1
|
Borrow R, Tomasi Cont L, Toneatto D, Bambini S, Bobde S, Sohn WY, Biolchi A, Masignani V, Beernink PT, Lattanzi M. Methods to evaluate the performance of a multicomponent meningococcal serogroup B vaccine. mSphere 2025; 10:e0089824. [PMID: 40197090 PMCID: PMC12039234 DOI: 10.1128/msphere.00898-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Meningococcal serogroup B (MenB) vaccine licensure was based on the assessment of vaccine-induced immune responses by human serum bactericidal antibody (hSBA) assay against a small number of antigen-specific strains complemented by strain coverage predictions. However, the evaluation of vaccine strain coverage is challenging because of genotypic and phenotypic diversity in surface-exposed MenB strain antigens. This narrative review considers the principal methods applied to assess the performance of a multicomponent MenB vaccine at different stages of its development. Traditional hSBA assay against a limited panel of strains is useful at all stages, while predicted strain coverage methods, such as the meningococcal antigen typing system, are used independent of clinical trials. A new method, the endogenous complement hSBA assay, has been developed to evaluate a vaccine's ability to induce a bactericidal immune response in clinical trials, in conditions that approximate real-world settings through the use of each vaccinee's serum as a source of complement and by testing against a panel of 110 epidemiologically representative MenB strains. Each assay, therefore, has a different scope during the vaccine's development and all complement each other, enabling comprehensive evaluation of the performance of multicomponent MenB vaccines, in advance of real-world evidence of vaccine effectiveness and vaccine impact.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Clark SA, Willerton L, Claus H, Carannante A, Stefanelli P, Abad R, Vázquez JA, Borrow R. Exploring the sequence diversity and surface expression of Factor H-Binding Protein among invasive serogroup B meningococcal strains from selected European countries. Hum Vaccin Immunother 2024; 20:2427471. [PMID: 39536321 PMCID: PMC11562907 DOI: 10.1080/21645515.2024.2427471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Factor H-Binding Protein (fHbp) is a key component of meningococcal vaccines such as MenB-fHbp, licensed in the EU, UK, and other countries. Sufficient expression of fHbp on the bacterial surface is necessary for vaccine-induced antibodies to bind and exert bactericidal activity. The flow cytometric MEASURE assay quantifies fHbp expression in vitro, and previous studies have shown that strains with a Mean Fluorescence Intensity (MFI) >1000 are likely to be killed by MenB-fHbp-induced antibodies. This study assessed fHbp peptide distribution and expression among 451 invasive group B strains collected in 2016 across England, Wales, and Northern Ireland (EW&NI), Germany, Italy, and Spain. We found that 92% of the strains expressed fHbp above the MFI 1000 threshold. The strain distribution across EW&NI, Germany, and Italy was similar, with coverage ranging from 92.1% to 94.6%, dominated by a small number of clonal complexes and fHbp peptides. Although, the Spanish subset had a higher proportion of lower-expressing strains, particularly clonal complex 213, resulting in a lower predicted coverage for Spain (84%). These results, along with other published MEASURE data, can provide a basis for genotypic MenB-fHbp coverage predictions, however, inclusion of the upstream intergenic sequence of the fHbp gene in the prediction improved its accuracy by distinguishing between low- and high-expressing strains. Future MEASURE analyses of strains with less common fHbp variants would serve to further refine vaccine coverage predictions.
Collapse
Affiliation(s)
- Stephen A. Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Laura Willerton
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Heike Claus
- National Reference Centre for Meningococci and Haemophilus Influenzae, Institute for Hygiene and Microbiology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Anna Carannante
- Department Infectious Diseases, Instituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department Infectious Diseases, Instituto Superiore di Sanità, Rome, Italy
| | - Raquel Abad
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Julio A. Vázquez
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
3
|
Li Z, Murthy AK, Hao L, Andrew L, Anderson AS. Factor H binding protein (FHbp): An evaluation of genotypic diversity across Neisseria meningitidis serogroups. Hum Vaccin Immunother 2024; 20:2409502. [PMID: 39387286 PMCID: PMC11469366 DOI: 10.1080/21645515.2024.2409502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Neisseria meningitidis serogroups A, B, C, W, X, and Y cause invasive meningococcal disease (IMD) worldwide. Factor H binding protein (FHbp), a key meningococcal virulence factor, is an antigen included in both licensed meningococcal serogroup B (MenB) vaccines. This review examines the biology and epidemiology of FHbp and assesses the ability and potential of FHbp vaccine antigens to protect against IMD. Using evidence from the literature and the contemporary PubMLST database, we discuss analyses of MenB genotypes on the representation of the most prevalent multilocus sequence typing (MLST)/clonal complexes, FHbp subfamily distribution, and FHbp and porin A (PorA) variants. We further discuss that the similar genotypes, distribution, and diversity of FHbp variant types have remained stable over long time periods, supporting the potential for FHbp-containing, protein-based vaccines to protect against IMD, including MenB-FHbp (Trumenba®), which contains two lipidated FHbp antigens (one each from both FHbp subfamilies: A and B).
Collapse
Affiliation(s)
- Zhenghui Li
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Li Hao
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Lubomira Andrew
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | |
Collapse
|
4
|
Takahashi H, Morita M, Yasuda M, Ohama Y, Kobori Y, Kojima M, Shimuta K, Akeda Y, Ohnishi M. Detection of Novel US Neisseria meningitidis Urethritis Clade Subtypes in Japan. Emerg Infect Dis 2023; 29:2210-2217. [PMID: 37877502 PMCID: PMC10617353 DOI: 10.3201/eid2911.231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal diseases and has also been identified as a causative agent of sexually transmitted infections, including urethritis. Unencapsulated sequence type 11 meningococci containing the gonococcal aniA-norB locus and belonging to the United States N. meningitidis urethritis clade (US_NmUC) are causative agents of urethral infections in the United States, predominantly among men who have sex with men. We identified 2 subtypes of unencapsulated sequence type 11 meningococci in Japan that were phylogenetically close to US_NmUC, designated as the Japan N. meningitidis urethritis clade (J_NmUC). The subtypes were characterized by PCR, serologic testing, and whole-genome sequencing. Our study suggests that an ancestor of US_NmUC and J_NmUS urethritis-associated meningococci is disseminated worldwide. Global monitoring of urethritis-associated N. meningitidis isolates should be performed to further characterize microbiologic and epidemiologic characteristics of urethritis clade meningococci.
Collapse
|
5
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
6
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
7
|
Kunjantarachot A, Phanaksri T. Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria. J Microbiol Biotechnol 2022; 32:621-629. [PMID: 32522965 PMCID: PMC9628879 DOI: 10.4014/jmb.2003.03023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.
Collapse
Affiliation(s)
- Anthicha Kunjantarachot
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand,Corresponding author Phone: +662-564 4440-9 Ext. 4453 Fax: +662-564-4440-9 E-mail:
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
8
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
9
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
10
|
Micoli F, Alfini R, Giannelli C. Methods for Assessment of OMV/GMMA Quality and Stability. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2414:227-279. [PMID: 34784041 DOI: 10.1007/978-1-0716-1900-1_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Outer membrane vesicles (OMV) represent a promising platform for the development of vaccines against bacterial pathogens. More recently, bacteria have been genetically modified to increase OMV yield and modulate the design of resulting particles, also named generalized modules for membrane antigens (GMMA). OMV/GMMA resemble the bacterial surface of the pathogen, where key antigens to elicit a protective immune response are and contain pathogen-associated molecular patterns (e.g., lipopolysaccharides, lipoproteins) conferring self-adjuvanticity. On the other hand, OMV/GMMA are quite complex molecules and a comprehensive panel of analytical methods is needed to ensure quality, consistency of manufacture and to follow their stability over time. Here, we describe several procedures that can be used for OMV/GMMA characterization as particles and for analysis of key antigens displayed on their surface.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | |
Collapse
|
11
|
Ruiz García Y, Sohn WY, Seib KL, Taha MK, Vázquez JA, de Lemos APS, Vadivelu K, Pizza M, Rappuoli R, Bekkat-Berkani R. Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. NPJ Vaccines 2021; 6:130. [PMID: 34716336 PMCID: PMC8556335 DOI: 10.1038/s41541-021-00388-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Infections with Neisseria meningitidis and Neisseria gonorrhoeae have different clinical manifestations, but the bacteria share up to 80-90% genome sequence identity. The recombinant meningococcal serogroup B (MenB) vaccine 4CMenB consists of four antigenic components that can be present in non-B meningococcal and gonococcal strains. This comprehensive review summarizes scientific evidence on the genotypic and phenotypic similarities between vaccine antigens and their homologs expressed by non-B meningococcal and gonococcal strains. It also includes immune responses of 4CMenB-vaccinated individuals and effectiveness and impact of 4CMenB against these strains. Varying degrees of strain coverage were estimated depending on the non-B meningococcal serogroup and antigenic repertoire. 4CMenB elicits immune responses against non-B meningococcal serogroups and N. gonorrhoeae. Real-world evidence showed risk reductions of 69% for meningococcal serogroup W clonal complex 11 disease and 40% for gonorrhea after 4CMenB immunization. In conclusion, functional antibody activity and real-world evidence indicate that 4CMenB has the potential to provide some protection beyond MenB disease.
Collapse
Affiliation(s)
| | - Woo-Yun Sohn
- grid.418019.50000 0004 0393 4335GSK, Rockville, MD USA
| | - Kate L. Seib
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, QLD Australia
| | | | - Julio A. Vázquez
- grid.413448.e0000 0000 9314 1427National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
13
|
Li Q, Hu Y, Fei X, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. OmpC, a novel factor H-binding surface protein, is dispensable for the adherence and virulence of Salmonella enterica serovar Typhimurium. Vet Microbiol 2021; 259:109157. [PMID: 34197978 DOI: 10.1016/j.vetmic.2021.109157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 11/24/2022]
Abstract
Salmonella enterica serovar Typhimurium utilizes a series of strategies to evade host innate immune defenses, including the serum complement system. Many microbial pathogens have evolved the ability to bind the complement regulatory protein factor H (FH) through their surface factor H-binding proteins (FHBPs) to circumvent the complement-mediated bactericidal effect. However, the roles of FHBPs in Salmonella pathogenesis are not well understood. In this study, we demonstrated that the survival of S. Typhimurium in human serum was decreased in a time and concentration dependent manner. Pre-incubation with FH attenuated the sensitivity of S. Typhimurium strain χ3761 to complement-mediated serum killing, suggesting FH binding enhance survival in serum. We aimed to identify novel S. Typhimurium FHBPs and characterize their biological functions. Here, six potential FHBPs were identified by two-dimensional (2D)-Far-western blot, and three of them were further confirmed to bind FH by Far-western blot and dot blot. We found that deletion of ompC (ΔompC) significantly inhibited the survival of S. Typhimurium strain χ3761 in human serum. Our results indicated that the ompC mutation does not affect χ3761 adhesion to HeLa cells. Furthermore, a mice infection model showed that deletion of ompC had no significant effect on the histopathological lesions or viability compared with the wild-type strain χ3761. In summary, these results suggested that OmpC is an important FHBP, but not a critical virulence factor of S. Typhimurium.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuhan Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
14
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
15
|
Genetic Diversity of Meningococcal Serogroup B Vaccine Antigens among Carriage Isolates Collected from Students at Three Universities in the United States, 2015-2016. mBio 2021; 12:mBio.00855-21. [PMID: 34006659 PMCID: PMC8262942 DOI: 10.1128/mbio.00855-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carriage evaluations were conducted during 2015 to 2016 at two U.S. universities in conjunction with the response to disease outbreaks caused by Neisseria meningitidis serogroup B and at a university where outbreak and response activities had not occurred. All eligible students at the two universities received the serogroup B meningococcal factor H binding protein vaccine (MenB-FHbp); 5.2% of students (181/3,509) at one university received MenB-4C. A total of 1,514 meningococcal carriage isolates were obtained from 8,905 oropharyngeal swabs from 7,001 unique participants. Whole-genome sequencing data were analyzed to understand MenB-FHbp’s impact on carriage and antigen genetic diversity and distribution. Of 1,422 isolates from carriers with known vaccination status (726 [51.0%] from MenB-FHbp-vaccinated, 42 [3.0%] from MenB-4C-vaccinated, and 654 [46.0%] from unvaccinated participants), 1,406 (98.9%) had intact fHbp alleles (716 from MenB-FHbp-vaccinated participants). Of 726 isolates from MenB-FHbp-vaccinated participants, 250 (34.4%) harbored FHbp peptides that may be covered by MenB-FHbp. Genogroup B was detected in 122/1,422 (8.6%) and 112/1,422 (7.9%) isolates from MenB-FHbp-vaccinated and unvaccinated participants, respectively. FHbp subfamily and peptide distributions between MenB-FHbp-vaccinated and unvaccinated participants were not statistically different. Eighteen of 161 MenB-FHbp-vaccinated repeat carriers (11.2%) acquired a new strain containing one or more new vaccine antigen peptides during multiple rounds of sample collection, which was not statistically different (P = 0.3176) from the unvaccinated repeat carriers (1/30; 3.3%). Our findings suggest that lack of MenB vaccine impact on carriage was not due to missing the intact fHbp gene; MenB-FHbp did not affect antigen genetic diversity and distribution during the study period.
Collapse
|
16
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
18
|
Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: a Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. J Clin Microbiol 2020; 59:JCM.02161-20. [PMID: 33055180 PMCID: PMC7771438 DOI: 10.1128/jcm.02161-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
As microbial genomics makes increasingly important contributions to clinical and public health microbiology, the interpretation of whole-genome sequence data by nonspecialists becomes essential. In the absence of capsule-based vaccines, two protein-based vaccines have been used for the prevention of invasive serogroup B meningococcal disease (IMD) since their licensure in 2013 and 2014. These vaccines have different components and different levels of coverage of meningococcal variants. Hence, decisions regarding which vaccine to use in managing serogroup B IMD outbreaks require information about the index case isolate, including (i) the presence of particular vaccine antigen variants, (ii) the expression of vaccine antigens, and (iii) the likely susceptibility of its antigen variants to antibody-dependent bactericidal killing. As microbial genomics makes increasingly important contributions to clinical and public health microbiology, the interpretation of whole-genome sequence data by nonspecialists becomes essential. In the absence of capsule-based vaccines, two protein-based vaccines have been used for the prevention of invasive serogroup B meningococcal disease (IMD) since their licensure in 2013 and 2014. These vaccines have different components and different levels of coverage of meningococcal variants. Hence, decisions regarding which vaccine to use in managing serogroup B IMD outbreaks require information about the index case isolate, including (i) the presence of particular vaccine antigen variants, (ii) the expression of vaccine antigens, and (iii) the likely susceptibility of its antigen variants to antibody-dependent bactericidal killing. To obtain this information requires a multitude of laboratory assays, impractical in real-time clinical settings, where the information is most urgently needed. To facilitate assessment for public health and clinical purposes, we synthesized genomic and experimental data from published sources to develop and implement the Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index, which is publicly available on PubMLST (https://pubmlst.org). Using whole-genome sequences or individual gene sequences obtained from IMD isolates or clinical specimens, the MenDeVAR Index provides rapid evidence-based information on the presence and possible immunological cross-reactivity of different meningococcal vaccine antigen variants. The MenDeVAR Index enables practitioners who are not genomics specialists to assess the likely reactivity of vaccines for individual cases, outbreak management, or the assessment of public health vaccine programs. The MenDeVAR Index has been developed in consultation with, but independently of, both the 4CMenB (Bexsero; GSK) and rLP2086 (Trumenba; Pfizer, Inc.) vaccine manufacturers.
Collapse
|
19
|
Liberator P, Donald RGK, Balmer P, Findlow J, Anderson AS. Commentary: Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Front Microbiol 2020; 11:538209. [PMID: 33240223 PMCID: PMC7677564 DOI: 10.3389/fmicb.2020.538209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Liberator
- Pfizer Vaccine Research and Development, Pearl River, NY, United States
| | - Robert G K Donald
- Pfizer Vaccine Research and Development, Pearl River, NY, United States
| | - Paul Balmer
- Pfizer Vaccines Medical Development, Scientific and Clinical Affairs, Collegeville, PA, United States
| | - Jamie Findlow
- Pfizer Medical Development, Scientific and Clinical Affairs, Tadworth, United Kingdom
| | | |
Collapse
|
20
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
21
|
4CMenB Immunization Induces Serum Bactericidal Antibodies Against Non-Serogroup B Meningococcal Strains in Adolescents. Infect Dis Ther 2020; 10:307-316. [PMID: 33185849 PMCID: PMC7954916 DOI: 10.1007/s40121-020-00370-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Invasive meningococcal disease (IMD) is an important public health concern. In developed countries, most IMD is caused by meningococcal serogroup B (MenB) and two protein-based MenB vaccines are currently available: the four-component vaccine 4CMenB (Bexsero, GSK) and the bivalent vaccine MenB-FHbp (Trumenba, Pfizer). Genes encoding the 4CMenB vaccine antigens are also present in strains belonging to other meningococcal serogroups. Methods To evaluate the potential of 4CMenB vaccination to protect adolescents against non-MenB IMD, we tested the bactericidal activity of sera from immunized adolescents on 147 (127 European and 20 Brazilian) non-MenB IMD isolates, with a serum bactericidal antibody assay using human complement (hSBA). Serum pools were prepared using samples from randomly selected participants in various clinical trials, pre- and post-vaccination: 12 adolescents who received two doses of 4CMenB 2 months apart, and 10 adolescents who received a single dose of a MenACWY conjugate vaccine (as positive control). Results 4CMenB pre-immune sera killed 7.5% of the 147 non-MenB isolates at hSBA titers ≥ 1:4. In total, 91 (61.9%) tested isolates were killed by post-dose 2 pooled sera at hSBA titers ≥ 1:4, corresponding to 44/80 (55.0%) MenC, 26/35 (74.3%) MenW, and 21/32 (65.6%) MenY isolates killed. Conclusion 4CMenB vaccination in adolescents induces bactericidal killing of non-MenB isolates, suggesting that mass vaccination could impact IMD due to serogroups other than MenB.
Collapse
|
22
|
Predicted coverage by 4CMenB vaccine against invasive meningococcal disease cases in the Netherlands. Vaccine 2020; 38:7850-7857. [PMID: 33097311 DOI: 10.1016/j.vaccine.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022]
Abstract
Neisseria meningitidis serogroup B is a major cause of invasive meningococcal disease in Europe. In the absence of a conjugate serogroup B vaccine, a subcapsular 4CMenB vaccine was developed. Data on 4CMenB vaccine efficacy is still limited. Recently, genomic MATS (Meningococcal Antigen Typing System) was developed as a tool to predict strain coverage, using vaccine antigens sequence data. We characterized all invasive meningococcal isolates received by the Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM) in two epidemiological years 2017-2019 using whole-genome sequencing and determined serogroup, clonal complex (cc) and estimated 4CMenB vaccine coverage by gMATS. Of 396 cases of invasive meningococcal disease, corresponding to an incidence of 1.22 cases/105 inhabitants, 180 (45%) were serogroup W, 155 (39%) serogroup B, 46 (12%) serogroup Y, 10 (3%) serogroup C, 2 non-groupable (0.5%) and 3 (0.7%) unknown. The incidence was the highest among 0-4 years olds (4 cases/105 inhabitants), and 57/72 (79%) of these cases were serogroup B. Serogroup W predominated among persons 45 years of age or older with 110/187 (59%) cases. Serogroup B isolates comprised 11 different clonal complexes, with 103/122 (84%) isolates belonging to 4 clonal complexes: cc32, cc41/44, cc269 and cc213. In contrast, serogroup W isolates were genetically similar with 95% belonging to cc11. Of 122 serogroup B isolates, 89 (73%; 95% CI: 64-80%) were estimated to be covered by 4CMenB and the degree of coverage varied largely by clonal complex and age. Among the 0-4 year olds, 25 of 43 (58%; 95% CI: 43-72%) MenB isolates were estimated to be covered. Since the coverage of the 4CMenB vaccine is dependent on circulating clonal complexes, our findings emphasize the need for surveillance of circulating meningococcal strains. In addition, estimation of age specific coverage is relevant to determine the right target age group for vaccination.
Collapse
|
23
|
Ngwa DN, Singh SK, Gang TB, Agrawal A. Treatment of Pneumococcal Infection by Using Engineered Human C-Reactive Protein in a Mouse Model. Front Immunol 2020; 11:586669. [PMID: 33117400 PMCID: PMC7575696 DOI: 10.3389/fimmu.2020.586669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) binds to several species of bacterial pathogens including Streptococcus pneumoniae. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection by binding to pneumococci and activating the complement system. For protection, however, CRP must be injected into mice within a few hours of administering pneumococci, that is, CRP is protective against early-stage infection but not against late-stage infection. It is assumed that CRP cannot protect if pneumococci got time to recruit complement inhibitor factor H on their surface to become complement attack-resistant. Since the conformation of CRP is altered under inflammatory conditions and altered CRP binds to immobilized factor H also, we hypothesized that in order to protect against late-stage infection, CRP needed to change its structure and that was not happening in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor H on pneumococci but do not bind to factor H on any host cell in the blood. We found that E-CRP, in cooperation with wild-type CRP, was protective regardless of the timing of administering E-CRP into mice. We conclude that CRP acts via two different conformations to execute its anti-pneumococcal function and a model for the mechanism of action of CRP is proposed. These results suggest that pre-modified CRP, such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal infection. Our findings may also have implications for infections with antibiotic-resistant pneumococcal strains and for infections with other bacterial species that use host proteins to evade complement-mediated killing.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
24
|
Biolchi A, De Angelis G, Moschioni M, Tomei S, Brunelli B, Giuliani M, Bambini S, Borrow R, Claus H, Gorla MCO, Hong E, Lemos APS, Lucidarme J, Taha MK, Vogel U, Comanducci M, Budroni S, Giuliani MM, Rappuoli R, Pizza M, Boucher P. Multicomponent meningococcal serogroup B vaccination elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolates. Vaccine 2020; 38:7542-7550. [PMID: 33036804 DOI: 10.1016/j.vaccine.2020.09.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND The multicomponent meningococcal serogroup B vaccine (4CMenB) is currently indicated for active immunization against invasive meningococcal disease caused by Neisseria meningitidis serogroup B (MenB). However, genes encoding the 4CMenB antigens are also variably present and expressed in strains belonging to other meningococcal serogroups. In this study, we evaluated the ability of antibodies raised by 4CMenB immunisation to induce complement-mediated bactericidal killing of non-MenB strains. METHODS A total of 227 invasive non-MenB disease isolates were collected between 1 July 2007 and 30 June 2008 from England and Wales, France, and Germany; 41 isolates were collected during 2012 from Brazil. The isolates were subjected to genotypic analyses. A subset of 147 isolates (MenC, MenW and MenY) representative of the meningococcal genetic diversity of the total sample were tested in the human complement serum bactericidal antibody assay (hSBA) using sera from infants immunised with 4CMenB. RESULTS Serogroup and clonal complex repertoires of non-MenB isolates were different for each country. For the European panel, MenC, MenW and MenY isolates belonged mainly to ST-11, ST-22 and ST-23 complexes, respectively. For the Brazilian panel, most MenC and MenW isolates belonged to the ST-103 and ST-11 complexes, respectively, and most MenY isolates were not assigned to clonal complexes. Of the 147 non-MenB isolates, 109 were killed in hSBA, resulting in an overall coverage of 74%. CONCLUSION This is the first study in which 147 non-MenB serogroup isolates have been analysed in hSBA to evaluate the potential of a MenB vaccine to cover strains belonging to other serogroups. These data demonstrate that antibodies raised by 4CMenB are able to induce bactericidal killing of 109 non-MenB isolates, representative of non-MenB genetic and geographic diversity. These findings support previous evidence that 4CMenB immunisation can provide cross-protection against non-MenB strains in infants, which represents an added benefit of 4CMenB vaccination.
Collapse
Affiliation(s)
| | | | | | - Sara Tomei
- GSK, via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, United Kingdom.
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | - Eva Hong
- Institut Pasteur, Rue du Dr Roux 25-28, 75015 Paris, France.
| | - Ana Paula S Lemos
- Adolfo Lutz Institute, Av. Dr. Arnaldo 351, São Paulo CEP 01246-902, S.P., Brazil.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, United Kingdom.
| | | | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Vaccines against Meningococcal Diseases. Microorganisms 2020; 8:microorganisms8101521. [PMID: 33022961 PMCID: PMC7601370 DOI: 10.3390/microorganisms8101521] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023] Open
Abstract
Neisseria meningitidis is the main cause of meningitis and sepsis, potentially life-threatening conditions. Thanks to advancements in vaccine development, vaccines are now available for five out of six meningococcal disease-causing serogroups (A, B, C, W, and Y). Vaccination programs with monovalent meningococcal serogroup C (MenC) conjugate vaccines in Europe have successfully decreased MenC disease and carriage. The use of a monovalent MenA conjugate vaccine in the African meningitis belt has led to a near elimination of MenA disease. Due to the emergence of non-vaccine serogroups, recommendations have gradually shifted, in many countries, from monovalent conjugate vaccines to quadrivalent MenACWY conjugate vaccines to provide broader protection. Recent real-world effectiveness of broad-coverage, protein-based MenB vaccines has been reassuring. Vaccines are also used to control meningococcal outbreaks. Despite major improvements, meningococcal disease remains a global public health concern. Further research into changing epidemiology is needed. Ongoing efforts are being made to develop next-generation, pentavalent vaccines including a MenACWYX conjugate vaccine and a MenACWY conjugate vaccine combined with MenB, which are expected to contribute to the global control of meningitis.
Collapse
|
26
|
Veggi D, Bianchi F, Santini L, Lo Surdo P, Chesterman CC, Pansegrau W, Bechi N, Huang Y, Masignani V, Pizza M, Rappuoli R, Bottomley MJ, Cozzi R, Maione D. 4CMenB vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp. PLoS Pathog 2020; 16:e1008882. [PMID: 33007046 PMCID: PMC7556464 DOI: 10.1371/journal.ppat.1008882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/14/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Huang
- GSK, Rockville, MD, United States of America
| | | | | | | | | | | | | |
Collapse
|
27
|
Genomic Characterization of Invasive Meningococcal Serogroup B Isolates and Estimation of 4CMenB Vaccine Coverage in Finland. mSphere 2020; 5:5/5/e00376-20. [PMID: 32938694 PMCID: PMC7494829 DOI: 10.1128/msphere.00376-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is a significant cause of morbidity and mortality worldwide. In Finland, the incidence rate of IMD is low, with meningococcal serogroup B (MenB) accounting for around one-third of IMD cases annually. The aim of this study was to investigate the genetic variability of invasive MenB isolates collected in Finland between 2010 and 2017 (n = 81), including the genes encoding the 4-component MenB vaccine (4CMenB; Bexsero; GSK) antigens and their promoters, and to evaluate the 4CMenB potential coverage. Whole-genome sequencing was performed. The meningococcal antigen typing system (MATS) was used to characterize MenB isolates and predict the potential coverage of 4CMenB. MATS was complemented by genetic MATS (gMATS) through association of antigen genotyping and phenotypic MATS results. Multilocus sequence typing revealed predominance of the ST-41/44 clonal complex among which sequence type (ST)-303 was the most common and was predicted to be covered by 4CMenB. Of the 4 major vaccine antigens, the factor H-binding protein variant 1, neisserial heparin binding antigen peptide 2, and the PorA P1.4 antigen were predominant, whereas Neisseria adhesin A was present in only 4% of the 81 isolates. MATS and gMATS 4CMenB strain coverage predictions were 78% and 86%, respectively, in a subpanel of 60 isolates collected during 2010 to 2014, with a gMATS prediction of 84% for all 81 isolates. The results suggest that 4CMenB could reduce the burden of IMD in Finland and that gMATS could be applied to monitor vaccine strain coverage and predict vaccine effectiveness.IMPORTANCE 4CMenB is a 4-component vaccine used against invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup B (MenB). We investigated the genetic variability of MenB in Finland and evaluated 4CMenB strain coverage by 2 different methods: MATS (meningococcal antigen typing system) and gMATS (genetic MATS). In a set of MenB isolates, 78% (MATS) and 86% (gMATS) were predicted as covered by 4CMenB, suggesting that use of 4CMenB would help reduce IMD incidence in Finland. MATS has been used in 13 countries worldwide, generating information on phenotypic characteristics that could infer protection by 4CMenB. Based on these data and genetic information, gMATS coverage predictions can be made. gMATS predicts coverage consistent with MATS for about 94% of tested strains. Unlike MATS, gMATS does not require live isolates, thus allowing the analysis also of noncultivable strains, making the coverage predictions more accurate. Therefore, gMATS can replace MATS to assess 4CMenB coverage, including in regions with no prior MATS data.
Collapse
|
28
|
Natali EN, Principato S, Ferlicca F, Bianchi F, Fontana LE, Faleri A, Pansegrau W, Surdo PL, Bartolini E, Santini L, Brunelli B, Giusti F, Veggi D, Ferlenghi I, Norais N, Scarselli M. Synergic complement-mediated bactericidal activity of monoclonal antibodies with distinct specificity. FASEB J 2020; 34:10329-10341. [PMID: 32725956 DOI: 10.1096/fj.201902795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- GSK, Siena, Italy.,CERM, Department of Chemistry, University of Florence, Florence, Italy
| | - Silvia Principato
- GSK, Siena, Italy.,Department of Biological Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Principato S, Pizza M, Rappuoli R. Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Lett 2020; 594:2657-2669. [PMID: 32298465 DOI: 10.1002/1873-3468.13793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023]
Abstract
Factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis and a main component of the two licensed vaccines against serogroup B meningococcus (Bexsero and Trumenba). fHbp is a surface-exposed lipoprotein that enables the bacterium to survive in human blood by binding the human complement regulator factor H (fH). When used as vaccine, the protein induces antibodies with potent bactericidal activity. While the fHbp gene is present in the majority of N. meningitidis serogroup B isolates, the expression level varies up to 15 times between different strains and more than 700 different sequence variants have been described. Antigenically, the protein has been divided into three variants or two subfamilies. The 3D structure of fHbp alone, in combination with fH or in complex with bactericidal antibodies, has been key to understanding the molecular details of the protein. In this article, we will review the biochemical and immunological properties of fHbp, and its key role in meningococcal pathogenesis, complement regulation, and immune evasion.
Collapse
|
30
|
Beernink PT. Effect of complement Factor H on antibody repertoire and protection elicited by meningococcal capsular group B vaccines containing Factor H binding protein. Hum Vaccin Immunother 2020; 16:703-712. [PMID: 31526219 DOI: 10.1080/21645515.2019.1664241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
da Silva RAG, Karlyshev AV, Oldfield NJ, Wooldridge KG, Bayliss CD, Ryan A, Griffin R. Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Front Microbiol 2019; 10:2847. [PMID: 31921030 PMCID: PMC6930937 DOI: 10.3389/fmicb.2019.02847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba.
Collapse
Affiliation(s)
- Ronni A G da Silva
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrey V Karlyshev
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Neil J Oldfield
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl G Wooldridge
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Ruth Griffin
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
32
|
Bianchi F, Veggi D, Santini L, Buricchi F, Bartolini E, Lo Surdo P, Martinelli M, Finco O, Masignani V, Bottomley MJ, Maione D, Cozzi R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6. FASEB J 2019; 33:12099-12111. [PMID: 31442074 PMCID: PMC6902690 DOI: 10.1096/fj.201900374r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.
Collapse
Affiliation(s)
- Federica Bianchi
- GlaxoSmithKline, Siena, Italy.,University of Florence, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Distribution of Neisseria meningitidis serogroup b (NmB) vaccine antigens in meningococcal disease causing isolates in the United States during 2009-2014, prior to NmB vaccine licensure. J Infect 2019; 79:426-434. [PMID: 31505201 DOI: 10.1016/j.jinf.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Two Neisseria meningitidis serogroup B (NmB) vaccines are licensed in the United States. To estimate their potential coverage, we examined the vaccine antigen diversity among meningococcal isolates prior to vaccine licensure. METHODS NmB vaccine antigen genes of invasive isolates collected in the U.S. from 2009 to 2014 were characterized by Sanger or whole-genome sequencing. RESULTS During 2009-2014, the predominant antigen types have remained similar to those reported in 2000-2008 for NmB and 2006-2008 for NmC, NmY, with the emergence of a few new types. FHbp of subfamily B or variant 1 (B/v1) remained prevalent among NmB whereas FHbp of subfamily A or variant 2 and 3 (A/v2-3) were more prevalent among non-NmB. FHbp peptide 1 (B24/1.1) remains the most prevalent type in NmB. Full-length NadA peptide was detected in 26% of isolates, primarily in NmB and NmW. The greatest diversity of NhbA peptides was detected among NmB, with p0005 as the most prevalent type. CONCLUSIONS The prevalence and diversity of the NmB vaccine antigens have remained stable with common antigen types persisting over time. The data collected prior to NmB vaccine licensure provide the baseline to understand the potential impact of NmB vaccines on antigen diversity and strain coverage.
Collapse
|
34
|
Feldman C, Anderson R. Meningococcal pneumonia: a review. Pneumonia (Nathan) 2019; 11:3. [PMID: 31463180 PMCID: PMC6708554 DOI: 10.1186/s41479-019-0062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although Neisseria meningitidis is one of the major causes of meningitis, meningococcal pneumonia is the most common non-neurological organ disease caused by this pathogen. Methods We conducted a review of the literature to describe the risk factors, pathogenesis, clinical features, diagnosis, treatment and prevention of meningococcal pneumonia. Results Meningococcal pneumonia was first described in 1907 and during the 1918–1919 influenza pandemic large numbers of cases of meningococcal pneumonia occurred in patients following the initial viral infection. A number of publications, mainly case series or case reports, has subsequently appeared in the literature. Meningococcal pneumonia occurs mainly with serogroups Y, W-135 and B. Risk factors for meningococcal pneumonia have not been well characterised, but appear to include older age, smoking, people living in close contact (e.g. military recruits and students at university), preceding viral and bacterial infections, haematological malignancies, chronic respiratory conditions and various other non-communicable and primary and secondary immunodeficiency diseases. Primary meningococcal pneumonia occurs in 5–10% of patients with meningococcal infection and is indistinguishable clinically from pneumonia caused by other common pathogens. Fever, chills and pleuritic chest pain are the most common symptoms, occurring in > 50% of cases. Productive sputum and dyspnoea are less common. Diagnosis of meningococcal pneumonia may be made by the isolation of the organism in sputum, blood, or normally sterile site cultures, but is likely to underestimate the frequency of meningococcal pneumonia. If validated, PCR-based techniques may be of value for diagnosis in the future. While penicillin was the treatment of choice for meningococcal infection, including pneumonia, prior to 1991, a third generation cephalosporin has been more commonly used thereafter, because of concerns of penicillin resistance. Chemoprophylaxis, using one of a number of antibiotics, has been recommended for close contacts of patients with meningococcal meningitis, and similar benefits may be seen in contacts of patients with meningococcal pneumonia. Effective vaccines are available for the prevention of infection with certain meningococcal serogroups, but this field is still evolving. Conclusion Meningococcal pneumonia occurs fairly frequently and should be considered as a possible cause of pneumonia, particularly in patients with specific risk factors.
Collapse
Affiliation(s)
- Charles Feldman
- 1Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- 2Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
36
|
Peschiera I, Giuliani M, Giusti F, Melero R, Paccagnini E, Donnarumma D, Pansegrau W, Carazo JM, Sorzano COS, Scarselli M, Masignani V, Liljeroos LJ, Ferlenghi I. Structural basis for cooperativity of human monoclonal antibodies to meningococcal factor H-binding protein. Commun Biol 2019; 2:241. [PMID: 31263785 PMCID: PMC6595007 DOI: 10.1038/s42003-019-0493-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/29/2019] [Indexed: 11/23/2022] Open
Abstract
Monoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a Neisseria meningitidis surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines. The 3D electron microscopy structures of the human mAb-fHbp-mAb cooperative complexes indicate that the angle formed between the antigen binding fragments (fAbs) assume regular angle and that fHbp is able to bind simultaneously and stably the cooperative mAbs pairs and human factor H (fH) in vitro. These findings shed light on molecular basis of the antibody-based mechanism of protection driven by simultaneous recognition of the different epitopes of the fHbp and underline that cooperativity is crucial in vaccine efficacy.
Collapse
|
37
|
Beernink PT, Vianzon V, Lewis LA, Moe GR, Granoff DM. A Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Mutant FHbp Elicits Higher Protective Antibody Responses in Infant Rhesus Macaques than a Licensed Serogroup B Vaccine. mBio 2019; 10:e01231-19. [PMID: 31213564 PMCID: PMC6581866 DOI: 10.1128/mbio.01231-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Vianca Vianzon
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Lisa A Lewis
- Division of Immunology and Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gregory R Moe
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
38
|
Potential benefits of using a multicomponent vaccine for prevention of serogroup B meningococcal disease. Int J Infect Dis 2019; 85:22-27. [PMID: 31102824 DOI: 10.1016/j.ijid.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
Meningococcal serogroup B (MenB) has become the main cause of invasive meningococcal disease in industrialized countries in recent years. The diversity of MenB strains and poor immunogenicity of the MenB capsular polysaccharide have made vaccine development challenging. Two MenB vaccines, including factor H binding protein (fHbp) as a major antigenic component, are now licensed for use. In addition to fHbp variant 1, the multicomponent vaccine 4CMenB contains neisserial heparin binding antigen, Neisseria adhesin A, and outer membrane vesicles containing porin A. The vast majority of circulating MenB strains contain genes encoding at least one 4CMenB component and many express genes for more than one vaccine antigen. Recent studies have suggested that serum bactericidal activity is enhanced against strains that express two or more vaccine antigens. Bacterial killing may also occur when antibodies to vaccine components are collectively present at levels that would individually be sub-lethal. The evaluation of immune responses to separate vaccine components does not take cooperative activity into account and may underestimate the overall protection. Available data on 4CMenB effectiveness indicate that this multicomponent vaccine affords broad coverage and protection against MenB disease. 4CMenB also has the potential to protect against disease caused by non-MenB meningococci and Neisseria gonorrhoeae.
Collapse
|
39
|
Masignani V, Pizza M, Moxon ER. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front Immunol 2019; 10:751. [PMID: 31040844 PMCID: PMC6477034 DOI: 10.3389/fimmu.2019.00751] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term reverse vaccinology. The complete genome sequence of an isolate of Neisseria meningitidis serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane. This identified hundreds of genes coding for potential surface-exposed antigens. These were amplified, cloned in expression vectors and used to immunize mice. Antisera against 350 recombinant antigens were obtained and analyzed in a panel of immunological assays from which 28 were selected as potentially protective based on the -antibody dependent, complement mediated- serum bactericidal activity assay. Testing of these candidate vaccine antigens, using a large globally representative strain collection of Neisseria species isolated from cases of disease and carriage, indicated that no single component would be sufficient to induce broad coverage and that a “universal” vaccine should contain multiple antigens. The final choice of antigens to be included was based on cross-protective ability, assayed by serum bactericidal activity and maximum coverage of the extensive antigenic variability of MenB strains. The resulting multivalent vaccine formulation selected consisted of three recombinant antigens (Neisserial Heparin Binding Antigen or NHBA, Factor H binding protein or fHbp and Neisseria Adhesin A or NadA). To improve immunogenicity and potential strain coverage, an outer membrane vesicle component obtained from the epidemic New Zealand strain (OMVNz) was added to the formulation to create a four component vaccine, called 4CMenB. A series of phase 2 and 3 clinical trials were conducted to evaluate safety and tolerability and to estimate the vaccine effectiveness of human immune responses at different ages and how these were affected by various factors including concomitant vaccine use and lot-to-lot consistency. 4CMenB was approved in Europe in 2013 and introduced in the National Immunization Program in the UK starting from September 2015 when the vaccine was offered to all newborns using a 2, 4, and 12 months schedule., The effectiveness against invasive MenB disease measured at 11 months after the study start and 5 months after the second vaccination was 83% and there have been no safety concerns.
Collapse
Affiliation(s)
| | | | - E Richard Moxon
- Department of Pediatrics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
40
|
Rodrigues CMC, Lucidarme J, Borrow R, Smith A, Cameron JC, Moxon ER, Maiden MCJ. Genomic Surveillance of 4CMenB Vaccine Antigenic Variants among Disease-Causing Neisseria meningitidis Isolates, United Kingdom, 2010-2016. Emerg Infect Dis 2019; 24:673-682. [PMID: 29553330 PMCID: PMC5875271 DOI: 10.3201/eid2404.171480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In September 2015, 4CMenB meningococcal vaccine was introduced into the United Kingdom infant immunization program without phase 3 trial information. Understanding the effect of this program requires enhanced surveillance of invasive meningococcal disease (IMD) Neisseria meningitidis isolates and comparison with prevaccination isolates. Bexsero Antigen Sequence Types (BASTs) were used to analyze whole-genome sequences of 3,073 prevaccine IMD N. meningitidis isolates obtained during 2010−2016. Isolates exhibited 803 BASTs among 31 clonal complexes. Frequencies of antigen peptide variants were factor H binding protein 1, 13.4%; Neisserial heparin-binding antigen 2, 13.8%; Neisseria adhesin A 8, 0.8%; and Porin A-VR2:P1.4,10.9%. In 2015−16, serogroup B isolates showed the highest proportion (35.7%) of exact matches to >1 Bexsero components. Serogroup W isolates showed the highest proportion (93.9%) of putatively cross-reactive variants of Bexsero antigens. Results highlighted the likely role of cross-reactive antigens. BAST surveillance of meningococcal whole-genome sequence data is rapid, scalable, and portable and enables international comparisons of isolates.
Collapse
|
41
|
Muzzi A, Brozzi A, Serino L, Bodini M, Abad R, Caugant D, Comanducci M, Lemos AP, Gorla MC, Křížová P, Mikula C, Mulhall R, Nissen M, Nohynek H, Simões MJ, Skoczyńska A, Stefanelli P, Taha MK, Toropainen M, Tzanakaki G, Vadivelu-Pechai K, Watson P, Vazquez JA, Rajam G, Rappuoli R, Borrow R, Medini D. Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine 2019; 37:991-1000. [PMID: 30661831 DOI: 10.1016/j.vaccine.2018.12.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Meningococcal Antigen Typing System (MATS) was developed to identify meningococcus group B strains with a high likelihood of being covered by the 4CMenB vaccine, but is limited by the requirement for viable isolates from culture-confirmed cases. We examined if antigen genotyping could complement MATS in predicting strain coverage by the 4CMenB vaccine. METHODS From a panel of 3912 MATS-typed invasive meningococcal disease isolates collected in England and Wales in 2007-2008, 2014-2015 and 2015-2016, and in 16 other countries in 2000-2015, 3481 isolates were also characterized by antigen genotyping. Individual associations between antigen genotypes and MATS coverage for each 4CMenB component were used to define a genetic MATS (gMATS). gMATS estimates were compared with England and Wales human complement serum bactericidal assay (hSBA) data and vaccine effectiveness (VE) data from England. RESULTS Overall, 81% of the strain panel had genetically predictable MATS coverage, with 92% accuracy and highly concordant results across national panels (Lin's accuracy coefficient, 0.98; root-mean-square deviation, 6%). England and Wales strain coverage estimates were 72-73% by genotyping (66-73% by MATS), underestimating hSBA values after four vaccine doses (88%) and VE after two doses (83%). The gMATS predicted strain coverage in other countries was 58-88%. CONCLUSIONS gMATS can replace MATS in predicting 4CMenB strain coverage in four out of five cases, without requiring a cultivable isolate, and is open to further improvement. Both methods underestimated VE in England. Strain coverage predictions in other countries matched or exceeded England and Wales estimates.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Abad
- National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain.
| | | | | | | | | | - Pavla Křížová
- National Institute of Public Health, Prague, Czech Republic.
| | - Claudia Mikula
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Graz, Austria.
| | - Robert Mulhall
- Irish Meningitis and Sepsis Reference Laboratory (IMSRL), Dublin, Ireland.
| | - Michael Nissen
- Queensland Paediatric Infectious Diseases Laboratory, Children's Health Research Centre, University of Queensland, Lady Cilento Children's Hospital South Brisbane, Queensland, Australia.
| | - Hanna Nohynek
- National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | - Paola Stefanelli
- Department of Infectious Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Maija Toropainen
- National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, National School of Public Health, Athens, Greece.
| | | | | | - Julio A Vazquez
- National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain.
| | | | | | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | | |
Collapse
|
42
|
AZZARI C, BONANNI P. A new meningococcal B vaccine for adolescents and adults: characteristics and methods of use. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2018; 59:E257-E260. [PMID: 30656227 PMCID: PMC6319125 DOI: 10.15167/2421-4248/jpmh2018.59.4.1096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
The invasive disease from Neisseria meningitidis is one of the leading causes of death for meningitis and sepsis at all ages. The highest incidence of cases occurs at paediatric and adolescent age, but no age of life is considered protected from this infection and disease. Prevention against the five main serogroups is possible using the combined conjugated polysaccharide vaccine against the ACWY (anti-MenACWY) serogroups and the meningococcal B (anti-MenB) protein vaccines. Trumenba® vaccine, approved by the EMA (European Medicine Agency) for use in individuals aged ≥ 10 years, protects against serogroup B invasive disease. This bivalent, recombinant vaccine is able, when given with a 0-6 month schedule, to induce a protective response in adolescents and young adults, comparable with a 3-doses schedule. For this reason, the Trumenba® vaccine should be used routinely with the 2-dose schedule (0-6 months). The 3-doses use could be considered in particular situations, like an occurring epidemic or particular individual risk factors such as asplenia or complement deficit, but is not needed for underlying conditions like diabetes or heart diseases.
Collapse
Affiliation(s)
- C. AZZARI
- Pediatric Immunology Unit “Anna Meyer” Hospital, University of Florence, Italy
- Department of Health Sciences, University of Florence, Italy
| | - P. BONANNI
- Department of Health Sciences, University of Florence, Italy
- * Correspondence: Paolo Bonanni, Department of Health Sciences, University of Florence, Italy - E-mail:
| |
Collapse
|
43
|
Rappuoli R, Pizza M, Masignani V, Vadivelu K. Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Expert Rev Vaccines 2018; 17:1111-1121. [DOI: 10.1080/14760584.2018.1547637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rino Rappuoli
- Chief Scientist & Head of External Research and Development, GSK, Siena, Italy
| | - Mariagrazia Pizza
- Senior Scientific Director, Bacterial Vaccines, Chief Scientist & Head of External Research and Development, Siena, Italy
| | - Vega Masignani
- Discovery Project Leader, Research and Development Centre, Siena, Italy
| | - Kumaran Vadivelu
- Vaccine Development Leader, Research and Development Centre, Rockville, MD, USA
| |
Collapse
|
44
|
Cayrou C, Akinduko AA, Mirkes EM, Lucidarme J, Clark SA, Green LR, Cooper HJ, Morrissey J, Borrow R, Bayliss CD. Clustered intergenic region sequences as predictors of factor H Binding Protein expression patterns and for assessing Neisseria meningitidis strain coverage by meningococcal vaccines. PLoS One 2018; 13:e0197186. [PMID: 29847547 PMCID: PMC5976157 DOI: 10.1371/journal.pone.0197186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022] Open
Abstract
Factor H binding protein (fHbp) is a major protective antigen in 4C-MenB (Bexsero®) and Trumenba®, two serogroup B meningococcal vaccines, wherein expression level is a determinant of protection. Examination of promoter-containing intergenic region (IGR) sequences indicated that nine fHbp IGR alleles covered 92% of 1,032 invasive meningococcal strains with variant 1 fHbp alleles. Relative expression values for fHbp were determined for 79 meningococcal isolates covering ten IGR alleles by quantitative reverse transcriptase polymerase chain reaction (qRT PCR). Derivation of expression clusters of IGR sequences by linear regression identified five expression clusters with five nucleotides and one insertion showing statistically associations with differences in expression level. Sequence analysis of 273 isolates examined by the Meningococcal Antigen Typing Scheme, a sandwich ELISA, found that coverage depended on the IGR expression cluster and vaccine peptide homology combination. Specific fHbp peptide-IGR expression cluster combinations were designated as 'at risk' for coverage by 4C-MenB and were detected in multiple invasive meningococcal disease cases confirmed by PCR alone and occurring in partially-vaccinated infants. We conclude that sequence-based analysis of IGR sequences is informative for assessing protein expression and has utility for culture-independent assessments of strain coverage by protein-based vaccines.
Collapse
MESH Headings
- Alleles
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Complement Factor H/genetics
- Complement Factor H/immunology
- DNA, Bacterial/genetics
- DNA, Bacterial/immunology
- DNA, Intergenic/genetics
- DNA, Intergenic/immunology
- Gene Expression
- Humans
- Immunogenicity, Vaccine
- Infant
- Meningitis, Meningococcal/genetics
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Multigene Family
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Promoter Regions, Genetic
- Protein Binding
- Sequence Alignment
- Vaccination
Collapse
Affiliation(s)
- Caroline Cayrou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail: (CDB); (CC)
| | - Ayodeji A. Akinduko
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Evgeny M. Mirkes
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Stephen A. Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Morrissey
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail: (CDB); (CC)
| |
Collapse
|
45
|
Andreae CA, Sessions RB, Virji M, Hill DJ. Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design. PLoS One 2018; 13:e0193940. [PMID: 29547646 PMCID: PMC5856348 DOI: 10.1371/journal.pone.0193940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.
Collapse
Affiliation(s)
- Clio A. Andreae
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Mumtaz Virji
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Darryl. J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. mBio 2018. [PMID: 29535195 PMCID: PMC5850321 DOI: 10.1128/mbio.00036-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies.IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.
Collapse
|
47
|
Prevalence and genetic characteristics of 4CMenB and rLP2086 vaccine candidates among Neisseria meningitidis serogroup B strains, China. Vaccine 2018. [PMID: 29523451 DOI: 10.1016/j.vaccine.2018.02.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To systematically investigate the prevalence and genetic characteristics of 4CMenB and rLP2086 vaccine candidates among Neisseria meningitidis serogroup B (NmB) in China. METHODS A total of 485 NmB strains isolated in 29 provinces of China between 1968 and 2016 were selected from the culture collection of the national reference laboratory according to the isolation year, location, and source. Multi-locus sequence typing (MLST) and porA gene sequencing were performed on all 485 study strains; PCR was used to detect the fHbp, nadA, and nhba gene of 432 strains; positive amplification products from the fHbp and nadA genes from all strains, as well as those of the nhba gene from 172 representative strains, were sequenced. RESULTS MLST results showed that the predominant (putative) clonal complexes (CCs) of NmB isolates have changed over time in China. While strains that could not be assigned to existing (p)CCs were the biggest proportion, CC4821 was the most prevalent lineage (36.0%) since 2005. PCR and sequence analysis revealed that the 4CMenB and rLP2086 vaccine candidates were highly diverse. Respectively, 152 PorA genotypes and 83 VR2 sequences were identified with significant diversity within a single CC; the complete nadA gene was found in ten of 432 study strains; fHbp was present in most strains (422/432) with variant 2 predominating (82.9%) in both patient- and carrier- derived isolates; almost all strains harbored the nhba gene while sequences were diverse. CONCLUSIONS With regards to clonal lineages and vaccine candidate proteins, NmB isolates from China were generally diverse. Further studies should be performed to evaluate the cross-protection of present vaccines against Chinese NmB strains.
Collapse
|
48
|
Giuliani M, Bartolini E, Galli B, Santini L, Lo Surdo P, Buricchi F, Bruttini M, Benucci B, Pacchiani N, Alleri L, Donnarumma D, Pansegrau W, Peschiera I, Ferlenghi I, Cozzi R, Norais N, Giuliani MM, Maione D, Pizza M, Rappuoli R, Finco O, Masignani V. Human protective response induced by meningococcus B vaccine is mediated by the synergy of multiple bactericidal epitopes. Sci Rep 2018; 8:3700. [PMID: 29487324 PMCID: PMC5829249 DOI: 10.1038/s41598-018-22057-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
4CMenB is the first broad coverage vaccine for the prevention of invasive meningococcal disease caused by serogroup B strains. To gain a comprehensive picture of the antibody response induced upon 4CMenB vaccination and to obtain relevant translational information directly from human studies, we have isolated a panel of human monoclonal antibodies from adult vaccinees. Based on the Ig-gene sequence of the variable region, 37 antigen-specific monoclonal antibodies were identified and produced as recombinant Fab fragments, and a subset also produced as full length recombinant IgG1 and functionally characterized. We found that the monoclonal antibodies were cross-reactive against different antigen variants and recognized multiple epitopes on each of the antigens. Interestingly, synergy between antibodies targeting different epitopes enhanced the potency of the bactericidal response. This work represents the first extensive characterization of monoclonal antibodies generated in humans upon 4CMenB immunization and contributes to further unraveling the immunological and functional properties of the vaccine antigens. Moreover, understanding the mechanistic nature of protection induced by vaccination paves the way to more rational vaccine design and implementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M Bruttini
- GSK, Siena, Italy.,University of Siena, Siena, Italy
| | - B Benucci
- GSK, Siena, Italy.,University of Siena, Siena, Italy
| | | | | | | | | | - I Peschiera
- GSK, Siena, Italy.,University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
López-Sagaseta J, Beernink PT, Bianchi F, Santini L, Frigimelica E, Lucas AH, Pizza M, Bottomley MJ. Crystal structure reveals vaccine elicited bactericidal human antibody targeting a conserved epitope on meningococcal fHbp. Nat Commun 2018; 9:528. [PMID: 29410413 PMCID: PMC5802752 DOI: 10.1038/s41467-018-02827-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Data obtained recently in the United Kingdom following a nationwide infant immunization program against serogroup B Neisseria meningitidis (MenB) reported >80% 4CMenB vaccine-mediated protection. Factor H-binding protein (fHbp) is a meningococcal virulence factor and a component of two new MenB vaccines. Here, we investigated the structural bases underlying the fHbp-dependent protective antibody response in humans, which might inform future antigen design efforts. We present the co-crystal structure of a human antibody Fab targeting fHbp. The vaccine-elicited Fab 1A12 is cross-reactive and targets an epitope highly conserved across the repertoire of three naturally occurring fHbp variants. The free Fab structure highlights conformational rearrangements occurring upon antigen binding. Importantly, 1A12 is bactericidal against MenB strains expressing fHbp from all three variants. Our results reveal important immunological features potentially contributing to the broad protection conferred by fHbp vaccination. Our studies fuel the rationale of presenting conserved protein epitopes when developing broadly protective vaccines. Factor H binding protein (fHbp) is a meningococcal virulence factor and a component of vaccines against serogroup B Neisseria meningitidis. Here, the authors characterize the vaccine-elicited human antibody Fab 1A12 and present both the free and the fHbp-bound Fab 1A12 crystal structures.
Collapse
Affiliation(s)
| | - Peter T Beernink
- Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | - Laura Santini
- GSK Vaccines srl, Via Fiorentina 1, 53100, Siena, Italy
| | | | - Alexander H Lucas
- Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | | |
Collapse
|
50
|
Price GA, Bash MC. Development of an FHbp-CTB holotoxin-like chimera and the elicitation of bactericidal antibodies against serogroup B Neisseria meningitidis. Vaccine 2018; 36:644-652. [PMID: 29287682 DOI: 10.1016/j.vaccine.2017.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/18/2022]
Abstract
The Neisseria meningitidis factor H binding protein (FHbp) is an important virulence factor and vaccine antigen contained in both USA licensed serogroup B meningococcal vaccines. Recent studies in human factor H (hFH) transgenic mice suggest that hFH-FHbp interactions lower FHbp-elicited immunogenicity. To provide tools with which to characterize and potentially improve FHbp immunogenicity, we developed an FHbp-cholera holotoxin-like chimera vaccine expression system in Escherichia coli that utilizes cholera toxin B (CTB) as both a scaffold and adjuvant for FHbp. We developed FHbp-CTB chimeras using a wild-type (WT) FHbp and a low hFH-binding FHbp mutant R41S. Both chimeras bound to GM1 ganglioside and were recognized by the FHbp-specific monoclonal antibody JAR4. The R41S mutant had greatly reduced hFH binding compared to the WT FHbp-CTB chimera. WT and R41S FHbp-CTB chimeric antigens were compared to equimolar amounts of FHbp admixed with CTB or FHbp alone in mouse immunogenicity studies. The chimeras were significantly more immunogenic than FHbp alone or mixed with CTB, and elicited bactericidal antibodies against a panel of MenB isolates. This study demonstrates a unique and simple method for studying FHbp immunogenicity. The chimeric approach may facilitate studies of other protein-based antigens targeting pathogenic Neisseria and lay groundwork for the development of new protein based vaccines against meningococcal and gonococcal disease.
Collapse
Affiliation(s)
- Gregory A Price
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|