crest stage and lineage‐specific fate mapping.
Collapse
Affiliation(s)
- Julien Debbache
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Vadims Parfejevs
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| |
Collapse
|
44
|
Gude NA, Firouzi F, Broughton KM, Ilves K, Nguyen KP, Payne CR, Sacchi V, Monsanto MM, Casillas AR, Khalafalla FG, Wang BJ, Ebeid DE, Alvarez R, Dembitsky WP, Bailey BA, van Berlo J, Sussman MA. Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 2018; 123:57-72. [PMID: 29636378 DOI: 10.1161/circresaha.117.311828] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
RATIONALE Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.
Collapse
Affiliation(s)
- Natalie A Gude
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Fareheh Firouzi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kathleen M Broughton
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kelli Ilves
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kristine P Nguyen
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Christina R Payne
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Veronica Sacchi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Megan M Monsanto
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Alexandria R Casillas
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Farid G Khalafalla
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Bingyan J Wang
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - David E Ebeid
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Roberto Alvarez
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Walter P Dembitsky
- San Diego State University, CA; Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | | | - Jop van Berlo
- Department of Medicine, University of Minnesota, Minneapolis (J.v.B.)
| | - Mark A Sussman
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| |
Collapse
|
45
|
Kit cre knock-in mice fail to fate-map cardiac stem cells. Nature 2018; 555:E1-E5. [PMID: 29565363 DOI: 10.1038/nature25771] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
|
46
|
Hatzistergos KE, Jiang Z, Valasaki K, Takeuchi LM, Balkan W, Atluri P, Saur D, Seidler B, Tsinoremas N, DiFede DL, Hare JM. Simulated Microgravity Impairs Cardiac Autonomic Neurogenesis from Neural Crest Cells. Stem Cells Dev 2018; 27:819-830. [PMID: 29336212 DOI: 10.1089/scd.2017.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
Collapse
Affiliation(s)
| | - Zhijie Jiang
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | | | - Lauro M Takeuchi
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Wayne Balkan
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Preethi Atluri
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Dieter Saur
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Barbara Seidler
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Nicholas Tsinoremas
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Joshua M Hare
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| |
Collapse
|
47
|
Renko O, Tolonen AM, Rysä J, Magga J, Mustonen E, Ruskoaho H, Serpi R. SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Sci Rep 2018; 8:1160. [PMID: 29348441 PMCID: PMC5773575 DOI: 10.1038/s41598-018-19417-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
Collapse
Affiliation(s)
- Outi Renko
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Anna-Maria Tolonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
48
|
Cesselli D, Aleksova A, Mazzega E, Caragnano A, Beltrami AP. Cardiac stem cell aging and heart failure. Pharmacol Res 2018; 127:26-32. [DOI: 10.1016/j.phrs.2017.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
|
49
|
Greenberg JM, Lumbreras V, Pelaez D, Rajguru SM, Cheung HS. Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Eng Part C Methods 2017; 22:982-990. [PMID: 28192031 DOI: 10.1089/ten.tec.2016.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cellular cardiomyoplasty has rapidly risen to prominence in the clinic following a myocardial infarction; however, low engraftment of transplanted cells limits the therapeutic benefit to these procedures. Recently, lineage-specific stem cells differentiated into cardiomyocytes have gained much attention to assist in the repair of an injured heart tissue; however, questions regarding the ideal cell source remain. In the present study, we have identified a source that is easy to extract stem cells from and show that the cells present have a high plasticity toward the cardiomyogenic lineage. We focused on the recently discovered neural crest stem cells residing in the periodontal ligament that can be easily obtained through dental procedures. MATERIALS AND METHODS Neural crest stem cells were obtained from human excised third molars and differentiated in culture using a protocol for directed differentiation into cardiomyocytes. Differentiation of cells was assessed through gene expression and immunostaining studies. Optical stimulation using pulsed infrared radiation (IR) (λ = 1863 nm) was delivered to cell aggregates to study their contractile ability. RESULTS We show that neural crest stem cells can be differentiated to a cardiomyogenic lineage, which was verified through immunostaining and gene expression. We observed a significant increase in cardiomyocyte-specific markers, NK2 homeobox 5 (NKX2.5) and troponin T type 2 (TNNT2), with positive changes in tropomyosin I (TPM1), gap junction protein alpha 1/Cx43 (GJA1/Cx43), and myocyte enhancement factor 2C (MEF2C). Furthermore, we were able to elicit and maintain pulse-by-pulse contractile responses in the derived cells, including in cardiospheres, with pulsed IR delivered at various radiant energies. The contractility in responses to IR could be maintained at different frequencies (0.25-2 Hz) and up to 10-min durations. While these cells did not maintain their contractility following cessation of IR, these cells demonstrated responses to the optical stimuli that are consistent with previous reports. We also found no evidence for irreversible mitochondrial depolarization in these cells following the long duration of infrared stimulation, suggesting the robustness of these cells. CONCLUSIONS Overall, these results suggest the merit of neural crest-derived stem cells for cardiomyogenic applications and a potential cell source for repair that should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Jordan M Greenberg
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Vicente Lumbreras
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Daniel Pelaez
- 2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| | - Suhrud M Rajguru
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,3 Department of Otolaryngology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Herman S Cheung
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
50
|
Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 2017; 23:1488-1498. [PMID: 29131159 DOI: 10.1038/nm.4437] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
The Cre-loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre-rox recombination system to enhance the precision of conventional Cre-loxP-mediated lineage tracing. The Dre-rox system permits rigorous control of Cre-loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates-the contribution of c-Kit+ cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9+ hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre-loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.
Collapse
|