1
|
Qiao H, Xu Q, Xu Y, Zhao Y, He N, Tang J, Zhao J, Liu Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen Res 2023; 18:2638-2644. [PMID: 37449602 DOI: 10.4103/1673-5374.373678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
Collapse
Affiliation(s)
- Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
3
|
Feng W, Zhang Y, Sun P, Xiao M. Acquired immunity and Alzheimer's disease. J Biomed Res 2023; 37:15-29. [PMID: 36165328 PMCID: PMC9898041 DOI: 10.7555/jbr.36.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail:
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
5
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
6
|
Weaver DF. Amyloid beta is an early responder cytokine and immunopeptide of the innate immune system. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12100. [PMID: 33163614 PMCID: PMC7606184 DOI: 10.1002/trc2.12100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
A molecular level conceptualization of the pathogenesis of Alzheimer's disease (AD) remains elusive with many competing hypotheses, particularly via proteopathic and immunopathic mechanisms. However, these need not be competitive. If amyloid beta (Aβ) is regarded as an "early responder cytokine," then proteopathic considerations become encompassed within an overarching hybrid proteopathic-immunopathic mechanism. As argued in this commentary, Aβ is in fact a molecular constituent of the innate immune system. Aβ is an antimicrobial peptide (AMP) functioning not only as a killer peptide, but also as a modulatory immunopeptide. Aβ satisfies the definition of a cytokine, exhibiting interdependency with other cytokines. Aβ also satisfies the functional definition of a chemokine, existing within the AMP-chemokine spectrum. Aβ, like conventional cytokines, both binds to and is released by microglial cells. Finally, Aβ interacts with the complement and Toll-like receptor systems analogously to established cytokines. Aβ may thus be regarded as an effector molecule of innate immunity.
Collapse
Affiliation(s)
- Donald F. Weaver
- Department of NeurobiologyKrembil Research InstituteUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
Tau at the interface between neurodegeneration and neuroinflammation. Genes Immun 2020; 21:288-300. [PMID: 33011744 DOI: 10.1038/s41435-020-00113-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Tau is an evolutionary conserved protein that promotes the assembly and stabilization of microtubules in neuronal axons. Complex patterns of posttranslational modifications (PTMs) dynamically regulate tau biochemical properties and consequently its functions. An imbalance in tau PTMs has been connected with a broad spectrum of neurodegenerative conditions which are collectively known as tauopathies and include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) among others. The hallmark of these neurological disorders is the presence in the brain of fibrillary tangles constituted of misfolded species of hyper-phosphorylated tau. The pathological events leading to tau aggregation are still largely unknown but increasing evidence suggests that neuroinflammation plays a critical role in tangle formation. Moreover, tau aggregation itself could enhance inflammation through feed-forward mechanisms, amplifying the initial neurotoxic insults. Protective effects of tau against neuroinflammation have been also documented, adding another layer of complexity to this phenomenon. Here, we will review the current knowledge on tau regulation and function in health and disease. In particular, we will address its emerging role in connecting neurodegenerative and neuroinflammatory processes.
Collapse
|
8
|
Development of a brain-permeable peptide nanofiber that prevents aggregation of Alzheimer pathogenic proteins. PLoS One 2020; 15:e0235979. [PMID: 32706773 PMCID: PMC7380640 DOI: 10.1371/journal.pone.0235979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is proposed to be induced by abnormal aggregation of amyloidβ in the brain. Here, we designed a brain-permeable peptide nanofiber drug from a fragment of heat shock protein to suppress aggregation of the pathogenic proteins. To facilitate delivery of the nanofiber into the brain, a protein transduction domain from Drosophila Antennapedia was incorporated into the peptide sequence. The resulting nanofiber efficiently suppressed the cytotoxicity of amyloid βby trapping amyloid β onto its hydrophobic nanofiber surface. Moreover, the intravenously or intranasally injected nanofiber was delivered into the mouse brain, and improved the cognitive function of an Alzheimer transgenic mouse model. These results demonstrate the potential therapeutic utility of nanofibers for the treatment of AD.
Collapse
|
9
|
Liu Z, Liu Y, Li T, Wang P, Mo X, Lv P, Ge Q, Ma D, Han W. Cmtm7 knockout inhibits B-1a cell development at the transitional (TrB-1a) stage. Int Immunol 2020; 31:715-728. [PMID: 31081901 DOI: 10.1093/intimm/dxz041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/11/2019] [Indexed: 01/19/2023] Open
Abstract
Innate-like B-1a cells are an important cell population for production of natural IgM and interleukin-10 (IL-10), and act as the first line against pathogens. We determined that CMTM7 is essential for B-1a cell development. Following Cmtm7 (CKLF-like MARVEL transmembrane domain-containing 7) knockout, B-1a cell numbers decreased markedly in all investigated tissues. Using a bone marrow and fetal liver adoptive transfer model and conditional knockout mice, we showed that the reduction of B-1a cells resulted from B-cell-intrinsic defects. Because of B-1a cell loss, Cmtm7-deficient mice produced less IgM and IL-10, and were more susceptible to microbial sepsis. Self-renewal and homeostasis of mature B-1a cells in Cmtm7-/- mice were not impaired, suggesting the effect of Cmtm7 on B-1a cell development. Further investigations demonstrated that the function of Cmtm7 in B-1a cell development occurred at the specific transitional B-1a (TrB-1a) stage. Cmtm7 deficiency resulted in a slow proliferation and high cell death rate of TrB-1a cells. Thus, Cmtm7 controls B-1a cell development at the transitional stage.
Collapse
Affiliation(s)
- Zhengyang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Yuan Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| |
Collapse
|
10
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
11
|
Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL, Herzenberg LA. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 2019; 146:146/15/dev170571. [PMID: 31371526 DOI: 10.1242/dev.170571] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current paradigm that a single long-term hematopoietic stem cell can regenerate all components of the mammalian immune system has been challenged by recent findings in mice. These findings show that adult tissue-resident macrophages and innate-like lymphocytes develop early in fetal hematopoiesis from progenitors that emerge prior to, and apparently independently of, conventional long-term hematopoietic stem cells. Here, we discuss these recent findings, which show that an early and distinct wave of hematopoiesis occurs for all major hematopoietic lineages. These data provide evidence that fetal hematopoietic progenitors not derived from the bona fide long-term hematopoietic stem cells give rise to tissue-resident immune cells that persist throughout adulthood. We also discuss recent insights into B lymphocyte development and attempt to synthesize seemingly contradictory recent findings on the origins of innate-like B-1a lymphocytes during fetal hematopoiesis.
Collapse
Affiliation(s)
- Eliver Ghosn
- Departments of Medicine and Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Rothbard JB, Kurnellas MP, Ousman SS, Brownell S, Rothbard JJ, Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034223. [PMID: 30249602 DOI: 10.1101/cshperspect.a034223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) is central to the anti-inflammatory function of the vagus nerve in a physiological mechanism termed the inflammatory reflex. Studies on the inflammatory reflex have been instrumental for the current development of the field of bioelectronic medicine. An independent investigation of the biological role of αB-crystallin (HspB5), the most abundant gene transcript present in active multiple sclerosis lesions in human brains, also led to α7nAChR. Induction of experimental autoimmune encephalomyelitis (EAE) in HspB5-/- mice results in greater paralytic signs, increased levels of proinflammatory cytokines, and T-lymphocyte activation relative to wild-type animals. Administration of HspB5 was therapeutic in animal models of multiple sclerosis, retinal and cardiac ischemia, and stroke. Structure-activity studies established that residues 73-92 were as potent as the parent protein, but only when it formed amyloid fibrils. Amyloid fibrils and small heat shock proteins (sHsps) selectively bound α7nAChR on peritoneal macrophages (MΦs) and B lymphocytes, converting the MΦs to an immune suppressive phenotype and mobilizing the migration of both cell types from the peritoneum to secondary lymph organs. Here, we review multiple aspects of this work, which may be of interest for developing future therapeutic approaches for multiple sclerosis and other disorders.
Collapse
Affiliation(s)
- Jonathan B Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Sara Brownell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Jesse J Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | - Lawrence Steinman
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| |
Collapse
|
13
|
Didonna A, Cantó E, Shams H, Isobe N, Zhao C, Caillier SJ, Condello C, Yamate-Morgan H, Tiwari-Woodruff SK, Mofrad MRK, Hauser SL, Oksenberg JR. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. J Autoimmun 2019; 101:56-69. [PMID: 31010726 PMCID: PMC6561733 DOI: 10.1016/j.jaut.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The molecular events underlying the transition from initial inflammatory flares to the progressive phase of multiple sclerosis (MS) remain poorly understood. Here, we report that the microtubule-associated protein (MAP) Tau exerts a gender-specific protective function on disease progression in the MS model experimental autoimmune encephalomyelitis (EAE). A detailed investigation of the autoimmune response in Tau-deficient mice excluded a strong immunoregulatory role for Tau, suggesting that its beneficial effects are presumably exerted within the central nervous system (CNS). Spinal cord transcriptomic data show increased synaptic dysfunctions and alterations in the NF-kB activation pathway upon EAE in Tau-deficient mice as compared to wildtype animals. We also performed the first comprehensive characterization of Tau post-translational modifications (PTMs) in the nervous system upon EAE. We report that the methylation levels of the conserved lysine residue K306 are significantly decreased in the chronic phase of the disease. By combining biochemical assays and molecular dynamics (MD) simulations, we demonstrate that methylation at K306 decreases the affinity of Tau for the microtubule network. Thus, the down-regulation of this PTM might represent a homeostatic response to enhance axonal stability against an autoimmune CNS insult. The results, altogether, position Tau as key mediator between the inflammatory processes and neurodegeneration that seems to unify many CNS diseases.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA.
| | - Ester Cantó
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Hengameh Shams
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Noriko Isobe
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Chao Zhao
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Stacy J Caillier
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Hana Yamate-Morgan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA; Center for Glial-Neuronal Interactions, UCR School of Medicine, CA, 92506, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Stephen L Hauser
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jorge R Oksenberg
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
14
|
Parenchymal and non-parenchymal immune cells in the brain: A critical role in regulating CNS functions. Int J Dev Neurosci 2019; 77:26-38. [PMID: 31026497 DOI: 10.1016/j.ijdevneu.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
The presence of immune cells in the central nervous system has long been the subject of research to find out their role. For a long time it was believed that the CNS was a privileged area from an immunological point of view, due to the presence of the blood-brain barrier (BBB), as circulating immune cells were unable to penetrate the brain parenchyma, at least until the integrity of the BBB was preserved. For this reason the study of the CNS immune system has focused on the functions of microglia, the immunocompetent resident element of the brain parenchyma that retain the ability to divide and self-renew during lifespan without any significant contribution from circulating blood cells. More recently, the presence of lymphatic vessels in the dural sinuses has been demonstrated with accompanying lymphocytes, monocytes and other immune cells. Moreover, meningeal macrophages, that is macrophages along the blood vessels and in the choroid plexus (CP), are also present. These non-parenchymal immune cells, together with microglia, can affect multiple CNS functions. Here, we discuss the functional role of parenchymal and non-parenchymal immune cells and their contribution to the regulation of neurogenesis.
Collapse
|
15
|
García-González P, Cabral-Miranda F, Hetz C, Osorio F. Interplay Between the Unfolded Protein Response and Immune Function in the Development of Neurodegenerative Diseases. Front Immunol 2018; 9:2541. [PMID: 30450103 PMCID: PMC6224445 DOI: 10.3389/fimmu.2018.02541] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence suggests that the immune and nervous systems are in close interaction in health and disease conditions. Protein aggregation and proteostasis dysfunction at the level of the endoplasmic reticulum (ER) are central contributors to neurodegenerative diseases. The unfolded protein response (UPR) is the main transduction pathway that maintains protein homeostasis under conditions of protein misfolding and aggregation. Brain inflammation often coexists with the degenerative process in different brain diseases. Interestingly, besides its well-described role in neuronal fitness, the UPR has also emerged as a key regulator of ontogeny and function of several immune cell types. Nevertheless, the contribution of the UPR to brain inflammation initiated by immune cells remains largely unexplored. In this review, we provide a perspective on the potential role of ER stress signaling in brain-associated immune cells and the possible implications to neuroinflammation and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulina García-González
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Brain Health and Metabolism, FONDAP Center for Geroscience, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Brain Health and Metabolism, FONDAP Center for Geroscience, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Pedersen GK, Li X, Khoenkhoen S, Ádori M, Beutler B, Karlsson Hedestam GB. B-1a Cell Development in Splenectomized Neonatal Mice. Front Immunol 2018; 9:1738. [PMID: 30105023 PMCID: PMC6077197 DOI: 10.3389/fimmu.2018.01738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 11/13/2022] Open
Abstract
B-1a cells are mainly generated from fetal liver progenitor cells, peri- and neonatally. The developmental steps and anatomical sites required for these cells to become mature B-1a cells remain elusive. We recently described a phenotypically distinct transitional B cell subset in the spleen of neonatal mice that generated B-1a cells when adoptively transferred. This, in combination with findings demonstrating that B-1a cells are lacking in congenitally asplenic mice, led us to hypothesize that the neonatal spleen is required for B-1a cell development. In accordance with previous reports, we found that B-1a cell numbers were reduced in adult mice that had undergone splenectomy compared to after sham surgery. In contrast, neonatal splenectomy led to peritoneal B-1a cell frequencies comparable to those observed in sham-operated mice until 6 weeks after surgery, suggesting that an intact spleen is required for B-1a cell maintenance rather than development. To study the role of the prenatal spleen in generating B-1a cells, we transferred fetal liver cells from pre-splenic embryos [embryonic age 11 (E11) days] into splenectomized recipient mice. B-1a cells were generated in the absence of the spleen, albeit at slightly reduced frequencies, and populated the peritoneal cavity and bone marrow. Lower bone marrow B-1a cell frequencies were also observed both after neonatal and adult splenectomy. These results demonstrated that B-1a cells could be generated in the complete absence of an intact spleen, but that asplenia led to a decline in these cells, suggesting a role of the spleen for maintaining the B-1a compartment.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohong Li
- UT Southwestern Medical Center, Center for the Genetics of Host Defense, Dallas, TX, United States
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruce Beutler
- UT Southwestern Medical Center, Center for the Genetics of Host Defense, Dallas, TX, United States
| | | |
Collapse
|
17
|
Mahapatra S, Ying L, Ho PPK, Kurnellas M, Rothbard J, Steinman L, Cornfield DN. An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS One 2018; 13:e0199206. [PMID: 29990318 PMCID: PMC6039005 DOI: 10.1371/journal.pone.0199206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/03/2022] Open
Abstract
Although the accumulation of amyloidogenic proteins in neuroinflammatory conditions is generally considered pathologic, in a murine model of multiple sclerosis, amyloid-forming fibrils, comprised of hexapeptides, are anti-inflammatory. Whether these molecules modulate systemic inflammatory conditions remains unknown. We hypothesized that an amylin hexapeptide that forms fibrils can attenuate the systemic inflammatory response in a murine model of sepsis. To test this hypothesis, mice were pre-treated with either vehicle or amylin hexapeptide (20 μg) at 12 hours and 6 hours prior to intraperitoneal (i.p.) lipopolysaccharide (LPS, 20 mg/kg) administration. Illness severity and survival were monitored every 6 hours for 3 days. Levels of pro- (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-10) cytokines were measured via ELISA at 1, 3, 6, 12, and 24 hours after LPS (i.p.). As a metric of lung injury, pulmonary artery endothelial cell (PAEC) barrier function was tested 24 hours after LPS administration by comparing lung wet-to-dry ratios, Evan’s blue dye (EBD) extravasation, lung histology and caspase-3 activity. Compared to controls, pretreatment with amylin hexapeptide significantly reduced mortality (p<0.05 at 72 h), illness severity (p<0.05), and pro-inflammatory cytokine levels, while IL-10 levels were elevated (p<0.05). Amylin pretreatment attenuated LPS-induced lung injury, as demonstrated by decreased lung water and caspase-3 activity (p<0.05, versus PBS). Hence, in a murine model of systemic inflammation, pretreatment with amylin hexapeptide reduced mortality, disease severity, and preserved lung barrier function. Amylin hexapeptide may represent a novel therapeutic tool to mitigate sepsis severity and lung injury.
Collapse
Affiliation(s)
- Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peggy Pui-Kay Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jonathan Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
18
|
Identification of a common immune regulatory pathway induced by small heat shock proteins, amyloid fibrils, and nicotine. Proc Natl Acad Sci U S A 2018; 115:7081-7086. [PMID: 29915045 DOI: 10.1073/pnas.1804599115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although certain dogma portrays amyloid fibrils as drivers of neurodegenerative disease and neuroinflammation, we have found, paradoxically, that amyloid fibrils and small heat shock proteins (sHsps) are therapeutic in experimental autoimmune encephalomyelitis (EAE). They reduce clinical paralysis and induce immunosuppressive pathways, diminishing inflammation. A key question was the identification of the target for these molecules. When sHsps and amyloid fibrils were chemically cross-linked to immune cells, a limited number of proteins were precipitated, including the α7 nicotinic acetylcholine receptor (α7 NAChR). The α7 NAChR is noteworthy among the over 20 known receptors for amyloid fibrils, because it plays a central role in a well-defined immune-suppressive pathway. Competitive binding between amyloid fibrils and α-bungarotoxin to peritoneal macrophages (MΦs) confirmed the involvement of α7 NAChR. The mechanism of immune suppression was explored, and, similar to nicotine, amyloid fibrils inhibited LPS induction of a common set of inflammatory cytokines while inducing Stat3 signaling and autophagy. Consistent with this, previous studies have established that nicotine, sHsps, and amyloid fibrils all were effective therapeutics in EAE. Interestingly, B lymphocytes were needed for the therapeutic effect. These results suggest that agonists of α7 NAChR might have therapeutic benefit for a variety of inflammatory diseases.
Collapse
|
19
|
Tanabe S, Yamashita T. The role of immune cells in brain development and neurodevelopmental diseases. Int Immunol 2018; 30:437-444. [DOI: 10.1093/intimm/dxy041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
20
|
Steinman L. A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Mol Med 2016; 22:molmed.2015.00263. [PMID: 27652378 PMCID: PMC5004718 DOI: 10.2119/molmed.2015.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Lawrence Steinman, MD, of Stanford University in California. A visionary in the field of neurology, this is the story of Dr. Steinman's scientific journey.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
21
|
Profile of Lawrence Steinman. Proc Natl Acad Sci U S A 2016; 113:1468-70. [PMID: 26811468 DOI: 10.1073/pnas.1600083113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|