1
|
Qasim ML, Alisaraie L. ProS 2Vi: A Python tool for visualizing proteins secondary structure. Comput Struct Biotechnol J 2025; 27:1001-1011. [PMID: 40160861 PMCID: PMC11953743 DOI: 10.1016/j.csbj.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
The Protein Secondary Structure Visualizer (ProS2Vi) is a novel Python-based visualization tool designed to enhance the analysis and information accessibility of protein secondary structures, calculated and identified using the Dictionary of Secondary Structure of Proteins (DSSP) algorithm. Leveraging robust Python libraries such as "Biopython" for data handling, "Flask" for Graphical User Interface (GUI), "Jinja2", and "wkhtmltopdf" for visualization, ProS2Vi offers a modern and intuitive representation for visualization of the DSSP assigned secondary structures to each residue of any proteins' amino acid sequence. Significant features of ProS2Vi include customizable icon colors, the number of residues per line, and the ability to export visualizations as scalable PDFs, enhancing both visual appeal and functional versatility through a user-friendly GUI. We have designed ProS2Vi specifically for secure and local operation, which significantly increases security when working with novel protein data.
Collapse
Affiliation(s)
- M. Luckman Qasim
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, A1B 3V6, St. John’s, Canada
- Department of Computer Science, Memorial University of Newfoundland, A1C 5S7, St. John’s, Canada
| | - Laleh Alisaraie
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, A1B 3V6, St. John’s, Canada
| |
Collapse
|
2
|
Middleton D. Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα- 13CH 3 Double-Quantum Solid-State NMR. Molecules 2025; 30:739. [PMID: 39942842 PMCID: PMC11820148 DOI: 10.3390/molecules30030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Peptides are an important class of biomolecules that perform many physiological functions and which occupy a significant and increasing share of the pharmaceutical market. Methods to determine the solid-state structures of peptides in different environments are important to help understand their biological functions and to aid the development of drug formulations. Here, a new magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) approach is described for the structural analysis of uniformly 13C-labeled solid peptides. Double-quantum (DQ) coherence between selective pairs of 13C nuclei in peptide backbone and side-chain CH3 groups is excited to provide restraints on (i) 13C-13C internuclear distances and (ii) the relative orientations of C-H bonds. DQ coherence is selected by adjusting the MAS frequency to the difference in the resonance frequencies of selected nuclear pairs (the rotational resonance condition), which reintroduces the dipolar coupling between the nuclei. Interatomic distances are then measured using a constant time SSNMR experiment to eliminate uncertainties arising from relaxation effects. Further, the relative orientations of C-H bond vectors are determined using a DQ heteronuclear local field SSNMR experiment, employing 13C-1H coupling amplification to increase sensitivity. These methods are applied to determine the molecular conformation of a uniformly 13C-labeled peptide, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF). From just six distance and six angular restraints, two possible molecular conformations are determined, one of which is in excellent agreement with the crystal structure of a closely related peptide. The method is envisaged to a useful addition to the SSNMR repertoire for the solid-state structure determination of peptides in a variety of forms, including amyloid fibrils and pharmaceutical formulations.
Collapse
Affiliation(s)
- David Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
3
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Saliba EP, Palani RS, Griffin RG. Homonuclear J-couplings and heteronuclear structural constraints. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107785. [PMID: 39442473 DOI: 10.1016/j.jmr.2024.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In magic angle spinning (MAS) experiments involving uniformly 13C/15N labeled proteins, 13C-13C and 13C-15N dipolar recoupling experiments are now routinely used to measure direct dipole-dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (<4 Å), the direct couplings dominate the evolution of the spin system, and the 13C-13C and 13C-15N J-couplings (scalar couplings) are ignored. However, for structurally interesting >4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment. This problem is circumvented in cases with well resolved spectra by using frequency-selective dipolar recoupling methods where the effects of J-couplings are refocused. However, for larger molecules with more spectral crowding, the requisite pulse length to achieve selectivity becomes long and leads to unacceptable sensitivity losses during the pulse or the spectral overlap precludes selective excitation. In this paper, we address this problem with two approaches aimed at facilitating higher precision internuclear distance measurements in systems that are not fully resolved. Namely, (1) we describe an approach for high precision measurements of specific J-couplings using the in-phase anti-phase (IPAP) sequence which is integrated into a non-selective dipolar recoupling technique and (2) we utilize the measured J-couplings to implement a double quantum filter experiment capable of providing the resolution necessary for frequency selective dipolar recoupling techniques without resorting to multidimensional spectroscopy. We illustrate these methods using a 7-peptide segment from the amyloidogenic Sup-35p protein, U-13C/15N-GNNQQNY, where we have measured 25 of the 27 possible one bond 13C-13C J-couplings.
Collapse
Affiliation(s)
- Edward P Saliba
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
5
|
Li Y, Lorenz CD, Holland GP. Aspartic Acid Binding on Hydroxyapatite Nanoparticles with Varying Morphologies Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22824-22834. [PMID: 39431416 DOI: 10.1021/acs.langmuir.4c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C-31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C-31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C-31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-1030, United States
| | - Christian D Lorenz
- Department of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-1030, United States
| |
Collapse
|
6
|
Harding BD, Barclay AM, Piehl DW, Hiett A, Warmuth OA, Han R, Henzler-Wildman K, Rienstra CM. Cross polarization stability in multidimensional NMR spectroscopy of biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107724. [PMID: 38991266 PMCID: PMC11364147 DOI: 10.1016/j.jmr.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t1 noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.
Collapse
Affiliation(s)
- Benjamin D Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dennis W Piehl
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Owen A Warmuth
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ruixian Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA; Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706 USA.
| |
Collapse
|
7
|
Dickwella Widanage MC, Gautam I, Sarkar D, Mentink-Vigier F, Vermaas JV, Ding SY, Lipton AS, Fontaine T, Latgé JP, Wang P, Wang T. Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β-1,3-glucan synthesis inhibition. Nat Commun 2024; 15:6382. [PMID: 39085213 PMCID: PMC11291495 DOI: 10.1038/s41467-024-50799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Antifungal echinocandins inhibit the biosynthesis of β-1,3-glucan, a major and essential polysaccharide component of the fungal cell wall. However, the efficacy of echinocandins against the pathogen Aspergillus fumigatus is limited. Here, we use solid-state nuclear magnetic resonance (ssNMR) and other techniques to show that echinocandins induce dynamic changes in the assembly of mobile and rigid polymers within the A. fumigatus cell wall. The reduction of β-1,3-glucan induced by echinocandins is accompanied by a concurrent increase in levels of chitin, chitosan, and highly polymorphic α-1,3-glucans, whose physical association with chitin maintains cell wall integrity and modulates water permeability. The rearrangement of the macromolecular network is dynamic and controls the permeability and circulation of the drug throughout the cell wall. Thus, our results indicate that echinocandin treatment triggers compensatory rearrangements in the cell wall that may help A. fumigatus to tolerate the drugs' antifungal effects.
Collapse
Affiliation(s)
- Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | | | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-, 75015, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
| | - Ping Wang
- Departments of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Southern SA, Perras FA. Comparison of methods for the NMR measurement of motionally averaged dipolar couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107710. [PMID: 38901172 DOI: 10.1016/j.jmr.2024.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods' strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where 1H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C-H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of 1H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.
Collapse
Affiliation(s)
- Scott A Southern
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Yi X, Fritzsching KJ, Rogawski R, Xu Y, McDermott AE. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures. Proc Natl Acad Sci U S A 2024; 121:e2301053120. [PMID: 38346186 PMCID: PMC10895356 DOI: 10.1073/pnas.2301053120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024] Open
Abstract
While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Escherichia coli Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C'-15N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra.
Collapse
Affiliation(s)
- Xu Yi
- Department of Chemistry, Columbia University, New York, NY 1002
| | | | - Rivkah Rogawski
- Department of Chemistry, Columbia University, New York, NY 1002
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 1002
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 1002
| |
Collapse
|
10
|
Yi X, Fritzsching KJ, Rogawski R, Xu Y, McDermott AE. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525358. [PMID: 36747795 PMCID: PMC9900807 DOI: 10.1101/2023.01.24.525358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While low temperature NMR holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in E. coli DHFR at 105K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of N i+1 to Ψ i . With selective 15 N and 13 C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13 C'- 15 N correlation spectrum. For this unique amide we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin 114 ± 7 for the major peak, and 150 ± 8 and 164 ± 16° for the minor peak as contrasted with 118 for the X-ray crystal structure (and 118-130 for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low temperature NMR spectra. Significance Statement Understanding protein conformational flexibility is essential for insights into the molecular basis of protein function and the thermodynamics of proteins. Here we investigate the ensemble of protein backbone conformations in a frozen protein freezing, which is likely a close representation for the ensemble in rapid equilibrium at room temperature. Various conformers are spectrally resolved due to the exquisite sensitivity of NMR shifts to local conformations, and NMR methods allow us to directly probe the torsion angles corresponding to each band of chemical shifts.
Collapse
|
11
|
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, Yakunin I, Parra-Rojas JP, Terrett OM, Saez-Aguayo S, Dupree R, Orellana A, Hong M, Dupree P. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. NATURE PLANTS 2022; 8:656-669. [PMID: 35681018 DOI: 10.1038/s41477-022-01156-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Polysaccharide methylation, especially that of pectin, is a common and important feature of land plant cell walls. Polysaccharide methylation takes place in the Golgi apparatus and therefore relies on the import of S-adenosyl methionine (SAM) from the cytosol into the Golgi. However, so far, no Golgi SAM transporter has been identified in plants. Here we studied major facilitator superfamily members in Arabidopsis that we identified as putative Golgi SAM transporters (GoSAMTs). Knockout of the two most highly expressed GoSAMTs led to a strong reduction in Golgi-synthesized polysaccharide methylation. Furthermore, solid-state NMR experiments revealed that reduced methylation changed cell wall polysaccharide conformations, interactions and mobilities. Notably, NMR revealed the existence of pectin 'egg-box' structures in intact cell walls and showed that their formation is enhanced by reduced methyl esterification. These changes in wall architecture were linked to substantial growth and developmental phenotypes. In particular, anisotropic growth was strongly impaired in the double mutant. The identification of putative transporters involved in import of SAM into the Golgi lumen in plants provides new insights into the paramount importance of polysaccharide methylation for plant cell wall structure and function.
Collapse
Affiliation(s)
- Henry Temple
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS) and CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Yakunin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
13
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
14
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
15
|
Perras FA, Kanbur U, Paterson AL, Chatterjee P, Slowing II, Sadow AD. Determining the Three-Dimensional Structures of Silica-Supported Metal Complexes from the Ground Up. Inorg Chem 2021; 61:1067-1078. [PMID: 34962783 DOI: 10.1021/acs.inorgchem.1c03200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of molecularly precise metal complexes to substrates, such as silica, provides an attractive platform for the design of active sites in heterogeneous catalysts. Specific steric and electronic variations of the ligand environment enable the development of structure-activity relationships and the knowledge-driven design of catalysts. At present, however, the three-dimensional environment of the precatalyst, much less the active site, is generally not known for heterogeneous single-site catalysts. We explored the degree to which NMR-based surface-to-complex interatomic distances could be used to solve the three-dimensional structures of three silica-supported metal complexes. The structure solution revealed unexpected features related to the environment around the metal that would be difficult to discern otherwise. This approach appears to be highly robust and, due to its simplicity, is readily applied to most single-site catalysts with little extra effort.
Collapse
Affiliation(s)
| | - Uddhav Kanbur
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Puranjan Chatterjee
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Igor I Slowing
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- US DOE, Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
van der Wel PCA. Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:791090. [PMID: 34938776 PMCID: PMC8685456 DOI: 10.3389/fmolb.2021.791090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.
Collapse
Affiliation(s)
- Patrick C. A. van der Wel
- Solid-state NMR Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Chakraborty A, Fernando LD, Fang W, Dickwella Widanage MC, Wei P, Jin C, Fontaine T, Latgé JP, Wang T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun 2021; 12:6346. [PMID: 34732740 PMCID: PMC8566572 DOI: 10.1038/s41467-021-26749-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses. The fungal cell wall is a complex structure composed mainly of glucans, chitin and glycoproteins. Here, the authors use solid-state NMR spectroscopy to assess the cell wall architecture of Aspergillus fumigatus, comparing wild-type cells and mutants lacking major structural polysaccharides, with insights into the distinct functions of these components.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | | | - Pingzhen Wei
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Thierry Fontaine
- Unité de Biologie et pathogénicité fongiques, INRAE, USC2019, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular biology and Biotechnology (IMBBFORTH), University of Crete, Heraklion, Greece.
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
18
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Liang L, Ji Y, Zhao Z, Quinn CM, Han X, Bao X, Polenova T, Hou G. Accurate heteronuclear distance measurements at all magic-angle spinning frequencies in solid-state NMR spectroscopy. Chem Sci 2021; 12:11554-11564. [PMID: 34567504 PMCID: PMC8409495 DOI: 10.1039/d1sc03194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Heteronuclear dipolar coupling is indispensable in revealing vital information related to the molecular structure and dynamics, as well as intermolecular interactions in various solid materials. Although numerous approaches have been developed to selectively reintroduce heteronuclear dipolar coupling under MAS, most of them lack universality and can only be applied to limited spin systems. Herein, we introduce a new and robust technique dubbed phase modulated rotary resonance (PMRR) for reintroducing heteronuclear dipolar couplings while suppressing all other interactions under a broad range of MAS conditions. The standard PMRR requires the radiofrequency (RF) field strength of only twice the MAS frequency, can efficiently recouple the dipolar couplings with a large scaling factor of 0.50, and is robust to experimental imperfections. Moreover, the adjustable window modification of PMRR, dubbed wPMRR, can improve its performance remarkably, making it well suited for the accurate determination of dipolar couplings in various spin systems. The robust performance of such pulse sequences has been verified theoretically and experimentally via model compounds, at different MAS frequencies. The application of the PMRR technique was demonstrated on the H-ZSM-5 zeolite, where the interaction between the Brønsted acidic hydroxyl groups of H-ZSM-5 and the absorbed trimethylphosphine oxide (TMPO) were probed, revealing the detailed configuration of super acid sites.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware Newark Delaware 19716 USA
| | - Xiuwen Han
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware Newark Delaware 19716 USA
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
20
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
21
|
Aebischer K, Tošner Z, Ernst M. Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:523-543. [PMID: 37904774 PMCID: PMC10539735 DOI: 10.5194/mr-2-523-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 11/01/2023]
Abstract
Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.
Collapse
Affiliation(s)
- Kathrin Aebischer
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Prague 2, Czech Republic
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
23
|
Nimerovsky E, Soutar CP. A modification of γ-encoded RN symmetry pulses for increasing the scaling factor and more accurate measurements of the strong heteronuclear dipolar couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106827. [PMID: 32950918 DOI: 10.1016/j.jmr.2020.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Symmetry based γ-encoded RNnν elements are broadly used in magic-angle spinning solid-state NMR experiments to achieve selective recoupling of the heteronuclear dipolar interactions. The recoupled dipolar couplings in such experiments are scaled by a factor, Ksc, which theoretically depends on the chosen symmetry numbers N, n, and ν. However, the maximum theoretical value of Ksc for γ-encoded RNnν pulses is limited to ~0.25, resulting in long RNnν experiment times. Also, the dependence of Ksc on the experimental parameters can result in systematic errors in the experimental determination of the dipolar couplings, especially at low and moderate MAS rates. In this manuscript, we investigate the use of MODifiEd RNnν symmetry (MODERNnν(ϕM)) pulses that increase the dipolar scaling factor by at least 1.45 fold compared to γ-encoded RNnν. The second advantage of MODERNnν(ϕM) pulses with respect to traditional RNnν pulses is the reduced influence of experimental parameters on Ksc, which allows for more accurate measurement of short-range distances. The robustness of MODERNnν(ϕM) is compared with γ-encoded R1423 symmetry pulses. The enhanced performance is demonstrated on two uniformly-13C-enriched samples, N-acetyl valine and the microcrystalline protein GB1, at a 31.111 kHz MAS rate.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Corinne P Soutar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Gopinath T, Weber DK, Veglia G. Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning. JOURNAL OF BIOMOLECULAR NMR 2020; 74:267-285. [PMID: 32333193 PMCID: PMC7236978 DOI: 10.1007/s10858-020-00316-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/11/2020] [Indexed: 05/04/2023]
Abstract
Ultrafast magic angle spinning (MAS) technology and 1H detection have dramatically enhanced the sensitivity of solid-state NMR (ssNMR) spectroscopy of biopolymers. We previously showed that, when combined with polarization optimized experiments (POE), these advancements enable the simultaneous acquisition of multi-dimensional 1H- or 13C-detected experiments using a single receiver. Here, we propose a new sub-class within the POE family, namely HC-DUMAS, HC-MEIOSIS, and HC-MAeSTOSO, that utilize dual receiver technology for the simultaneous detection of 1H and 13C nuclei. We also expand this approach to record 1H-, 13C-, and 15N-detected homonuclear 2D spectra simultaneously using three independent receivers. The combination of POE and multi-receiver technology will further shorten the total experimental time of ssNMR experiments for biological solids.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Tang Y, Li D, Cao D, Xu W. Extracting biomolecule collision cross sections from FT-ICR mass spectral line shape. Talanta 2019; 205:120093. [PMID: 31450431 DOI: 10.1016/j.talanta.2019.06.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
To extend the ion structure analysis capability of Fourier transform mass spectrometry (FT-MS), both time-domain and frequency-domain methods have been developed to extract ion collision cross sections (CCS) from high resolution mass spectra in Fourier transform ion cyclotron resonance (FT-ICR) cells. In this study, a new frequency-domain method, namely the line shape fitting method, was proposed to calculate ion CCSs from FT-ICR mass spectra line shape. Besides experimental data, simulated data with precisely controlled signal to noise levels and decay factors were also applied to characterize this method. Compared with the linewidth correction method previously proposed by our group, this line shape fitting method is more tolerant to noise, data length, and sampling rate, thus providing more consistent results. More importantly, CCS measurements of angiotensin I, bradykinin, ubiquitin and cytochrome c show that the resolving power is improved with the new method.
Collapse
Affiliation(s)
- Yang Tang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dayu Li
- School of Computer Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
26
|
Kang X, Elson C, Penfield J, Kirui A, Chen A, Zhang L, Wang T. Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog. Commun Biol 2019; 2:402. [PMID: 31701030 PMCID: PMC6825183 DOI: 10.1038/s42003-019-0653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Human β-defensins (hBD) play central roles in antimicrobial activities against various microorganisms and in immune-regulation. These peptides perturb phospholipid membranes for function, but it is not well understood how defensins approach, insert and finally disrupt membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid bilayers through a conserved surface that is formed by two adjacent loops in the solution structure. By integrating a collection of 13C, 1H and 31P solid-state NMR methods with long-term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide, enhances structural polymorphism, and promotes β-strand conformation. The peptide colocalizes with negatively charged lipids, confines the headgroup motion, and deforms membrane into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant structure and dynamics of other defensins, and facilitates the development of defensin-mimetic antibiotics, antifungals, and anti-inflammatories.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Christopher Elson
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Jackson Penfield
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Adrian Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
27
|
Duong NT, Rossi F, Makrinich M, Goldbourt A, Chierotti MR, Gobetto R, Nishiyama Y. Accurate 1H- 14N distance measurements by phase-modulated RESPDOR at ultra-fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106559. [PMID: 31345769 DOI: 10.1016/j.jmr.2019.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The combination of a phase-modulated (PM) saturation pulse and symmetry-based dipolar recoupling into a rotational-echo saturation-pulse double-resonance (RESPDOR) sequence has been employed to measure 1H-14N distances. Such a measurement is challenging owing to the quadrupolar interaction of 14N nucleus and the intense 1H-1H homonuclear dipolar interactions. Thanks to the recent advances in probe technology, the homonuclear dipolar interaction can be sufficiently suppressed at a fast MAS frequency (νR ≥ 60 kHz). PM pulse is robust to large variations of parameters on quadrupolar spins, but it has not been demonstrated under very fast MAS conditions. On the other hand, the RESPDOR sequence is applicable to such condition when it employs symmetry-based pulses during the recoupling period, but a prior knowledge on the system is required. In this article, we demonstrated the PM-RESPDOR combination for providing accurate 1H-14N distances at a very fast MAS frequency of 70 kHz on two samples, namely L-tyrosine⋅HCl and N-acetyl-L-alanine. This sequence, supported by simulations and experiments, has shown its feasibility at νR = 70 kHz as well as the robustness to the 14N quadrupolar interaction. It is applicable to a wide range of 1H-14N dipolar coupling constants when a radio frequency field on the 14N channel is approximately 80 kHz or more, while the PM pulse length lasts 10 rotor periods. For the first time, multiple 1H-14N heteronuclear dipolar couplings, thus multiple quantitative distances, are simultaneously and reliably extracted by fitting the experimental fraction curves with the analytical expression. The size of the 1H-14N dipolar interaction is solely used as a fitting parameter. These determined distances are in excellent agreement with those derived from diffraction techniques.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Maria Makrinich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
28
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Gopinath T, Wang S, Lee J, Aihara H, Veglia G. Hybridization of TEDOR and NCX MAS solid-state NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements. JOURNAL OF BIOMOLECULAR NMR 2019; 73:141-153. [PMID: 30805819 PMCID: PMC6526076 DOI: 10.1007/s10858-019-00237-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is a major technique for the characterization of the structural dynamics of biopolymers at atomic resolution. However, the intrinsic low sensitivity of this technique poses significant limitations to its routine application in structural biology. Here we achieve substantial savings in experimental time using a new subclass of Polarization Optimized Experiments (POEs) that concatenate TEDOR and SPECIFIC-CP transfers into a single pulse sequence. Specifically, we designed new 2D and 3D experiments (2D TEDOR-NCX, 3D TEDOR-NCOCX, and 3D TEDOR-NCACX) to obtain distance measurements and heteronuclear chemical shift correlations for resonance assignments using only one experiment. We successfully tested these experiments on N-Acetyl-Val-Leu dipeptide, microcrystalline U-13C,15N ubiquitin, and single- and multi-span membrane proteins reconstituted in lipid membranes. These pulse sequences can be implemented on any ssNMR spectrometer equipped with standard solid-state hardware using only one receiver. Since these new POEs speed up data acquisition considerably, we anticipate their broad application to fibrillar, microcrystalline, and membrane-bound proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - John Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
30
|
Duong NT, Raran-Kurussi S, Nishiyama Y, Agarwal V. Quantitative 1H- 1H Distances in Protonated Solids by Frequency-Selective Recoupling at Fast Magic Angle Spinning NMR. J Phys Chem Lett 2018; 9:5948-5954. [PMID: 30247041 DOI: 10.1021/acs.jpclett.8b02189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy of protons in protonated solids is challenging. Fast magic angle spinning (MAS) and homonuclear decoupling schemes, in conjunction, with high magnetic fields have improved the proton resolution. However, experiments to quantitatively measure 1H-1H distances still remain elusive due to the dense proton-proton dipolar coupling network. A novel MAS solid-state NMR pulse sequence is proposed to selectively recouple and measure interproton distances in protonated samples. The phase-modulated sequence combined with a judicious choice of transmitter frequency is used to measure quantitative 1H-1H distances on the order of 3 Å in l-histidine·HCl·H2O, despite the presence of other strongly coupled protons. This method provides a major boost to NMR crystallography approaches for structural determination of pharmaceutical molecules by directly measuring 1H-1H distances. The band-selective nature of the sequence also enables observation of selective 1H-1H correlations (e.g., HN-HN/HN-Hα/ΗΝ-ΗMethyl) in peptides and proteins, which should serve as useful restraints in structure determination.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center , RIKEN , Yokohama , Kanagawa 230-0045 , Japan
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , Sy. No. 36/P , Gopanpally, Ranga Reddy District, Hyderabad 500 107 , India
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center , RIKEN , Yokohama , Kanagawa 230-0045 , Japan
- JEOL RESONANCE Inc. , Musashino, Akishima , Tokyo 196-8558 , Japan
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , Sy. No. 36/P , Gopanpally, Ranga Reddy District, Hyderabad 500 107 , India
| |
Collapse
|
31
|
Gelenter MD, Hong M. Efficient 15N- 13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. J Phys Chem B 2018; 122:8367-8379. [PMID: 30106585 DOI: 10.1021/acs.jpcb.8b06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range 15N-13C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (PERSPIRATIONCP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (PAINCP) experiment but uses only a fraction of the rf energy by replacing continuous-wave 13C and 15N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how PERSPIRATIONCP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and 13C carrier frequency and compare the PERSPIRATIONCP performance with the performances of PAINCP, RESPIRATIONCP, and SPECIFICCP for measuring 15N-13C cross peaks. PERSPIRATIONCP achieves long-range 15N-13C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that PERSPIRATIONCP relies on 15N-1H and 13C-1H dipolar couplings rather than 15N-13C dipolar coupling for polarization transfer. Therefore, PERSPIRATIONCP is an rf-efficient and higher-sensitivity alternative to PAINCP for measuring long-range 15N-13C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two PERSPIRATIONCP 15N-13C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient PERSPIRATIONCP method is useful for obtaining many long-range distance restraints for protein structure determination.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
32
|
Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, Wang P, Mentink-Vigier F, Wang T. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun 2018; 9:2747. [PMID: 30013106 PMCID: PMC6048167 DOI: 10.1038/s41467-018-05199-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
The high mortality of invasive fungal infections, and the limited number and inefficacy of antifungals necessitate the development of new agents with novel mechanisms and targets. The fungal cell wall is a promising target as it contains polysaccharides absent in humans, however, its molecular structure remains elusive. Here we report the architecture of the cell walls in the pathogenic fungus Aspergillus fumigatus. Solid-state NMR spectroscopy, assisted by dynamic nuclear polarization and glycosyl linkage analysis, reveals that chitin and α-1,3-glucan build a hydrophobic scaffold that is surrounded by a hydrated matrix of diversely linked β-glucans and capped by a dynamic layer of glycoproteins and α-1,3-glucan. The two-domain distribution of α-1,3-glucans signifies the dual functions of this molecule: contributing to cell wall rigidity and fungal virulence. This study provides a high-resolution model of fungal cell walls and serves as the basis for assessing drug response to promote the development of wall-targeted antifungals.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Adrian Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
33
|
Nieuwendaal RC, DeLongchamp DM, Richter LJ, Snyder CR, Jones RL, Engmann S, Herzing A, Heeney M, Fei Z, Sieval AB, Hummelen JC. Characterization of Interfacial Structure in Polymer-Fullerene Bulk Heterojunctions via ^{13}C {^{2}H} Rotational Echo Double Resonance NMR. PHYSICAL REVIEW LETTERS 2018; 121:026101. [PMID: 30085721 PMCID: PMC6207377 DOI: 10.1103/physrevlett.121.026101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 06/08/2023]
Abstract
We introduce a new application of solid state NMR measurements towards characterizing the donor-acceptor interfaces within bulk heterojunction (BHJ) films. Rotational echo double resonance (REDOR) is used to measure dipolar couplings between ^{13}C nuclei on the acceptor phenyl-C_{61}-butyric acid methyl ester (PCBM) fullerene cage, which is ≈18% isotopically enriched with ^{13}C, and beta hydrogens on the donor poly(3-hexyl thiophene) (P3HT) main chain, which are >95% isotopically enriched with ^{2}H. The ^{13}C-^{2}H dipolar couplings are used for constraining possible models of molecular packing in the amorphous mixed phase of a P3HT/PCBM BHJ. The films studied are highly mixed (>80%) and have a maximum length scale of composition nonuniformity of ≈6 nm in the mixed phase, as demonstrated by ^{1}H spin diffusion NMR and supported by TEM. The REDOR results show that despite the lack of phase separation at length scales greater than ≈6 nm, neat P3HT and PCBM clusters exist on ≈3 nm size scales, and, for the average PCBM molecule, the number of nearest neighbors P3HTs is two.
Collapse
Affiliation(s)
- R. C. Nieuwendaal
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - D. M. DeLongchamp
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - L. J. Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - C. R. Snyder
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - R. L. Jones
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - S. Engmann
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - A. Herzing
- Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - M Heeney
- Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom
| | - Z. Fei
- Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom
| | - A. B. Sieval
- Solenne BV, Zernikepark 6-8, 9747AN Groningen, Netherlands
| | - J. C. Hummelen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
34
|
Shcherbakov AA, Hong M. Rapid measurement of long-range distances in proteins by multidimensional 13C- 19F REDOR NMR under fast magic-angle spinning. JOURNAL OF BIOMOLECULAR NMR 2018; 71:31-43. [PMID: 29785460 PMCID: PMC6314655 DOI: 10.1007/s10858-018-0187-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 05/24/2023]
Abstract
The ability to simultaneously measure many long-range distances is critical to efficient and accurate determination of protein structures by solid-state NMR (SSNMR). So far, the most common distance constraints for proteins are 13C-15N distances, which are usually measured using the rotational-echo double-resonance (REDOR) technique. However, these measurements are restricted to distances of up to ~ 5 Å due to the low gyromagnetic ratios of 15N and 13C. Here we present a robust 2D 13C-19F REDOR experiment to measure multiple distances to ~ 10 Å. The technique targets proteins that contain a small number of recombinantly or synthetically incorporated fluorines. The 13C-19F REDOR sequence is combined with 2D 13C-13C correlation to resolve multiple distances in highly 13C-labeled proteins. We show that, at the high magnetic fields which are important for obtaining well resolved 13C spectra, the deleterious effect of the large 19F chemical shift anisotropy for REDOR is ameliorated by fast magic-angle spinning and is further taken into account in numerical simulations. We demonstrate this 2D 13C-13C resolved 13C-19F REDOR technique on 13C, 15N-labeled GB1. A 5-19F-Trp tagged GB1 sample shows the extraction of distances to a single fluorine atom, while a 3-19F-Tyr labeled GB1 sample allows us to evaluate the effects of multi-spin coupling and statistical 19F labeling on distance measurement. Finally, we apply this 2D REDOR experiment to membrane-bound influenza B M2 transmembrane peptide, and show that the distance between the proton-selective histidine residue and the gating tryptophan residue differs from the distances in the solution NMR structure of detergent-bound BM2. This 2D 13C-19F REDOR technique should facilitate SSNMR-based protein structure determination by increasing the measurable distances to the ~ 10 Å range.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Roos M, Wang T, Shcherbakov AA, Hong M. Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F- 19F Distances in Proteins and Pharmaceutical Compounds. J Phys Chem B 2018; 122:2900-2911. [PMID: 29486126 PMCID: PMC6312665 DOI: 10.1021/acs.jpcb.8b00310] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Internuclear distances measured using NMR provide crucial constraints of three-dimensional structures but are often restricted to about 5 Å due to the weakness of nuclear-spin dipolar couplings. For studying macromolecular assemblies in biology and materials science, distance constraints beyond 1 nm will be extremely valuable. Here we present an extensive and quantitative analysis of the feasibility of 19F spin exchange NMR for precise and robust measurements of interatomic distances up to 1.6 nm at a magnetic field of 14.1 T, under 20-40 kHz magic-angle spinning (MAS). The measured distances are comparable to those achievable from paramagnetic relaxation enhancement but have higher precision, which is better than ±1 Å for short distances and ±2 Å for long distances. For 19F spins with the same isotropic chemical shift but different anisotropic chemical shifts, intermediate MAS frequencies of 15-25 kHz without 1H irradiation accelerate spin exchange. For spectrally resolved 19F-19F spin exchange, 1H-19F dipolar recoupling significantly speeds up 19F-19F spin exchange. On the basis of data from five fluorinated synthetic, pharmaceutical, and biological compounds, we obtained two general curves for spin exchange between CF groups and between CF3 and CF groups. These curves allow 19F-19F distances to be extracted from the measured spin exchange rates after taking into account 19F chemical shifts. These results demonstrate the robustness of 19F spin exchange NMR for distance measurements in a wide range of biological and chemical systems.
Collapse
Affiliation(s)
- Matthias Roos
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Tuo Wang
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alexander A Shcherbakov
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
36
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
37
|
Phyo P, Wang T, Kiemle SN, O'Neill H, Pingali SV, Hong M, Cosgrove DJ. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems. PLANT PHYSIOLOGY 2017; 175:1593-1607. [PMID: 29084904 PMCID: PMC5717741 DOI: 10.1104/pp.17.01270] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/29/2017] [Indexed: 05/02/2023]
Abstract
At early stages of Arabidopsis (Arabidopsis thaliana) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem.
Collapse
Affiliation(s)
- Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sarah N Kiemle
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hugh O'Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
38
|
Keeler EG, Michaelis VK, Colvin MT, Hung I, Gor'kov PL, Cross TA, Gan Z, Griffin RG. 17O MAS NMR Correlation Spectroscopy at High Magnetic Fields. J Am Chem Soc 2017; 139:17953-17963. [PMID: 29111706 DOI: 10.1021/jacs.7b08989] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.
Collapse
Affiliation(s)
- Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael T Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Phyo P, Wang T, Xiao C, Anderson CT, Hong M. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules 2017; 18:2937-2950. [DOI: 10.1021/acs.biomac.7b00888] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pyae Phyo
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Tuo Wang
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Chaowen Xiao
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles T. Anderson
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mei Hong
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Jain MG, Rajalakshmi G, Equbal A, Mote KR, Agarwal V, Madhu PK. Sine-squared shifted pulses for recoupling interactions in solid-state NMR. J Chem Phys 2017; 146:244201. [PMID: 28668030 DOI: 10.1063/1.4986791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Collapse
Affiliation(s)
- Mukul G Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - G Rajalakshmi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
41
|
Soss SE, Flynn PF, Iuliucci RJ, Young RP, Mueller LJ, Hartman J, Beran GJO, Harper JK. Measuring and Modeling Highly Accurate
15
N Chemical Shift Tensors in a Peptide. Chemphyschem 2017; 18:2225-2232. [DOI: 10.1002/cphc.201700357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah E. Soss
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Peter F. Flynn
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Robbie J. Iuliucci
- Department of Chemistry Washington and Jefferson College 60 Lincoln Street Washington PA 15301 USA
| | - Robert P. Young
- Department of Chemistry University of California Riverside CA 92521 USA
| | | | - Joshua Hartman
- Department of Chemistry University of California Riverside CA 92521 USA
| | | | - James K. Harper
- Department of Chemistry University of Central Florida 4111 Libra Drive Orlando FL 32816 USA
| |
Collapse
|
42
|
Donovan KJ, Silvers R, Linse S, Griffin RG. 3D MAS NMR Experiment Utilizing Through-Space 15N- 15N Correlations. J Am Chem Soc 2017; 139:6518-6521. [PMID: 28447786 DOI: 10.1021/jacs.7b01159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate a novel 3D NNC magic angle spinning NMR experiment that generates 15N-15N internuclear contacts in protein systems using an optimized 15N-15N proton assisted recoupling (PAR) mixing period and a 13C dimension for improved resolution. The optimized PAR condition permits the acquisition of high signal-to-noise 3D data that enables backbone chemical shift assignments using a strategy that is complementary to current schemes. The spectra can also provide distance constraints. The utility of the experiment is demonstrated on an M0Aβ1-42 fibril sample that yields high-quality data that is readily assigned and interpreted. The 3D NNC experiment therefore provides a powerful platform for solid-state protein studies and is broadly applicable to a variety of systems and experimental conditions.
Collapse
Affiliation(s)
- Kevin J Donovan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University , Lund 221 00, Sweden
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Wang T, Jo H, DeGrado WF, Hong M. Water Distribution, Dynamics, and Interactions with Alzheimer's β-Amyloid Fibrils Investigated by Solid-State NMR. J Am Chem Soc 2017; 139:6242-6252. [PMID: 28406028 PMCID: PMC5808936 DOI: 10.1021/jacs.7b02089] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water is essential for protein folding and assembly of amyloid fibrils. Internal water cavities have been proposed for several amyloid fibrils, but no direct structural and dynamical data have been reported on the water dynamics and site-specific interactions of water with the fibrils. Here we use solid-state NMR spectroscopy to investigate the water interactions of several Aβ40 fibrils. 1H spectral lineshapes, T2 relaxation times, and two-dimensional (2D) 1H-13C correlation spectra show that there are five distinct water pools: three are peptide-bound water, while two are highly dynamic water that can be assigned to interfibrillar water and bulk-like matrix water. All these water pools are associated with the fibrils on the nanometer scale. Water-transferred 2D correlation spectra allow us to map out residue-specific hydration and give evidence for the presence of a water pore in the center of the three-fold symmetric wild-type Aβ40 fibril. In comparison, the loop residues and the intramolecular strand-strand interface have low hydration, excluding the presence of significant water cavities in these regions. The Osaka Aβ40 mutant shows lower hydration and more immobilized water than wild-type Aβ40, indicating the influence of peptide structure on the dynamics and distribution of hydration water. Finally, the highly mobile interfibrillar and matrix water exchange with each other on the time scale of seconds, suggesting that fibril bundling separates these two water pools, and water molecules must diffuse along the fibril axis before exchanging between these two environments. These results provide insights and experimental constraints on the spatial distribution and dynamics of water pools in these amyloid fibrils.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
45
|
Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M. The Target of β-Expansin EXPB1 in Maize Cell Walls from Binding and Solid-State NMR Studies. PLANT PHYSIOLOGY 2016; 172:2107-2119. [PMID: 27729469 PMCID: PMC5129719 DOI: 10.1104/pp.16.01311] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/07/2016] [Indexed: 05/18/2023]
Abstract
The wall-loosening actions of β-expansins are known primarily from studies of EXPB1 extracted from maize (Zea mays) pollen. EXPB1 selectively loosens cell walls (CWs) of grasses, but its specific binding target is unknown. We characterized EXPB1 binding to sequentially extracted maize CWs, finding that the protein primarily binds glucuronoarabinoxylan (GAX), the major matrix polysaccharide in grass CWs. This binding is strongly reduced by salts, indicating that it is predominantly electrostatic in nature. For direct molecular evidence of EXPB1 binding, we conducted solid-state nuclear magnetic resonance experiments using paramagnetic relaxation enhancement (PRE), which is sensitive to distances between unpaired electrons and nuclei. By mixing 13C-enriched maize CWs with EXPB1 functionalized with a Mn2+ tag, we measured Mn2+-induced PRE Strong 1H and 13C PREs were observed for the carboxyls of GAX, followed by more moderate PREs for carboxyl groups in homogalacturonan and rhamnogalacturonan-I, indicating that EXPB1 preferentially binds GAX In contrast, no PRE was observed for cellulose, indicating very weak interaction of EXPB1 with cellulose. Dynamics experiments show that EXPB1 changes GAX mobility in a complex manner: the rigid fraction of GAX became more rigid upon EXPB1 binding while the dynamic fraction became more mobile. Combining these data with previous results, we propose that EXPB1 loosens grass CWs by disrupting noncovalent junctions between highly substituted GAX and GAX of low substitution, which binds cellulose. This study provides molecular evidence of β-expansin's target in grass CWs and demonstrates a new strategy for investigating ligand binding for proteins that are difficult to express heterologously.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); and
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.C., A.T., D.J.C.)
| | - Yuning Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); and
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.C., A.T., D.J.C.)
| | - Akira Tabuchi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); and
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.C., A.T., D.J.C.)
| | - Daniel J Cosgrove
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); and
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.C., A.T., D.J.C.)
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); and
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.C., A.T., D.J.C.)
| |
Collapse
|
46
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
47
|
Elkins MR, Wang T, Nick M, Jo H, Lemmin T, Prusiner SB, DeGrado WF, Stöhr J, Hong M. Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. J Am Chem Soc 2016; 138:9840-52. [PMID: 27414264 PMCID: PMC5149419 DOI: 10.1021/jacs.6b03715] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aβ sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aβ. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aβ40 fibrils. (13)C, (15)N-labeled synthetic E22G Aβ40 peptides are studied and compared with wild-type and Osaka E22Δ Aβ40 fibrils. Under the same fibrillization conditions, Arctic Aβ40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aβ40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aβ40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aβ42. (13)C-(1)H dipolar order parameters, (1)H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aβ40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aβ peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis.
Collapse
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Mimi Nick
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Departments of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, Departments of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
48
|
Mananga ES, Moghaddasi J, Sana A, Akinmoladun A, Sadoqi M. Advances in Theory of Solid-State Nuclear Magnetic Resonance. JOURNAL OF NATURE AND SCIENCE 2016; 1:e109. [PMID: 26878063 PMCID: PMC4750054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.
Collapse
Affiliation(s)
- Eugene S. Mananga
- Department of Physics and Technology, City University of New York, BCC, 2155 University Avenue, New York USA
- Department of Applied Physics, New York University, Polytechnic School of Engineering, 6 Metro-Tech Center, New York USA
- Physics Department, St. John's University of New York City, 8000 Utopia, Parkway, Jamaica, New York 11439, USA
| | - Jalil Moghaddasi
- Department of Physics and Technology, City University of New York, BCC, 2155 University Avenue, New York USA
| | - Ajaz Sana
- Department of Physics and Technology, City University of New York, BCC, 2155 University Avenue, New York USA
| | - Andrew Akinmoladun
- Department of Physics and Technology, City University of New York, BCC, 2155 University Avenue, New York USA
| | - Mostafa Sadoqi
- Physics Department, St. John's University of New York City, 8000 Utopia, Parkway, Jamaica, New York 11439, USA
| |
Collapse
|
49
|
Lu X, Zhang H, Lu M, Vega AJ, Hou G, Polenova T. Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 2016; 18:4035-44. [PMID: 26776070 DOI: 10.1039/c5cp07818k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental characterization of one-bond heteronuclear dipolar couplings is essential for structural and dynamics characterization of molecules by solid-state NMR. Accurate measurement of heteronuclear dipolar tensor parameters in magic-angle spinning NMR requires that the recoupling sequences efficiently reintroduce the desired heteronuclear dipolar coupling term, fully suppress other interactions (such as chemical shift anisotropy and homonuclear dipolar couplings), and be insensitive to experimental imperfections, such as radio frequency (rf) field mismatch. In this study, we demonstrate that the introduction of window delays into the basic elements of a phase-alternating R-symmetry (PARS) sequence results in a greatly improved protocol, termed windowed PARS (wPARS), which yields clean dipolar lineshapes that are unaffected by other spin interactions and are largely insensitive to experimental imperfections. Higher dipolar scaling factors can be attained in this technique with respect to PARS, which is particularly useful for the measurement of relatively small dipolar couplings. The advantages of wPARS are verified experimentally on model molecules N-acetyl-valine (NAV) and a tripeptide Met-Leu-Phe (MLF). The incorporation of wPARS into 3D heteronuclear or homonuclear correlation experiments permits accurate site-specific determination of dipolar tensors in proteins, as demonstrated on dynein light chain 8 (LC8). Through 3D wPARS recoupling based spectroscopy we have determined both backbone and side chain dipolar tensors in LC8 in a residue-resolved manner. We discuss these in the context of conformational dynamics of LC8. We have addressed the effect of paramagnetic relaxant Cu(ii)-EDTA doping on the dipolar coupling parameters in LC8 and observed no significant differences with respect to the neat sample permitting fast data collection. Our results indicate that wPARS is advantageous with respect to the windowless version of the sequence and is applicable to a broad range of systems including but not limited to biomolecules.
Collapse
Affiliation(s)
- Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Das BB, Opella SJ. Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:20-26. [PMID: 26705905 PMCID: PMC4716881 DOI: 10.1016/j.jmr.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 05/05/2023]
Abstract
We describe high resolution MAS solid-state NMR experiments that utilize (1)H detection with 60kHz magic angle spinning; simultaneous cross-polarization from (1)H to (15)N and (13)C nuclei; bidirectional cross-polarization between (13)C and (15)N nuclei; detection of both amide nitrogen and aliphatic carbon (1)H; and measurement of both (13)C and (15)N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide (1)H and alpha (1)H selectively with (13)C or (15)N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating (1)Hα/(13)Cα/(1)H(N) and (1)H(N)/(15)N/(1)Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between (15)N, (13)Cα(()(i)()) and (13)C'(()(i)(-1)), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|