1
|
Han X, Li J, Li G, Zhang Z, Lian T, Zhang B, Luo T, Lv R, Cai X, Lin X, Xu C, Wu Y, Gong L, Wendel JF, Liu B. Rapid formation of stable autotetraploid rice from genome-doubled F1 hybrids of japonica-indica subspecies. NATURE PLANTS 2025; 11:743-760. [PMID: 40164786 PMCID: PMC12015120 DOI: 10.1038/s41477-025-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Theory predicts that in the absence of selection, a newly formed segmental allopolyploid will become 'autopolyploidized' if homoeologous exchanges (HEs) occur freely. Moreover, because selection against meiotic abnormalities is expected to be strong in the initial generations, we anticipate HEs to be uncommon in evolved segmental allopolyploids. Here we analysed the whole-genome composition of 202 phenotypically homogeneous and stable rice tetraploid recombinant inbred lines (TRILs) derived from Oryza sativa subsp. japonica subsp. indica hybridization/whole-genome doubling. We measured functional traits related to growth, development and reproductive fitness, and analysed meiotic chromosomal behaviour of the TRILs. We uncover factors that constrain the genomic composition of the TRILs, including asymmetric parental contribution and exclusive uniparental segment retention. Intriguingly, some TRILs that have high fertility and abiotic stress resilience co-occur with largely stabilized meiosis. Our findings comprise evidence supporting the evolutionary possibility of HE-catalysed 'allo-to-auto' polyploidy transitions in nature, with implications for creating new polyploid crops.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jiahao Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Taotao Lian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ting Luo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaojing Cai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
2
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
3
|
Dehaene N, Boussardon C, Andrey P, Charif D, Brandt D, Gilouppe Taillefer C, Nietzel T, Ricou A, Simon M, Tran J, Vezon D, Camilleri C, Arimura SI, Schwarzländer M, Budar F. The mitochondrial orf117Sha gene desynchronizes pollen development and causes pollen abortion in Arabidopsis Sha cytoplasmic male sterility. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4851-4872. [PMID: 38733289 DOI: 10.1093/jxb/erae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Cytoplasmic male sterility (CMS) is of major agronomical relevance in hybrid breeding. In gametophytic CMS, abortion of pollen is determined by the grain genotype, while in sporophytic CMS, it is determined by the mother plant genotype. While several CMS mechanisms have been dissected at the molecular level, gametophytic CMS has not been straightforwardly accessible. We used the gametophytic Sha-CMS in Arabidopsis to characterize the cause and process of pollen abortion by implementing in vivo biosensing in single pollen and mitoTALEN mutagenesis. We obtained conclusive evidence that orf117Sha is the CMS-causing gene, despite distinct characteristics from other CMS genes. We measured the in vivo cytosolic ATP content in single pollen, followed pollen development, and analyzed pollen mitochondrial volume in two genotypes that differed only by the presence of the orf117Sha locus. Our results showed that the Sha-CMS is not triggered by ATP deficiency. Instead, we observed desynchronization of a pollen developmental program. Pollen death occurred independently in pollen grains at diverse stages and was preceded by mitochondrial swelling. We conclude that pollen death is grain-autonomous in Sha-CMS and propose that mitochondrial permeability transition, which was previously described as a hallmark of developmental and environmental-triggered cell death programs, precedes pollen death in Sha-CMS.
Collapse
Affiliation(s)
- Noémie Dehaene
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Clément Boussardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Clémence Gilouppe Taillefer
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Matthieu Simon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Joseph Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Daniel Vezon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Françoise Budar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
4
|
Shahbazi M, Majka J, Kubíková D, Zwierzykowski Z, Glombik M, Wendel JF, Sharbrough J, Hartmann S, Szecówka M, Doležel J, Bartoš J, Kopecký D, Kneřová J. Cytonuclear interplay in auto- and allopolyploids: a multifaceted perspective from the Festuca-Lolium complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1102-1118. [PMID: 38323852 DOI: 10.1111/tpj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.
Collapse
Affiliation(s)
- Mehrdad Shahbazi
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Denisa Kubíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Zbigniew Zwierzykowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Marek Glombik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, Iowa, USA
| | - Joel Sharbrough
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, 87801, USA
| | - Stephan Hartmann
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Am Gereuth 4, 85354, Freising, Germany
| | - Marek Szecówka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jana Kneřová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| |
Collapse
|
5
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
6
|
Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be'ery A, Faigenboim-Doron A, Yamamoto E, Panzarová K, Kashkush K, Shental N, Fridman E. Cytonuclear interactions modulate the plasticity of photosynthetic rhythmicity and growth in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14192. [PMID: 38351880 DOI: 10.1111/ppl.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Schewach Bodenheimer
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Be'ery
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
7
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
8
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Chung KP, Gonzalez-Duran E, Ruf S, Endries P, Bock R. Control of plastid inheritance by environmental and genetic factors. NATURE PLANTS 2023; 9:68-80. [PMID: 36646831 PMCID: PMC9873568 DOI: 10.1038/s41477-022-01323-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Pierre Endries
- Universität Hamburg, Institut für Pflanzenwissenschaften und Mikrobiologie, Hamburg, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
10
|
Zhang K, Li J, Li G, Zhao Y, Dong Y, Zhang Y, Sun W, Wang J, Yao J, Ma Y, Wang H, Zhang Z, Wang T, Xie K, Wendel JF, Liu B, Gong L. Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus). Mol Biol Evol 2022; 39:msac228. [PMID: 36260528 PMCID: PMC9665066 DOI: 10.1093/molbev/msac228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.
Collapse
Affiliation(s)
- Keren Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Junsheng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin 130033, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, Liaoning 110036, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
11
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Matsuhira H, Kitazaki K, Matsui K, Kubota K, Kuroda Y, Kubo T. Selection of nuclear genotypes associated with the thermo-sensitivity of Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1457-1466. [PMID: 35147716 DOI: 10.1007/s00122-022-04046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic male sterility in sugar beet becomes thermo-sensitive when combined with specific genotypes, potentially offering a means to environmentally control pollination by this trait. The stability of cytoplasmic male sterility expression in several genetic backgrounds was investigated in sugar beet (Beta vulgaris L.). Nine genetically heterogenous plants from open-pollinated varieties were crossed with a cytoplasmic male sterile line to obtain 266 F1 plants. Based on marker analysis using a multiallelic DNA marker linked to restorer-of-fertility 1 (Rf1), we divided the F1 plants into 15 genotypes. We evaluated the phenotypes of the F1 plants under two environmental conditions: greenhouse rooms with or without daytime heating during the flowering season. Three phenotypic groups appeared: those consistently expressing male sterility, those consistently having restored pollen fertility, and those expressing male sterility in a thermo-sensitive manner. All plants in the consistently male sterile group inherited a specific Rf1 marker type named p4. We tested the potential for thermo-sensitive male sterile plants to serve as seed parents for hybrid seed production, and three genotypes were selected. Open pollination by a pollen parental line with a dominant trait of red-pigmented hypocotyls and leaf veins resulted in seed setting on thermo-sensitive male sterile plants, indicating that their female organs were functional. More than 99.9% of the progeny expressed the red pigmentation trait; hence, highly pure hybrids were obtained. We determined the nucleotide sequences of Rf1 from the three genotypes: One had a novel allele and two had known alleles, of which one was reported to have been selected previously as a non-restoring allele at a single U.S. breeding station but not at other stations in the U.S., or in Europe or Japan, suggesting environmental sensitivity.
Collapse
Affiliation(s)
- Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan.
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisi Kubota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
14
|
Singh S, Bhatia R, Kumar R, Behera TK, Kumari K, Pramanik A, Ghemeray H, Sharma K, Bhattacharya RC, Dey SS. Elucidating Mitochondrial DNA Markers of Ogura-Based CMS Lines in Indian Cauliflowers ( Brassica oleracea var. botrytis L.) and Their Floral Abnormalities Due to Diversity in Cytonuclear Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:631489. [PMID: 33995434 PMCID: PMC8120243 DOI: 10.3389/fpls.2021.631489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial markers can be used to differentiate diverse mitotypes as well as cytoplasms in angiosperms. In cauliflower, cultivation of hybrids is pivotal in remunerative agriculture and cytoplasmic male sterile lines constitute an important component of the hybrid breeding. In diversifying the source of male sterility, it is essential to appropriately differentiate among the available male sterile cytoplasms in cauliflower. PCR polymorphism at the key mitochondrial genes associated with male sterility will be instrumental in analyzing, molecular characterization, and development of mitotype-specific markers for differentiation of different cytoplasmic sources. Presence of auto- and alloplasmic cytonuclear combinations result in complex floral abnormalities. In this context, the present investigation highlighted the utility of organelle genome-based markers in distinguishing cytoplasm types in Indian cauliflowers and unveils the epistatic effects of the cytonuclear interactions influencing floral phenotypes. In PCR-based analysis using a set of primers targeted to orf-138, 76 Indian cauliflower lines depicted the presence of Ogura cytoplasm albeit the amplicons generated exhibited polymorphism within the ofr-138 sequence. The polymorphic fragments were found to be spanning over 200-280 bp and 410-470 bp genomic regions of BnTR4 and orf125, respectively. Sequence analysis revealed that such cytoplasmic genetic variations could be attributed to single nucleotide polymorphisms and insertion or deletions of 31/51 nucleotides. The cytoplasmic effects on varying nuclear-genetic backgrounds rendered an array of floral abnormalities like reduction in flower size, fused flowers, splitted style with the exposed ovule, absence of nonfunctional stamens, and petaloid stamens. These floral malformations caused dysplasia of flower structure affecting female fertility with inefficient nectar production. The finding provides an important reference to ameliorate understanding of mechanism of cytonuclear interactions in floral organ development in Brassicas. The study paves the way for unraveling developmental biology of CMS phenotypes in eukaryotic organisms and intergenomic conflict in plant speciation.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Achintya Pramanik
- ICAR-Indian Agricultural Research Institute, Regional Station, Kullu Valley, India
| | - Hemant Ghemeray
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kanika Sharma
- ICAR-Indian Agricultural Research Institute, Regional Station, Kullu Valley, India
| | | | - Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
15
|
He W, Chen C, Xiang K, Wang J, Zheng P, Tembrock LR, Jin D, Wu Z. The History and Diversity of Rice Domestication as Resolved From 1464 Complete Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:781793. [PMID: 34868182 PMCID: PMC8637288 DOI: 10.3389/fpls.2021.781793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 05/19/2023]
Abstract
The plastid is an essential organelle in autotrophic plant cells, descending from free-living cyanobacteria and acquired by early eukaryotic cells through endosymbiosis roughly one billion years ago. It contained a streamlined genome (plastome) that is uniparentally inherited and non-recombinant, which makes it an ideal tool for resolving the origin and diversity of plant species and populations. In the present study, a large dataset was amassed by de novo assembling plastomes from 295 common wild rice (Oryza rufipogon Griff.) and 1135 Asian cultivated rice (Oryza sativa L.) accessions, supplemented with 34 plastomes from other Oryza species. From this dataset, the phylogenetic relationships and biogeographic history of O. rufipogon and O. sativa were reconstructed. Our results revealed two major maternal lineages across the two species, which further diverged into nine well supported genetic clusters. Among them, the Or-wj-I/II/III and Or-wi-I/II genetic clusters were shared with cultivated (percentage for each cluster ranging 54.9%∼99.3%) and wild rice accessions. Molecular dating, phylogeographic analyses and reconstruction of population historical dynamics indicated an earlier origin of the Or-wj-I/II genetic clusters from East Asian with at least two population expansions, and later origins of other genetic clusters from multiple regions with one or more population expansions. These results supported a single origin of japonica rice (mainly in Or-wj-I/II) and multiple origins of indica rice (in all five clusters) for the history of rice domestication. The massive plastomic data set presented here provides an important resource for understanding the history and evolution of rice domestication as well as a genomic resources for use in future breeding and conservation efforts.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caijin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kunli Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Luke R. Tembrock,
| | - Deming Jin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Deming Jin,
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Zhiqiang Wu,
| |
Collapse
|
16
|
Durand S, Ricou A, Simon M, Dehaene N, Budar F, Camilleri C. A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:124-135. [PMID: 33098690 DOI: 10.1111/tpj.15045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large family of proteins targeted to organelles, where they post-transcriptionally modulate gene expression through binding to specific RNA sequences. Among them, the mitochondria-targeted restorer-of-fertility (Rf) PPRs inhibit peculiar mitochondrial genes that are detrimental to male gametes and cause cytoplasmic male sterility (CMS). Here, we revealed three nuclear loci involved in CMS in a cross between two distant Arabidopsis thaliana strains, Sha and Cvi-0. We identified the causal gene at one of these loci as RFL24, a conserved gene encoding a PPR protein related to known Rf PPRs. By analysing fertile revertants obtained in a male sterile background, we demonstrate that RFL24 promotes pollen abortion, in contrast with the previously described Rf PPRs, which allow pollen to survive in the presence of a sterilizing cytoplasm. We show that the sterility caused by the RFL24 Cvi-0 allele results from higher expression of the gene during early pollen development. Finally, we predict a binding site for RFL24 upstream of two mitochondrial genes, the CMS gene and the important gene cob. These results suggest that the conservation of RFL24 is linked to a primary role of ensuring a proper functioning of mitochondria, and that it was subsequently diverted by the CMS gene to its benefit.
Collapse
Affiliation(s)
- Stéphanie Durand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Anthony Ricou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Matthieu Simon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Noémie Dehaene
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Christine Camilleri
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
17
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Qiao J, Zhang X, Chen B, Huang F, Xu K, Huang Q, Huang Y, Hu Q, Wu X. Comparison of the cytoplastic genomes by resequencing: insights into the genetic diversity and the phylogeny of the agriculturally important genus Brassica. BMC Genomics 2020; 21:480. [PMID: 32660507 PMCID: PMC7359470 DOI: 10.1186/s12864-020-06889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of B. napus and certain detailed interspecific relationships within Brassica genus remains undetermined and somewhere confused. In the current high-throughput sequencing era, a systemic comparative genomic study based on a large population is necessary and would be crucial to resolve these questions. Results The chloroplast DNA and mitochondrial DNA were synchronously resequenced in a selected set of Brassica materials, which contain 72 accessions and maximally integrated the known Brassica species. The Brassica genomewide cpDNA and mtDNA variations have been identified. Detailed phylogenetic relationships inside and around Brassica genus have been delineated by the cpDNA- and mtDNA- variation derived phylogenies. Different from B. juncea and B. carinata, the natural B. napus contains three major cytoplasmic haplotypes: the cam-type which directly inherited from B. rapa, polima-type which is close to cam-type as a sister, and the mysterious but predominant nap-type. Certain sparse C-genome wild species might have primarily contributed the nap-type cytoplasm and the corresponding C subgenome to B. napus, implied by their con-clustering in both phylogenies. The strictly concurrent inheritance of mtDNA and cpDNA were dramatically disturbed in the B. napus cytoplasmic male sterile lines (e.g., mori and nsa). The genera Raphanus, Sinapis, Eruca, Moricandia show a strong parallel evolutional relationships with Brassica. Conclusions The overall variation data and elaborated phylogenetic relationships provide further insights into genetic understanding of Brassica, which can substantially facilitate the development of novel Brassica germplasms.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Xiaojun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
19
|
Exploration of artistic creation of Chinese ink style painting based on deep learning framework and convolutional neural network model. Soft comput 2020. [DOI: 10.1007/s00500-019-03985-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Fujita Y, Nagashima Y, Yamaguchi M, Shim SH, Ohnishi T, Bang SW. Characterization of cytoplasmic female sterility in an alloplasmic and monosomic addition line of Brassica rapa carrying the cytoplasm and one chromosome of Diplotaxis tenuifolia. BREEDING SCIENCE 2020; 70:355-362. [PMID: 32714058 PMCID: PMC7372022 DOI: 10.1270/jsbbs.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Alloplasmic plants exhibit various phenotypic changes such as cytoplasmic male sterility (CMS). We have been attempting to produce an alloplasmic Brassica rapa CMS line (2n = 20) carrying Diplotaxis tenuifolia cytoplasm (cyt-Dt) for several years, but a single extra chromosome always remained in all lines produced. We confirmed a D. tenuifolia-specific band in the alloplasmic line carrying D. tenuifolia cytoplasm by RAPD analysis, indicating that the additional chromosome was derived from D. tenuifolia. Here, we observed the phenotypic characteristics of the alloplasmic B. rapa monosomic addition line, named (cyt-Dt) B. rapa MAL, and investigated why a single extra chromosome is required in its genetic background for viability. When the (cyt-Dt) B. rapa MALs were crossed with pollen of several B. rapa lines, approximately 50% of the ovules attracted pollen tubes, and all the progeny had the additional chromosome. These results suggested that only the female gametes with n = 11 rather than n = 10 were fertilized and developed into mature seeds, and that cytoplasmic female sterility was overcome by nuclear restorer gene(s) derived from the cytoplasmic donor species.
Collapse
Affiliation(s)
- Yoshiaki Fujita
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yuriko Nagashima
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Mei Yamaguchi
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Su-Hyeun Shim
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Takayuki Ohnishi
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sang Woo Bang
- Laboratory of Plant Breeding, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
21
|
Sugimoto H, Hirano M, Tanaka H, Tanaka T, Kitagawa-Yogo R, Muramoto N, Mitsukawa N. Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1042-1057. [PMID: 31925982 DOI: 10.1111/tpj.14687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Plant cells have acquired chloroplasts (plastids) with a unique genome (ptDNA), which developed during the evolution of endosymbiosis. The gene content and genome structure of ptDNAs in land plants are considerably stable, although those of algal ptDNAs are highly varied. Plant cells seem, therefore, to be intolerant of any structural or organizational changes in the ptDNA. Genome rearrangement functions as a driver of genomic evolutionary divergence. Here, we aimed to create various types of rearrangements in the ptDNA of Arabidopsis genomes using plastid-targeted forms of restriction endonucleases (pREs). Arabidopsis plants expressing each of the three specific pREs, i.e., pTaqI, pHinP1I, and pMseI, were generated; they showed the leaf variegation phenotypes associated with impaired chloroplast development. We confirmed that these pREs caused double-stranded breaks (DSB) at their recognition sites in ptDNAs. Genome-wide analysis of ptDNAs revealed that the transgenic lines exhibited a large number of rearrangements such as inversions and deletions/duplications, which were dominantly repaired by microhomology-mediated recombination and microhomology-mediated end-joining, and less by non-homologous end-joining. Notably, pHinP1I, which recognized a small number of sites in ptDNA, induced drastic structural changes, including regional copy number variations throughout ptDNAs. In contrast, the transient expression of either pTaqI or pMseI, whose recognition site numbers were relatively larger, resulted in small-scale changes at the whole genome level. These results indicated that DSB frequencies and their distribution are major determinants in shaping ptDNAs.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Minoru Hirano
- Bio System Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Hidenori Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Tomoko Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Ritsuko Kitagawa-Yogo
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiko Muramoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Norihiro Mitsukawa
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
22
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
23
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Wide crossing diversify mitogenomes of rice. BMC PLANT BIOLOGY 2020; 20:159. [PMID: 32293284 PMCID: PMC7160995 DOI: 10.1186/s12870-020-02380-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND In most angiosperms, the inheritance of the mitochondria takes place in a typical maternal manner. However, very less information is available about if the existence of structural variations or not in mitochondrial genomes (mitogenomes) between maternal parents and their progenies. RESULTS In order to find the answer, a stable rice backcross inbred line (BIL) population was derived from the crosses of Oryza glaberrima/Oryza sativa//Oryza sativa. The current study presents a comparative analysis of the mitogenomes between maternal parents and five BILs. There were recorded universal structural variations such as reversal, translocation, fusion, and fission among the BILs. The repeat-mediated recombination and non-homologous end-joining contributed virtually equal to the rearrangement of mitogenomes. Similarly, the relative order, copy-number, expression level, and RNA-editing rate of mitochondrial genes were also extensively varied among BILs. CONCLUSIONS These novel findings unraveled an unusual mystery of the maternal inheritance and possible cause for heterogeneity of mitogenomes in rice population. The current piece of work will greatly develop our understanding of the plant nucleo-cytoplasmic interaction and their potential role in plant growth and developmental processes.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
24
|
Postel Z, Touzet P. Cytonuclear Genetic Incompatibilities in Plant Speciation. PLANTS 2020; 9:plants9040487. [PMID: 32290056 PMCID: PMC7238192 DOI: 10.3390/plants9040487] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation.
Collapse
|
25
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
26
|
Coate JE, Schreyer WM, Kum D, Doyle JJ. Robust Cytonuclear Coordination of Transcription in Nascent Arabidopsis thaliana Autopolyploids. Genes (Basel) 2020; 11:E134. [PMID: 32012851 PMCID: PMC7074348 DOI: 10.3390/genes11020134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is hypothesized to cause dosage imbalances between the nucleus and the other genome-containing organelles (mitochondria and plastids), but the evidence for this is limited. We performed RNA-seq on Arabidopsis thaliana diploids and their derived autopolyploids to quantify the degree of inter-genome coordination of transcriptional responses to nuclear whole genome duplication in two different organs (sepals and rosette leaves). We show that nuclear and organellar genomes exhibit highly coordinated responses in both organs. First, organelle genome copy number increased in response to nuclear whole genome duplication (WGD), at least partially compensating for altered nuclear genome dosage. Second, transcriptional output of the different cellular compartments is tuned to maintain diploid-like levels of relative expression among interacting genes. In particular, plastid genes and nuclear genes whose products are plastid-targeted show coordinated down-regulation, such that their expression levels relative to each other remain constant across ploidy levels. Conversely, mitochondrial genes and nuclear genes with mitochondrial targeting show either constant or coordinated up-regulation of expression relative to other nuclear genes. Thus, cytonuclear coordination is robust to changes in nuclear ploidy level, with diploid-like balance in transcript abundances achieved within three generations after nuclear whole genome duplication.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - W. Max Schreyer
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - David Kum
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - Jeff J. Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA;
| |
Collapse
|
27
|
Flood PJ, Theeuwen TPJM, Schneeberger K, Keizer P, Kruijer W, Severing E, Kouklas E, Hageman JA, Wijfjes R, Calvo-Baltanas V, Becker FFM, Schnabel SK, Willems LAJ, Ligterink W, van Arkel J, Mumm R, Gualberto JM, Savage L, Kramer DM, Keurentjes JJB, van Eeuwijk F, Koornneef M, Harbinson J, Aarts MGM, Wijnker E. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. NATURE PLANTS 2020; 6:13-21. [PMID: 31932677 DOI: 10.1038/s41477-019-0575-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/25/2019] [Indexed: 05/21/2023]
Abstract
Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Keizer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Evangelos Kouklas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jos A Hageman
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Raúl Wijfjes
- Bioinformatics Group, Wageningen, the Netherlands
| | - Vanesa Calvo-Baltanas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Sabine K Schnabel
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jeroen van Arkel
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Linda Savage
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - David M Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Fred van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
28
|
Marshall MM, Remington DL, Lacey EP. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata. Mol Ecol 2019; 29:272-291. [PMID: 31793079 DOI: 10.1111/mec.15320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
In many species, temperature-sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large-effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool- and warm-temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype-by-sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single-environment values for both traits. We identified a large-effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller-effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.
Collapse
Affiliation(s)
- Matthew M Marshall
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David L Remington
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Elizabeth P Lacey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
29
|
Bdolach E, Prusty MR, Faigenboim-Doron A, Filichkin T, Helgerson L, Schmid KJ, Greiner S, Fridman E. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. PLANT, CELL & ENVIRONMENT 2019; 42:3105-3120. [PMID: 31272129 DOI: 10.1111/pce.13606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.
Collapse
Affiliation(s)
- Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Tanya Filichkin
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Laura Helgerson
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
30
|
Samis KE, Stinchcombe JR, Murren CJ. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. AMERICAN JOURNAL OF BOTANY 2019; 106:1068-1080. [PMID: 31364776 DOI: 10.1002/ajb2.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/28/2019] [Indexed: 05/28/2023]
Abstract
PREMISE Determining how species perform in novel climatic environments is essential for understanding (1) responses to climate change and (2) evolutionary consequences of biological invasions. For the vast majority of species, the number of population characteristics that will predict performance and patterns of natural selection in novel locations in the wild remains limited. METHODS We evaluated phenological, vegetative, architectural, and fitness-related traits in experimental gardens in contrasting climates (Ontario, Canada, and South Carolina, USA) in the North American non-native distribution of Arabidopsis thaliana. We assessed the effects of climatic distance, geographic distance, and genetic features of history on performance and patterns of natural selection in the novel garden settings. RESULTS We found that plants had greater survivorship, flowered earlier, were larger, and produced more fruit in the south, and that genotype-by-environment interactions were significant between gardens. However, our analyses revealed similar patterns of natural selection between gardens in distinct climate zones. After accounting for genetic ancestry, we also detected that population climatic distance best predicted performance within gardens. CONCLUSIONS These data suggest that colonization success in novel, non-native environments is determined by a combination of climate and genetic history. When performance at novel sites was assessed with seed sources from geographically and genetically disparate, established non-native populations, proximity to the garden alone was insufficient to predict performance. Our study highlights the need to evaluate seed sources from diverse origins to describe comprehensively phenotypic responses to novel environments, particularly for taxa in which many source populations may contribute to colonization.
Collapse
Affiliation(s)
- Karen E Samis
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, Ontario, Canada
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, South Carolina, 29424, USA
| |
Collapse
|
31
|
Abstract
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 2019; 94:1089-1104. [PMID: 30588726 PMCID: PMC6613652 DOI: 10.1111/brv.12493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, United States of America
| | - Justin C. Havird
- Department of Biology, Colorado State University, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, United States of America
| | - Ronald S. Burton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Pinard D, Fierro AC, Marchal K, Myburg AA, Mizrachi E. Organellar carbon metabolism is coordinated with distinct developmental phases of secondary xylem. THE NEW PHYTOLOGIST 2019; 222:1832-1845. [PMID: 30742304 DOI: 10.1111/nph.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and plastids requires coordinated regulation of nuclear encoded genes, and the role of these genes has been largely ignored by wood researchers. In this study, we constructed a targeted systems genetics coexpression network of xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and compared the resulting clusters to the aspen xylem developmental series. The constructed network clusters reveal the organization of transcriptional modules regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes between the plastid and mitochondrial networks implicate the common transcriptional regulation of carbon metabolism during xylem secondary growth. We show that the central processes of organellar carbon metabolism are distinctly coordinated across the developmental stages of wood formation and are specifically associated with primary growth and secondary cell wall deposition. We also demonstrate that, during xylogenesis, plastid-targeted carbon metabolism is partially regulated by the central clock for carbon allocation towards primary and secondary xylem growth, and we discuss these networks in the context of previously established associations with wood-related complex traits. This study provides a new resolution into the integration and transcriptional regulation of plastid- and mitochondrial-localized carbon metabolism during xylogenesis.
Collapse
Affiliation(s)
- Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Ana Carolina Fierro
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Kathleen Marchal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
34
|
Nováková E, Zablatzká L, Brus J, Nesrstová V, Hanáček P, Kalendar R, Cvrčková F, Majeský Ľ, Smýkal P. Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/ bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea ( Pisum sp.). Int J Mol Sci 2019; 20:E1773. [PMID: 30974846 PMCID: PMC6480052 DOI: 10.3390/ijms20071773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
Collapse
Affiliation(s)
- Eliška Nováková
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Lenka Zablatzká
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Jan Brus
- Department of Geoinformatics, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Viktorie Nesrstová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 78371 Olomouc, Czech Republic.
| | - Pavel Hanáček
- Department of Plant Biology, Faculty of Agronomy, Mendel University, 61300 Brno, Czech Republic.
| | - Ruslan Kalendar
- National Center for Biotechnology, Astana 010000, Kazakhstan.
- Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Sustainability Centre, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic.
| | - Ľuboš Majeský
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| |
Collapse
|
35
|
Camus MF, Dowling DK. Mitochondrial genetic effects on reproductive success: signatures of positive intrasexual, but negative intersexual pleiotropy. Proc Biol Sci 2019; 285:rspb.2018.0187. [PMID: 29794041 DOI: 10.1098/rspb.2018.0187] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Theory predicts that maternal inheritance of mitochondria will facilitate the accumulation of mtDNA mutations that are male biased, or even sexually antagonistic, in effect. While there are many reported cases of mtDNA mutations conferring cytoplasmic male sterility in plants, historically it was assumed such mutations would not persist in the streamlined mitochondrial genomes of bilaterian metazoans. Intriguingly, recent cases of mitochondrial variants exerting male biases in effect have come to light in bilaterians. These cases aside, it remains unknown whether the mitochondrial genetic variation affecting phenotypic expression, and in particular reproductive performance, in bilaterians is routinely composed of sex-biased or sex-specific variation. If selection consistently favours mtDNA variants that augment female fitness, but at cost to males, this could shape patterns of pleiotropy and lead to negative intersexual correlations across mtDNA haplotypes. Here, we show that genetic variation across naturally occurring mitochondrial haplotypes affects components of reproductive success in both sexes, in the fruit fly Drosophila melanogaster We find that intrasexual correlations across mitochondrial haplotypes, for components of reproductive success, are generally positive, while intersexual correlations are negative. These results accord with theoretical predictions, suggesting that maternal inheritance has led to the fixation of numerous mutations of sexually antagonistic effect.
Collapse
Affiliation(s)
- M Florencia Camus
- School of Biological Sciences, Monash University, Victoria 3800, Australia .,Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
36
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
37
|
Boussardon C, Martin-Magniette ML, Godin B, Benamar A, Vittrant B, Citerne S, Mary-Huard T, Macherel D, Rajjou L, Budar F. Novel Cytonuclear Combinations Modify Arabidopsis thaliana Seed Physiology and Vigor. FRONTIERS IN PLANT SCIENCE 2019; 10:32. [PMID: 30804952 PMCID: PMC6370702 DOI: 10.3389/fpls.2019.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Dormancy and germination vigor are complex traits of primary importance for adaptation and agriculture. Intraspecific variation in cytoplasmic genomes and cytonuclear interactions were previously reported to affect germination in Arabidopsis using novel cytonuclear combinations that disrupt co-adaptation between natural variants of nuclear and cytoplasmic genomes. However, specific aspects of dormancy and germination vigor were not thoroughly explored, nor the parental contributions to the genetic effects. Here, we specifically assessed dormancy, germination performance and longevity of seeds from Arabidopsis plants with natural and new genomic compositions. All three traits were modified by cytonuclear reshuffling. Both depth and release rate of dormancy could be modified by a changing of cytoplasm. Significant changes on dormancy and germination performance due to specific cytonuclear interacting combinations mainly occurred in opposite directions, consistent with the idea that a single physiological consequence of the new genetic combination affected both traits oppositely. However, this was not always the case. Interestingly, the ability of parental accessions to contribute to significant cytonuclear interactions modifying the germination phenotype was different depending on whether they provided the nuclear or cytoplasmic genetic compartment. The observed deleterious effects of novel cytonuclear combinations (in comparison with the nuclear parent) were consistent with a contribution of cytonuclear interactions to germination adaptive phenotypes. More surprisingly, we also observed favorable effects of novel cytonuclear combinations, suggesting suboptimal genetic combinations exist in natural populations for these traits. Reduced sensitivity to exogenous ABA and faster endogenous ABA decay during germination were observed in a novel cytonuclear combination that also exhibited enhanced longevity and better germination performance, compared to its natural nuclear parent. Taken together, our results strongly support that cytoplasmic genomes represent an additional resource of natural variation for breeding seed vigor traits.
Collapse
Affiliation(s)
- Clément Boussardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Laure Martin-Magniette
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Abdelilah Benamar
- Institut de Recherche en Horticulture et Semences, Université d’Angers, Institut National de la Recherche Agronomique, Agrocampus Ouest, UMR 1345, SFR 4207 QUASAV, Angers, France
| | - Benjamin Vittrant
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Tristan Mary-Huard
- UMR MIA-Paris, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, Paris, France
- GQE – Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Macherel
- Institut de Recherche en Horticulture et Semences, Université d’Angers, Institut National de la Recherche Agronomique, Agrocampus Ouest, UMR 1345, SFR 4207 QUASAV, Angers, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
38
|
van Bezouw RFHM, Keurentjes JJB, Harbinson J, Aarts MGM. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:112-133. [PMID: 30548574 PMCID: PMC6850172 DOI: 10.1111/tpj.14190] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/18/2023]
Abstract
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High-throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis-related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio-engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype-to-gene identification pipeline.
Collapse
Affiliation(s)
- Roel F. H. M. van Bezouw
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| |
Collapse
|
39
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
40
|
Nowak J, Frérot H, Faure N, Glorieux C, Liné C, Pourrut B, Pauwels M. Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5561-5572. [PMID: 30215761 PMCID: PMC6255711 DOI: 10.1093/jxb/ery327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.
Collapse
Affiliation(s)
- Julien Nowak
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Hélène Frérot
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Nathalie Faure
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Cédric Glorieux
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Clarisse Liné
- ISA, Laboratoire Sols et Environnement, Lille Cedex, France
| | | | - Maxime Pauwels
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| |
Collapse
|
41
|
Takenaka S, Yamamoto R, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep 2018; 8:16267. [PMID: 30390041 PMCID: PMC6214928 DOI: 10.1038/s41598-018-34682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity in cytoplasmic and nuclear genomes and their interaction affecting adaptive traits is an attractive research subject in plants. We addressed submergence stress response of wheat that has become increasingly important but remained largely uninvestigated. Our primary aim was to disclose cytoplasmic diversity using nucleus-cytoplasm (NC) hybrids possessing a series of heterologous cytoplasms in a common nuclear background. Effects of submergence on seedling emergence and growth from imbibed seeds were studied and compared with euplasmic lines. Marked phenotypic variabilities were observed among both lines, demonstrating divergent cytoplasmic and nuclear effects on submergence response. NC hybrids with cytoplasm of Aegilops mutica showed a less inhibition, indicative of their positive contribution to submergence tolerance, whereas cytoplasms of Aegilops umbellulata and related species caused a greater inhibition. Superoxide dismutase (SOD) activity showed a marked increase accompanied by retardation of seedling growth in a susceptible NC hybrid. The observation suggested that the elevated SOD activity was resulted from a high level of reactive oxygen species accumulated and remained in susceptible seedlings. Taken together, our results point to the usefulness of NC hybrids in further studies needed to clarify molecular mechanisms underlying the nucleus-cytoplasm interaction regulating submergence stress response in wheat.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan.
| |
Collapse
|
42
|
Jiang P, Shi FX, Li MR, Liu B, Wen J, Xiao HX, Li LF. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax. FRONTIERS IN PLANT SCIENCE 2018; 9:359. [PMID: 29670636 PMCID: PMC5893753 DOI: 10.3389/fpls.2018.00359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 05/30/2023]
Abstract
Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Feng-Xue Shi
- Northeast Normal University Natural History Museum, Changchun, China
| | - Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Hong-Xing Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Pinard D, Mizrachi E. Unsung and understudied: plastids involved in secondary growth. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:30-36. [PMID: 29459221 DOI: 10.1016/j.pbi.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/17/2023]
Abstract
Plastids represent the only subcellular compartment where aromatic amino acid precursors for lignin can be synthesized during secondary growth in vascular plants. Despite this, aside from a general shared understanding that plastid-localized metabolism occurs during secondary growth, virtually no research has been performed on understanding their biology. Of particular importance will be insight into their ontogeny, morphology and ultrastructure, and (given the complex cytonuclear communication required) their nuclear-encoded and organellar-encoded regulation. Updating and integrating this knowledge will contribute to our fundamental understanding of a ubiquitous developmental process in vascular plants, and a major terrestrial carbon sink, as well as carbon-related plant biotechnology. Given available evidence, we propose a new name for a distinct plastid derivative-the 'xyloplast', is required.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
44
|
Hill GE. Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory? Bioessays 2018; 40. [DOI: 10.1002/bies.201700191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn Alabama 36849-5414
| |
Collapse
|
45
|
Takamatsu T, Baslam M, Inomata T, Oikawa K, Itoh K, Ohnishi T, Kinoshita T, Mitsui T. Optimized Method of Extracting Rice Chloroplast DNA for High-Quality Plastome Resequencing and de Novo Assembly. FRONTIERS IN PLANT SCIENCE 2018; 9:266. [PMID: 29541088 PMCID: PMC5835797 DOI: 10.3389/fpls.2018.00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research. To investigate effects on rice chloroplast genome quality, we compared cpDNA extraction by three extraction protocols: liquid nitrogen coupled with sucrose density gradient centrifugation, high-salt buffer, and Percoll gradient centrifugation. The liquid nitrogen-sucrose gradient method gave a high yield of high-quality cpDNA with reliable purity. The cpDNA isolated by this technique was evaluated, resequenced, and assembled de novo to build a robust framework for genomic and genetic studies. Comparison of this high-purity cpDNA with total DNAs revealed the read coverage of the sequenced regions; next-generation sequencing data showed that the high-quality cpDNA eliminated noise derived from contamination by nuclear and mitochondrial DNA, which frequently occurs in total DNA. The assembly process produced highly accurate, long contigs. We summarize the extent to which this improved method of isolating cpDNA from rice can provide practical progress in overcoming challenges related to chloroplast genomes and in further exploring the development of new sequencing technologies.
Collapse
Affiliation(s)
- Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takuya Inomata
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- *Correspondence: Toshiaki Mitsui,
| |
Collapse
|
46
|
Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol 2017; 1:1551-1561. [DOI: 10.1038/s41559-017-0297-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/27/2017] [Indexed: 11/08/2022]
|
47
|
Bock R. Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer. Annu Rev Genet 2017; 51:1-22. [PMID: 28846455 DOI: 10.1146/annurev-genet-120215-035329] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Present day mitochondria and plastids (chloroplasts) evolved from formerly free-living bacteria that were acquired through endosymbiosis more than a billion years ago. Conversion of the bacterial endosymbionts into cell organelles involved the massive translocation of genetic material from the organellar genomes to the nucleus. The development of transformation technologies for organellar genomes has made it possible to reconstruct this endosymbiotic gene transfer in laboratory experiments and study the mechanisms involved. Recently, the horizontal transfer of genetic information between organisms has also become amenable to experimental investigation. It led to the discovery of horizontal genome transfer as an asexual process generating new species and new combinations of nuclear and organellar genomes. This review describes experimental approaches towards studying endosymbiotic and horizontal gene transfer processes, discusses the new knowledge gained from these approaches about both the evolutionary significance of gene transfer and the underlying molecular mechanisms, and highlights exciting possibilities to exploit gene and genome transfer in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
48
|
Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:435-455. [PMID: 28226236 DOI: 10.1146/annurev-arplant-042916-040820] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative genetics has a long history in plants: It has been used to study specific biological processes, identify the factors important for trait evolution, and breed new crop varieties. These classical approaches to quantitative trait locus mapping have naturally improved with technology. In this review, we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene manipulation, and statistics are rejuvenating both the classical linkage mapping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies. These strategies are complementary in most instances, and indeed, one is often used to confirm the results of the other. Despite significant advances, an emerging trend is that the outcome and efficiency of the different approaches depend greatly on the genetic architecture of the trait in the genetic material under study.
Collapse
Affiliation(s)
- Christos Bazakos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Mathieu Hanemian
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Charlotte Trontin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| |
Collapse
|
49
|
Barnard‐Kubow KB, So N, Galloway LF. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution 2016; 70:2752-2766. [DOI: 10.1111/evo.13075] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/08/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nina So
- Department of Biology University of Virginia Charlottesville Virginia 22904
- Current Address: Doctoral Program in Neurobiology and Behavior Columbia University New York NY 10027
| | - Laura F. Galloway
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|