1
|
Sánchez-León E, Bhalla K, Hu G, Lee CWJ, Lagace M, Jung WH, Kronstad JW. The HOPS and vCLAMP protein Vam6 connects polyphosphate with mitochondrial function and oxidative stress resistance in Cryptococcus neoformans. mBio 2025; 16:e0032825. [PMID: 39998208 PMCID: PMC11980578 DOI: 10.1128/mbio.00328-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Cryptococcus neoformans is considered one of the most dangerous fungal threats to human health, and the World Health Organization recently ranked it in the critical priority group for perceived public health importance. Proliferation of C. neoformans within mammalian hosts is supported by its ability to overcome nutritional limitations and endure stress conditions induced by the host immune response. Previously, we reported that the Vam6/Vps39/TRAP1-domain protein Vam6 was crucial for vacuolar morphology, iron acquisition, and virulence. However, the molecular mechanisms underlying the pleiotropic phenotypes resulting from loss of Vam6 remain poorly understood. In this study, we determined that Vam6 has roles in the HOPS complex for endomembrane trafficking to the vacuole and in the vCLAMP membrane contact site between the vacuole and mitochondria. Importantly, both of these roles regulate polyphosphate (polyP) metabolism, as demonstrated by a defect in trafficking of the VTC complex subunit Vtc2 for polyphosphate synthesis and by an influence on mitochondrial functions. In the latter case, Vam6 was required for polyP accumulation in response to electron transport chain inhibition and for overcoming oxidative stress. Overall, this work establishes connections between endomembrane trafficking, mitochondrial functions, and polyP homeostasis in C. neoformans.IMPORTANCEA detailed understanding of stress resistance by fungal pathogens of humans may provide new opportunities to improve antifungal therapy and combat life-threatening diseases. Here, we used a vam6 deletion mutant to investigate the role of the homotypic fusion and vacuole protein sorting (HOPS) complex in mitochondrial functions and polyphosphate homeostasis in Cryptococcus neoformans, an important fungal pathogen of immunocompromised people including those suffering from HIV/AIDS. Specifically, we made use of mutants defective in late endocytic trafficking steps to establish connections to oxidative stress and membrane trafficking with mitochondria. In particular, we found that mutants lacking the Vam6 protein had altered mitochondrial function, and that the mutants were perturbed for additional mitochondria and vacuole-related phenotypes (e.g., membrane composition, polyphosphate accumulation, and drug sensitivity). Overall, our study establishes connections between endomembrane trafficking components, mitochondrial functions, and polyphosphate homeostasis in an important fungal pathogen of humans.
Collapse
Affiliation(s)
- Eddy Sánchez-León
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melissa Lagace
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Perfect JR, Kronstad JW. Cryptococcal nutrient acquisition and pathogenesis: dining on the host. Microbiol Mol Biol Rev 2025; 89:e0001523. [PMID: 39927764 PMCID: PMC11948494 DOI: 10.1128/mmbr.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYPathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with Cryptococcus neoformans and to a lesser extent with Cryptococcus gattii, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the in vivo gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.
Collapse
Affiliation(s)
- John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Liu F, Zhou J, Li J, Chen J, Du G, Zhao X. Precise Engineering and Efficient Biosynthesis of Robust and High-Activity Human Haemoglobin for Artificial Oxygen Carriers. Microb Biotechnol 2025; 18:e70128. [PMID: 40072822 PMCID: PMC11900719 DOI: 10.1111/1751-7915.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Recombinant human haemoglobin (rHb) is a tetramer protein with heme as cofactors, which have extensive applications in the fields of biomaterials and biomedical therapeutics. However, due to the poor structural stability, the dissociation of heme, weak oxygen transport efficiency, and lower activity, the utilisation of rHb is severely limited in artificial oxygen carriers. Herein, based on the novel developed high-throughput screening strategies and semi-rational design, the engineered rHb mutant with strong stability and heme-binding ability was obtained. In addition, through the homology alignment and rational design, the oxygen transport capacity of rHb was significantly enhanced. Furthermore, the bottlenecks of heme supply were overcome by applying the fine-tuned heme synthesis in Escherichia coli. Finally, the robust and high-activity rHb mutant was synthesised and can be used as a new generation of artificial oxygen carriers.
Collapse
Affiliation(s)
- Fan Liu
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Jian Chen
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan UniversityWuxiJiangsuChina
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan UniversityWuxiJiangsuChina
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
4
|
Yu H, Wang Y, Wang Y, Niu Y, Zhou J, Li J, Chen J, Du G, Zhao X. Metabolic engineering of yeast to efficiently synthesize heme and hemoproteins: recent advance and prospects. FEMS Yeast Res 2025; 25:foaf019. [PMID: 40228812 PMCID: PMC12020473 DOI: 10.1093/femsyr/foaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025] Open
Abstract
Owing to the potential for commercialization, the recombinant production of hemoproteins has been heavily investigated. Yeast is a superior host for the synthesis of eukaryotic hemoproteins with optimal pathway to facilitate heme delivery and utilization, as well as suitable environment for the post-translational folding and modification. The efficient binding of heme is the critical determinant for the various functions of hemeproteins. Thus, many metabolic engineering strategies have been employed to modify heme synthetic pathways and balance the intracellular metabolic burden. This paper provides a comprehensive review on the improvement of heme supply, the enhancement of hemoprotein expression, and the current efforts to harmonize the synthesis of heme and the expression of protein components in yeast. These insights offer a solid foundation for the development of yeast chassis for the efficient production of high-active hemoproteins in the future.
Collapse
Affiliation(s)
- Haibo Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunpeng Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijie Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yueheng Niu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Tsuji D, Hirayama T, Kawai K, Nagasawa H, Akagi R. Application of fluorescent probe for labile heme quantification in physiological dynamics. Biochim Biophys Acta Gen Subj 2024; 1868:130707. [PMID: 39209088 DOI: 10.1016/j.bbagen.2024.130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Heme is an essential prosthetic molecule for life activities and is well known to act as the active center of many proteins, however, labile heme (LH) released from proteins is a harmful molecule that produces reactive oxygen species and must be strictly controlled. Recently, LH has been suggested to function as an important molecule for diverse physiological responses. Quantitative analysis of the intracellular dynamics of LH is essential for understanding its physiological functions, a substantially practical method has not been established. Here, we successfully developed an alternative method that can be used to complement quantification of the dynamics of intracellular LH using H-FluNox, an activity-based specific fluorescent probe recently constructed. Our newly established method should be effective in elucidating the physiological functions of LH.
Collapse
Affiliation(s)
- Daisuke Tsuji
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kanta Kawai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Reiko Akagi
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| |
Collapse
|
6
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
7
|
Jain P. Unveiling subcellular secrets: A novel sensor to visualize heme distribution in plants. PLANT PHYSIOLOGY 2024; 196:691-692. [PMID: 39041413 PMCID: PMC11444276 DOI: 10.1093/plphys/kiae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Prateek Jain
- Plant Physiology, American Society of Plant Biologists
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
8
|
Wen B, Grimm B. A genetically encoded fluorescent heme sensor detects free heme in plants. PLANT PHYSIOLOGY 2024; 196:830-841. [PMID: 38762898 PMCID: PMC11444292 DOI: 10.1093/plphys/kiae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Heme is produced in plants via a plastid-localized metabolic pathway and is subsequently distributed to all cellular compartments. In addition to covalently and noncovalently bound heme, a comparatively small amount of free heme that is not associated with protein is available for incorporation into heme-dependent proteins in all subcellular compartments and for regulatory purposes. This "labile" fraction may also be toxic. To date, the distribution of the free heme pool in plant cells remains poorly understood. Several fluorescence-based methods for the quantification of intracellular free heme have been described. For this study, we used the previously described genetically encoded heme sensor 1 (HS1) to measure the relative amounts of heme in different plant subcellular compartments. In a proof of concept, we manipulated heme content using a range of biochemical and genetic approaches and verified the utility of HS1 in different cellular compartments of Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum and Nicotiana benthamiana) plants transformed either transiently or stably with HS1 and HS1(M7A), a variant with lower affinity for heme. This approach makes it possible to trace the distribution and dynamics of free heme and provides relevant information about its mobilization. The application of these heme sensors will create opportunities to explore and validate the importance of free heme in plant cells and to identify mutants that alter the subcellular allocation of free heme.
Collapse
Affiliation(s)
- Bingxiao Wen
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
9
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
10
|
Belot A, Puy H, Hamza I, Bonkovsky HL. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy. Liver Int 2024; 44:2235-2250. [PMID: 38888238 PMCID: PMC11625177 DOI: 10.1111/liv.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.
Collapse
Affiliation(s)
- Audrey Belot
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Herve Puy
- Centre Français des Porphyries, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, INSERM U1149, Paris, France
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Herbert L. Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| |
Collapse
|
11
|
Zhang Z, Hu B, Zhang T, Luo Z, Zhou J, Li J, Chen J, Du G, Zhao X. The modification of heme special importer to improve the production of active hemoglobins in Escherichia coli. Biotechnol Lett 2024; 46:545-558. [PMID: 38717663 DOI: 10.1007/s10529-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 07/03/2024]
Abstract
To enhance the import of heme for the production of active hemoproteins in Escherichia coli C41 (DE3) lacking the special heme import system, heme receptor ChuA from E. coli Nissle 1917 was modified through molecular docking and the other components (ChuTUV) for heme import was overexpressed, while heme import was tested through growth assay and heme sensor HS1 detection. A ChuA mutant G360K was selected, which could import 3.91 nM heme, compared with 2.92 nM of the wild-type ChuA. In addition, it presented that the expression of heme transporters ChuTUV was not necessary for heme import. Based on the modification of ChuA (G360K), the titer of human hemoglobin and the peroxidase activity of leghemoglobin reached 1.19 μg g-1 DCW and 24.16 103 U g-1 DCW, compared with 1.09 μg g-1 DCW and 21.56 103 U g-1 DCW of the wild-type ChuA, respectively. Heme import can be improved through the modification of heme receptor and the engineered strain with improved heme import has a potential to efficiently produce high-active hemoproteins.
Collapse
Affiliation(s)
- Zihan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Adapa SR, Hunter GA, Amin NE, Marinescu C, Borsky A, Sagatys EM, Sebti SM, Reuther GW, Ferreira GC, Jiang RH. Porphyrin overdrive rewires cancer cell metabolism. Life Sci Alliance 2024; 7:e202302547. [PMID: 38649187 PMCID: PMC11035860 DOI: 10.26508/lsa.202302547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.
Collapse
Affiliation(s)
- Swamy R Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Gregory A Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narmin E Amin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher Marinescu
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andrew Borsky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elizabeth M Sagatys
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Said M Sebti
- Department of Pharmacology & Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary W Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Rays Hy Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL, USA
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
13
|
Ping FLY, Vahsen T, Brault A, Néré R, Labbé S. The flavohemoglobin Yhb1 is a new interacting partner of the heme transporter Str3. Mol Microbiol 2024; 122:29-49. [PMID: 38778742 DOI: 10.1111/mmi.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.
Collapse
Affiliation(s)
- Florie Lo Ying Ping
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Raphaël Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| |
Collapse
|
14
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
15
|
Biswas P, Palazzo J, Schlanger S, Jayaram DT, Islam S, Page RC, Stuehr DJ. Visualizing mitochondrial heme flow through GAPDH in living cells and its regulation by NO. Redox Biol 2024; 71:103120. [PMID: 38507973 PMCID: PMC10966083 DOI: 10.1016/j.redox.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Iron protoporphyrin IX (heme) is a redox-active cofactor that is bound in mammalian cells by GAPDH and allocated by a process influenced by physiologic levels of NO. This impacts the activity of many heme proteins including indoleamine dioxygenase-1 (IDO1), a redox enzyme involved in immune response and tumor growth. To gain further understanding we created a tetra-Cys human GAPDH reporter construct (TC-hGAPDH) which after labeling could indicate its heme binding by fluorescence quenching. When purified or expressed in a human cell line, TC-hGAPDH had properties like native GAPDH and heme binding quenched its fluorescence by 45-65%, allowing it to report on GAPDH binding of mitochondrially-generated heme in live cells in real time. In cells with active mitochondrial heme synthesis, low-level NO exposure increased heme allocation to IDO1 while keeping the TC-hGAPDH heme level constant due to replenishment by mitochondria. When mitochondrial heme synthesis was blocked, low NO caused a near complete transfer of the existing heme in TC-hGAPDH to IDO1 in a process that required IDO1 be able to bind the heme and have an active hsp90 present. Higher NO exposure had the opposite effect and caused IDO1 heme to transfer back to TC-hGAPDH. This demonstrated: (i) flow of mitochondrial heme through GAPDH is tightly coupled to target delivery, (ii) NO up- or down-regulates IDO1 activity by promoting a conserved heme exchange with GAPDH that goes in either direction according to the NO exposure level. The ability to drive a concentration-dependent, reversible protein heme exchange is unprecedented and reveals a new role for NO in biology.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Joseph Palazzo
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | | | - Sidra Islam
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
17
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Biswas P, Palazzo J, Schlanger S, Jayaram DT, Islam S, Page RC, Stuehr DJ. Visualizing Mitochondrial Heme Flow through GAPDH to Targets in Living Cells and its Regulation by NO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575067. [PMID: 38260356 PMCID: PMC10802506 DOI: 10.1101/2024.01.10.575067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Iron protoporphyrin IX (heme) is an essential cofactor that is chaperoned in mammalian cells by GAPDH in a process regulated by NO. To gain further understanding we generated a tetra-Cys human GAPDH reporter construct (TC-hGAPDH) which after being expressed and labeled with fluorescent FlAsH reagent could indicate heme binding by fluorescence quenching. When purified or expressed in HEK293T mammalian cells, FlAsH-labeled TC-hGAPDH displayed physical, catalytic, and heme binding properties like native GAPDH and its heme binding (2 mol per tetramer) quenched its fluorescence by 45-65%. In live HEK293T cells we could visualize TC-hGAPDH binding mitochondrially-generated heme and releasing it to the hemeprotein target IDO1 by monitoring cell fluorescence in real time. In cells with active mitochondrial heme synthesis, a low-level NO exposure increased heme allocation into IDO1 while keeping steady the level of heme-bound TC-hGAPDH. When mitochondrial heme synthesis was blocked at the time of NO exposure, low NO caused cells to reallocate existing heme from TC-hGAPDH to IDO1 by a mechanism requiring IDO1 be present and able to bind heme. Higher NO exposure had an opposite effect and caused cells to reallocate existing heme from IDO1 to TC-hGAPDH. Thus, with TC-hGAPDH we could follow mitochondrial heme as it travelled onto and through GAPDH to a downstream target (IDO1) in living cells, and to learn that NO acted at or downstream from the GAPDH heme complex to promote a heme reallocation in either direction depending on the level of NO exposure.
Collapse
|
19
|
Dominic IM, Willoughby MM, Freer AK, Moore CM, Donegan RK, Martinez-Guzman O, Hanna DA, Reddi AR. Fluorometric Methods to Measure Bioavailable and Total Heme. Methods Mol Biol 2024; 2839:151-194. [PMID: 39008253 DOI: 10.1007/978-1-0716-4043-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme b (iron protoporphyrin IX) is an essential but potentially cytotoxic cofactor, signaling molecule, and nutritional source of iron. Its importance in cell biology and metabolism is underscored by the fact that numerous diseases, including various cancers, neurodegenerative disorders, infectious diseases, anemias, and porphyrias, are associated with the dysregulation of heme synthesis, degradation, trafficking, and/or transport. Consequently, methods to measure, image, and quantify heme in cells are required to better understand the physiology and pathophysiology of heme. Herein, we describe fluorescence-based protocols to probe heme bioavailability and trafficking dynamics using genetically encoded fluorescent heme sensors in combination with various modalities, such as confocal microscopy, flow cytometry, and microplate readers. Additionally, we describe a protocol for measuring total heme and its precursor protoporphyrin IX using a fluorometric assay that exploits porphyrin fluorescence. Together, the methods described enable the monitoring of total and bioavailable heme to study heme homeostatic mechanisms in virtually any cell type and organism.
Collapse
Affiliation(s)
- Iramofu M Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Abigail K Freer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | | | - Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - David A Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA.
| |
Collapse
|
20
|
Grunow AL, Carroll SC, Kreiman AN, Sutherland MC. Structure-function analysis of the heme-binding WWD domain in the bacterial holocytochrome c synthase, CcmFH. mBio 2023; 14:e0150923. [PMID: 37929956 PMCID: PMC10746174 DOI: 10.1128/mbio.01509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Heme is an essential co-factor for proteins involved with critical cellular functions, such as energy production and oxygen transport. Thus, understanding how heme interacts with proteins and is moved through cells is a fundamental biological question. This work studies the System I cytochrome c biogenesis pathway, which in some species (including Escherichia coli) is composed of eight integral membrane or membrane-associated proteins called CcmA-H that are proposed to function in two steps to transport and attach heme to apocytochrome c. Cytochrome c requires this heme attachment to function in electron transport chains to generate cellular energy. A conserved WWD heme-handling domain in CcmFH is analyzed and residues critical for heme interaction and holocytochrome c synthase activity are identified. CcmFH is the third member of the WWD domain-containing heme-handling protein family to undergo a comprehensive structure-function analysis, allowing for comparison of heme interaction across this protein family.
Collapse
Affiliation(s)
- Amber L. Grunow
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Susan C. Carroll
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Alicia N. Kreiman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Molly C. Sutherland
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
21
|
Mahoney BJ, Goring AK, Wang Y, Dasika P, Zhou A, Grossbard E, Cascio D, Loo JA, Clubb RT. Development and atomic structure of a new fluorescence-based sensor to probe heme transfer in bacterial pathogens. J Inorg Biochem 2023; 249:112368. [PMID: 37729854 DOI: 10.1016/j.jinorgbio.2023.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Heme is the most abundant source of iron in the human body and is actively scavenged by bacterial pathogens during infections. Corynebacterium diphtheriae and other species of actinobacteria scavenge heme using cell wall associated and secreted proteins that contain Conserved Region (CR) domains. Here we report the development of a fluorescent sensor to measure heme transfer from the C-terminal CR domain within the HtaA protein (CR2) to other hemoproteins within the heme-uptake system. The sensor contains the CR2 domain inserted into the β2 to β3 turn of the Enhanced Green Fluorescent Protein (EGFP). A 2.45 Å crystal structure reveals the basis of heme binding to the CR2 domain via iron-tyrosyl coordination and shares conserved structural features with CR domains present in Corynebacterium glutamicum. The structure and small angle X-ray scattering experiments are consistent with the sensor adopting a V-shaped structure that exhibits only small fluctuations in inter-domain positioning. We demonstrate heme transfer from the sensor to the CR domains located within the HtaA or HtaB proteins in the heme-uptake system as measured by a ∼ 60% increase in sensor fluorescence and native mass spectrometry.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yueying Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Poojita Dasika
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Anqi Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Emmitt Grossbard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Huynh JQ, Lowder EP, Kranz RG. Structural basis of membrane machines that traffick and attach heme to cytochromes. J Biol Chem 2023; 299:105332. [PMID: 37827288 PMCID: PMC10663686 DOI: 10.1016/j.jbc.2023.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.
Collapse
Affiliation(s)
- Jonathan Q Huynh
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Ethan P Lowder
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
23
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 2023; 19:1256-1266. [PMID: 37710075 PMCID: PMC10897909 DOI: 10.1038/s41589-023-01413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme-nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan S Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
25
|
Genceroglu MY, Cavdar C, Manioglu S, Bayraktar H. Genetically Encoded Fluorescent Probe for Detection of Heme-Induced Conformational Changes in Cytochrome c. BIOSENSORS 2023; 13:890. [PMID: 37754124 PMCID: PMC10526477 DOI: 10.3390/bios13090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Cytochrome c (Cytc) is a key redox protein for energy metabolism and apoptosis in cells. The activation of Cytc is composed of several steps, including its transfer to the mitochondrial membrane, binding to cytochrome c heme lyase (CCHL) and covalent attachment to heme. The spectroscopic methods are often applied to study the structural changes of Cytc. However, they require the isolation of Cytc from cells and have limited availability under physiological conditions. Despite recent studies to elucidate the tightly regulated folding mechanism of Cytc, the role of these events and their association with different conformational states remain elusive. Here, we provide a genetically encoded fluorescence method that allows monitoring of the conformational changes of Cytc upon binding to heme and CCHL. Cerulean and Venus fluorescent proteins attached at the N and C terminals of Cytc can be used to determine its unfolded, intermediate, and native states by measuring FRET amplitude. We found that the noncovalent interaction of heme in the absence of CCHL induced a shift in the FRET signal, indicating the formation of a partially folded state. The higher concentration of heme and coexpression of CCHL gave rise to the recovery of Cytc native structure. We also found that Cytc was weakly associated with CCHL in the absence of heme. As a result, a FRET-based fluorescence approach was demonstrated to elucidate the mechanism of heme-induced Cytc conformational changes with spatiotemporal resolution and can be applied to study its interaction with small molecules and other protein partners in living cells.
Collapse
Affiliation(s)
- Mehmet Yunus Genceroglu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Cansu Cavdar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Selen Manioglu
- Biomedical Science and Engineering Program, Koç University, Istanbul 34450, Turkey
| | - Halil Bayraktar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| |
Collapse
|
26
|
Chen C, Hamza I. Notes from the Underground: Heme Homeostasis in C. elegans. Biomolecules 2023; 13:1149. [PMID: 37509184 PMCID: PMC10377359 DOI: 10.3390/biom13071149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in various biological processes, including oxygen transport, electron transport, signal transduction, and catalysis. However, free heme is hydrophobic and potentially toxic to cells. Organisms have evolved specific pathways to safely transport this essential but toxic macrocycle within and between cells. The bacterivorous soil-dwelling nematode Caenorhabditis elegans is a powerful animal model for studying heme-trafficking pathways, as it lacks the ability to synthesize heme but instead relies on specialized trafficking pathways to acquire, distribute, and utilize heme. Over the past 15 years, studies on this microscopic animal have led to the identification of a number of heme-trafficking proteins, with corresponding functional homologs in vertebrates. In this review, we provide a comprehensive overview of the heme-trafficking proteins identified in C. elegans and their corresponding homologs in related organisms.
Collapse
Affiliation(s)
- Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
27
|
Biswas P, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J Biol Chem 2023; 299:104753. [PMID: 37116709 PMCID: PMC10220489 DOI: 10.1016/j.jbc.2023.104753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygenase (TDO) catalyze the conversion of L-tryptophan to N-formyl-kynurenine and thus play primary roles in metabolism, inflammation, and tumor immune surveillance. Because their activities depend on their heme contents, which vary in biological settings and go up or down in a dynamic manner, we studied how their heme levels may be impacted by nitric oxide (NO) in mammalian cells. We utilized cells expressing TDO or IDO1 either naturally or via transfection and determined their activities, heme contents, and expression levels as a function of NO exposure. We found NO has a bimodal effect: a narrow range of low NO exposure promoted cells to allocate heme into the heme-free TDO and IDO1 populations and consequently boosted their heme contents and activities 4- to 6-fold, while beyond this range the NO exposure transitioned to have a negative impact on their heme contents and activities. NO did not alter dioxygenase protein expression levels, and its bimodal impact was observed when NO was released by a chemical donor or was generated naturally by immune-stimulated macrophage cells. NO-driven heme allocations to IDO1 and TDO required participation of a GAPDH-heme complex and for IDO1 required chaperone Hsp90 activity. Thus, cells can up- or downregulate their IDO1 and TDO activities through a bimodal control of heme allocation by NO. This mechanism has important biomedical implications and helps explain why the IDO1 and TDO activities in animals go up and down in response to immune stimulation.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
28
|
Yang Q, Zhao J, Zheng Y, Chen T, Wang Z. Microbial Synthesis of Heme b: Biosynthetic Pathways, Current Strategies, Detection, and Future Prospects. Molecules 2023; 28:3633. [PMID: 37110868 PMCID: PMC10144233 DOI: 10.3390/molecules28083633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Heme b, which is characterized by a ferrous ion and a porphyrin macrocycle, acts as a prosthetic group for many enzymes and contributes to various physiological processes. Consequently, it has wide applications in medicine, food, chemical production, and other burgeoning fields. Due to the shortcomings of chemical syntheses and bio-extraction techniques, alternative biotechnological methods have drawn increasing attention. In this review, we provide the first systematic summary of the progress in the microbial synthesis of heme b. Three different pathways are described in detail, and the metabolic engineering strategies for the biosynthesis of heme b via the protoporphyrin-dependent and coproporphyrin-dependent pathways are highlighted. The UV spectrophotometric detection of heme b is gradually being replaced by newly developed detection methods, such as HPLC and biosensors, and for the first time, this review summarizes the methods used in recent years. Finally, we discuss the future prospects, with an emphasis on the potential strategies for improving the biosynthesis of heme b and understanding the regulatory mechanisms for building efficient microbial cell factories.
Collapse
Affiliation(s)
- Qiuyu Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Sankey N, Merrick H, Singh P, Rogers J, Reddi A, Hartson SD, Mitra A. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins. mSphere 2023; 8:e0057322. [PMID: 36749044 PMCID: PMC10117145 DOI: 10.1128/msphere.00573-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.
Collapse
Affiliation(s)
- November Sankey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Haley Merrick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Padam Singh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amit Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
30
|
Kupke T, Götz RM, Richter FM, Beck R, Lolicato F, Nickel W, Hopf C, Brügger B. In vivo characterization of the bacterial intramembrane-cleaving protease RseP using the heme binding tag-based assay iCliPSpy. Commun Biol 2023; 6:287. [PMID: 36934128 PMCID: PMC10024687 DOI: 10.1038/s42003-023-04654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology. Here we introduce iCLiPSpy, a simple assay to study I-CLiPs in vivo. To allow easy detection of enzyme activity, we developed a heme-binding reporter based on TNFα that changes color after I-CLiP-mediated proteolysis. Co-expression of the protease and reporter in Escherichia coli (E. coli) results in white or green colonies, depending on the activity of the protease. As a proof of concept, we use this assay to study the bacterial intramembrane-cleaving zinc metalloprotease RseP in vivo. iCLiPSpy expands the methodological repertoire for identifying residues important for substrate binding or activity of I-CLiPs and can in principle be adapted to a screening assay for the identification of inhibitors or activators of I-CLiPs, which is of great interest for proteases being explored as biomedical targets.
Collapse
Affiliation(s)
- Thomas Kupke
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | - Rabea M Götz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Florian M Richter
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Rainer Beck
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Vávra J, Sergunin A, Pompach P, Savchenko D, Hraníček J, Šloufová I, Shimizu T, Martínková M. Characterization of the interaction between the tumour suppressor p53 and heme and its role in the protein conformational dynamics studied by various spectroscopic techniques and hydrogen/deuterium exchange coupled with mass spectrometry. J Inorg Biochem 2023; 243:112180. [PMID: 36934467 DOI: 10.1016/j.jinorgbio.2023.112180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The tumour suppressor p53 regulates the expression of a myriad of proteins that are important for numerous cellular processes, including apoptosis, cell cycle arrest, DNA repair, metabolism, and even autophagy and ferroptosis. Aside from DNA, p53 can interact with many types of partners including proteins and small organic molecules. The ability of p53 to interact with heme has been reported so far. In this study, we used various spectroscopic studies to conduct a thorough biophysical characterization of the interaction between p53 and heme concerning the oxidation, spin, coordination, and ligand state of heme iron. We found that the p53 oligomeric state and zinc biding ability are preserved upon the interaction with heme. Moreover, we described the effect of heme binding on the conformational dynamics of p53 by hydrogen/deuterium exchange coupled with mass spectrometry. Specifically, the conformational flexibility of p53 is significantly increased upon interaction with heme, while its affinity to a specific DNA sequence is reduced by heme. The inhibitory effect of DNA binding by heme is partially reversible. We discuss the potential heme binding sites in p53 with respect to the observed conformational dynamics changes and perturbed DNA-binding ability of p53 upon interaction with heme.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic; National Radiation Protection Institute, Prague 4, 140 00, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Dariya Savchenko
- Institute of Physics of the Czech Academy of Sciences, Prague 8, 182 21, Czech Republic
| | - Jakub Hraníček
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Ivana Šloufová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2 128 43, Czech Republic.
| |
Collapse
|
32
|
Kim H, Moore CM, Mestre-Fos S, Hanna DA, Williams LD, Reddi AR, Torres MP. Depletion assisted hemin affinity (DAsHA) proteomics reveals an expanded landscape of heme-binding proteins in the human proteome. Metallomics 2023; 15:6994529. [PMID: 36669767 PMCID: PMC10022665 DOI: 10.1093/mtomcs/mfad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Heme b (iron protoporphyrin IX) plays important roles in biology as a metallocofactor and signaling molecule. However, the targets of heme signaling and the network of proteins that mediate the exchange of heme from sites of synthesis or uptake to heme dependent or regulated proteins are poorly understood. Herein, we describe a quantitative mass spectrometry (MS)-based chemoproteomics strategy to identify exchange labile hemoproteins in human embryonic kidney HEK293 cells that may be relevant to heme signaling and trafficking. The strategy involves depleting endogenous heme with the heme biosynthetic inhibitor succinylacetone (SA), leaving putative heme-binding proteins in their apo-state, followed by the capture of those proteins using hemin-agarose resin, and finally elution and identification by MS. By identifying only those proteins that interact with high specificity to hemin-agarose relative to control beaded agarose in an SA-dependent manner, we have expanded the number of proteins and ontologies that may be involved in binding and buffering labile heme or are targets of heme signaling. Notably, these include proteins involved in chromatin remodeling, DNA damage response, RNA splicing, cytoskeletal organization, and vesicular trafficking, many of which have been associated with heme through complementary studies published recently. Taken together, these results provide support for the emerging role of heme in an expanded set of cellular processes from genome integrity to protein trafficking and beyond.
Collapse
Affiliation(s)
- Hyojung Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Santi Mestre-Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amit R Reddi
- Correspondence: Amit R. Reddi, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Dr. Atlanta, GA 30033. E-mail:
| | - Matthew P Torres
- Correspondence: Matthew P. Torres, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr. Atlanta, GA 30033. E-mail:
| |
Collapse
|
33
|
XUE P, SÁNCHEZ-LEÓN E, DAMOO D, HU G, JUNG WH, KRONSTAD JW. Heme sensing and trafficking in fungi. FUNGAL BIOL REV 2023; 43:100286. [PMID: 37781717 PMCID: PMC10540271 DOI: 10.1016/j.fbr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells. In particular, the applications of biosensors in fungi have been extended beyond the detection of metabolites, cofactors, pH, and redox status to include the detection of heme. Here, we focus on studies that make use of biosensors to examine mechanisms of heme uptake and degradation, with guidance from the model fungus Saccharomyces cerevisiae and an emphasis on the pathogenic fungi Candida albicans and Cryptococcus neoformans that threaten human health. These studies emphasize a role for endocytosis in heme uptake, and highlight membrane contact sites involving mitochondria, the endoplasmic reticulum and vacuoles as mediators of intracellular iron and heme trafficking.
Collapse
Affiliation(s)
- Peng XUE
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy SÁNCHEZ-LEÓN
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Djihane DAMOO
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan HU
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee JUNG
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - James W. KRONSTAD
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Hu B, Yu H, Zhou J, Li J, Chen J, Du G, Lee SY, Zhao X. Whole-Cell P450 Biocatalysis Using Engineered Escherichia coli with Fine-Tuned Heme Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205580. [PMID: 36526588 PMCID: PMC9951570 DOI: 10.1002/advs.202205580] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Indexed: 05/14/2023]
Abstract
By exploiting versatile P450 enzymes, whole-cell biocatalysis can be performed to synthesize valuable compounds in Escherichia coli. However, the insufficient supply of heme limits the whole-cell P450 biocatalytic activity. Here a strategy for improving intracellular heme biosynthesis to enhance the catalytic efficiencies of P450s is reported. After comparing the effects of improving heme transport and biosynthesis on P450 activities, intracellular heme biosynthesis is optimized through the integrated expression of necessary synthetic genes at proper ratios and the assembly of rate-limiting enzymes using DNA-guided scaffolds. The intracellular heme level is fine-tuned by the combined use of mutated heme-sensitive biosensors and small regulatory RNA systems. The catalytic efficiencies of three different P450s, BM3, sca-2, and CYP105D7, are enhanced through fine-tuning heme biosynthesis for the synthesis of hydroquinone, pravastatin, and 7,3',4'-trihydroxyisoflavone as example products of chemical intermediate, drug, and natural product, respectively. This strategy of fine-tuned heme biosynthesis will be generally useful for developing whole-cell biocatalysts involving hemoproteins.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Haibo Yu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jianghua Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Guocheng Du
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)BioProcess Engineering Research CenterBioinformatics Research Center, and Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonYuseong‐gu34141Republic of Korea
| | - Xinrui Zhao
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
35
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
36
|
Donegan RK, Fu Y, Copeland J, Idga S, Brown G, Hale OF, Mitra A, Yang H, Dailey HA, Niederweis M, Jain P, Reddi AR. Exogenously Scavenged and Endogenously Synthesized Heme Are Differentially Utilized by Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0360422. [PMID: 36169423 PMCID: PMC9604157 DOI: 10.1128/spectrum.03604-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023] Open
Abstract
Heme is both an essential cofactor and an abundant source of nutritional iron for the human pathogen Mycobacterium tuberculosis. While heme is required for M. tuberculosis survival and virulence, it is also potentially cytotoxic. Since M. tuberculosis can both synthesize and take up heme, the de novo synthesis of heme and its acquisition from the host may need to be coordinated in order to mitigate heme toxicity. However, the mechanisms employed by M. tuberculosis to regulate heme uptake, synthesis, and bioavailability are poorly understood. By integrating ratiometric heme sensors with mycobacterial genetics, cell biology, and biochemistry, we determined that de novo-synthesized heme is more bioavailable than exogenously scavenged heme, and heme availability signals the downregulation of heme biosynthetic enzyme gene expression. Ablation of heme synthesis does not result in the upregulation of known heme import proteins. Moreover, we found that de novo heme synthesis is critical for survival from macrophage assault. Altogether, our data suggest that mycobacteria utilize heme from endogenous and exogenous sources differently and that targeting heme synthesis may be an effective therapeutic strategy to treat mycobacterial infections. IMPORTANCE Mycobacterium tuberculosis infects ~25% of the world's population and causes tuberculosis (TB), the second leading cause of death from infectious disease. Heme is an essential metabolite for M. tuberculosis, and targeting the unique heme biosynthetic pathway of M. tuberculosis could serve as an effective therapeutic strategy. However, since M. tuberculosis can both synthesize and scavenge heme, it was unclear if inhibiting heme synthesis alone could serve as a viable approach to suppress M. tuberculosis growth and virulence. The importance of this work lies in the development and application of genetically encoded fluorescent heme sensors to probe bioavailable heme in M. tuberculosis and the discovery that endogenously synthesized heme is more bioavailable than exogenously scavenged heme. Moreover, it was found that heme synthesis protected M. tuberculosis from macrophage killing, and bioavailable heme in M. tuberculosis is diminished during macrophage infection. Altogether, these findings suggest that targeting M. tuberculosis heme synthesis is an effective approach to combat M. tuberculosis infections.
Collapse
Affiliation(s)
- Rebecca K. Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemistry, Barnard College, New York, New York, USA
| | - Yibo Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jacqueline Copeland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stanzin Idga
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Gabriel Brown
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Owen F. Hale
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Avishek Mitra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Yang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry A. Dailey
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paras Jain
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Sun F, Zhao Z, Willoughby MM, Shen S, Zhou Y, Shao Y, Kang J, Chen Y, Chen M, Yuan X, Hamza I, Reddi AR, Chen C. HRG-9 homologues regulate haem trafficking from haem-enriched compartments. Nature 2022; 610:768-774. [PMID: 36261532 PMCID: PMC9810272 DOI: 10.1038/s41586-022-05347-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2022] [Indexed: 02/05/2023]
Abstract
Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.
Collapse
Affiliation(s)
- Fengxiu Sun
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenzhen Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuaiqi Shen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhou
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiyan Shao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengying Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Yuan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Iqbal Hamza
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Stuehr DJ, Dai Y, Biswas P, Sweeny EA, Ghosh A. New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals. Biol Chem 2022; 403:1005-1015. [PMID: 36152339 PMCID: PMC10184026 DOI: 10.1515/hsz-2022-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022]
Abstract
The intracellular trafficking of mitochondrial heme presents a fundamental challenge to animal cells. This article provides some background on heme allocation, discusses some of the concepts, and then reviews research done over the last decade, much in the author's laboratory, that is uncovering unexpected and important roles for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), heat shock protein 90 (hsp90), and nitric oxide (NO) in enabling and regulating the allocation of mitochondrial heme to hemeproteins that mature and function outside of the mitochondria. A model for how hemeprotein functions can be regulated in cells through the coordinate participation of GAPDH, hsp90, and NO in allocating cellular heme is presented.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
39
|
Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 2022; 51:7752-7778. [PMID: 36052828 DOI: 10.1039/d1cs01167g] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ya-Lin Qi
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Sheng-Yu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Andrawes N, Weissman Z, Pinsky M, Moshe S, Berman J, Kornitzer D. Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 2022; 18:e1010390. [PMID: 36084128 PMCID: PMC9491583 DOI: 10.1371/journal.pgen.1010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.
Collapse
Affiliation(s)
- Natalie Andrawes
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Shilat Moshe
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Judith Berman
- School of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| |
Collapse
|
41
|
Gessner G, Jamili M, Tomczyk P, Menche D, Schönherr R, Hoshi T, Heinemann SH. Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na + channels. Biol Chem 2022; 403:1067-1081. [PMID: 36038266 DOI: 10.1515/hsz-2022-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Heme (Fe2+-protoporphyrin IX) is a well-known protein prosthetic group; however, heme and hemin (Fe3+-protoporphyrin IX) are also increasingly viewed as signaling molecules. Among the signaling targets are numerous ion channels, with intracellular-facing heme-binding sites modulated by heme and hemin in the sub-µM range. Much less is known about extracellular hemin, which is expected to be more abundant, in particular after hemolytic insults. Here we show that the human cardiac voltage-gated sodium channel hNaV1.5 is potently inhibited by extracellular hemin (IC 50 ≈ 80 nM), while heme, dimethylhemin, and protoporphyrin IX are ineffective. Hemin is selective for hNaV1.5 channels: hNaV1.2, hNaV1.4, hNaV1.7, and hNaV1.8 are insensitive to 1 µM hemin. Using domain chimeras of hNaV1.5 and rat rNaV1.2, domain II was identified as the critical determinant. Mutation N803G in the domain II S3/S4 linker largely diminished the impact of hemin on the cardiac channel. This profile is reminiscent of the interaction of some peptide voltage-sensor toxins with NaV channels. In line with a mechanism of select gating modifiers, the impact of hemin on NaV1.5 channels is reversely use dependent, compatible with an interaction of hemin and the voltage sensor of domain II. Extracellular hemin thus has potential to modulate the cardiac function.
Collapse
Affiliation(s)
- Guido Gessner
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Mahdi Jamili
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Pascal Tomczyk
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Roland Schönherr
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
42
|
Intracellular hemin is a potent inhibitor of the voltage-gated potassium channel Kv10.1. Sci Rep 2022; 12:14645. [PMID: 36030326 PMCID: PMC9420133 DOI: 10.1038/s41598-022-18975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Heme, an iron-protoporphyrin IX complex, is a cofactor bound to various hemoproteins and supports a broad range of functions, such as electron transfer, oxygen transport, signal transduction, and drug metabolism. In recent years, there has been a growing recognition of heme as a non-genomic modulator of ion channel functions. Here, we show that intracellular free heme and hemin modulate human ether à go-go (hEAG1, Kv10.1) voltage-gated potassium channels. Application of hemin to the intracellular side potently inhibits Kv10.1 channels with an IC50 of about 4 nM under ambient and 63 nM under reducing conditions in a weakly voltage-dependent manner, favoring inhibition at resting potential. Functional studies on channel mutants and biochemical analysis of synthetic and recombinant channel fragments identified a heme-binding motif CxHx8H in the C-linker region of the Kv10.1 C terminus, with cysteine 541 and histidines 543 and 552 being important for hemin binding. Binding of hemin to the C linker may induce a conformational constraint that interferes with channel gating. Our results demonstrate that heme and hemin are endogenous modulators of Kv10.1 channels and could be exploited to modulate Kv10.1-mediated cellular functions.
Collapse
|
43
|
Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2022; 119:e2108245119. [PMID: 35858410 PMCID: PMC9335255 DOI: 10.1073/pnas.2108245119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme availability in the cell enables the proper folding and function of enzymes, which carry heme as a cofactor. Using genome-scale modeling, we identified metabolic fluxes and genes that limit heme production. Our study experimentally validates ecYeast8 model predictions. Moreover, we developed an approach to predict gene combinations, which provides an in silico design of a viable strain able to overproduce the metabolite of interest. Using our approach, we constructed a yeast strain that produces 70-fold-higher levels of intracellular heme. With its high-capacity metabolic subnetwork, our engineered strain is a suitable platform for the production of additional heme enzymes. The heme ligand-binding biosensor (Heme-LBB) detects the cotranslational incorporation of heme into the heme-protein hemoglobin. Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.
Collapse
|
44
|
Kapetanaki SM, Fekete Z, Dorlet P, Vos MH, Liebl U, Lukacs A. Molecular insights into the role of heme in the transcriptional regulatory system AppA/PpsR. Biophys J 2022; 121:2135-2151. [PMID: 35488435 DOI: 10.1016/j.bpj.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR in which AppA and PpsR function as the antirepressor and repressor, respectively of photosynthesis gene expression. The mechanism, however of this interaction remains incompletely understood. In this study, we combined EPR spectroscopy and FRET to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared to the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the BLUF and SCHIC domains of AppA. We have also examined quantitatively, the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, BIP, IMM, Marseille, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| |
Collapse
|
45
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
46
|
Zhu P, Zhou B. The Antagonizing Role of Heme in the Antimalarial Function of Artemisinin: Elevating Intracellular Free Heme Negatively Impacts Artemisinin Activity in Plasmodium falciparum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061755. [PMID: 35335120 PMCID: PMC8949904 DOI: 10.3390/molecules27061755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
The rich source of heme within malarial parasites has been considered to underly the action specificity of artemisinin. We reasoned that increasing intraparasitic free heme levels might further sensitize the parasites to artemisinin. Various means, such as modulating heme synthesis, degradation, polymerization, or hemoglobin digestion, were tried to boost intracellular heme levels, and under several scenarios, free heme levels were significantly augmented. Interestingly, all results arrived at the same conclusion, i.e., elevating heme acted in a strongly negative way, impacting the antimalarial action of artemisinin, but exerted no effect on several other antimalarial drugs. Suppression of the elevated free heme level by introducing heme oxygenase expression effectively restored artemisinin potency. Consistently, zinc protoporphyrin IX/zinc mesoporphyrin, as analogues of heme, drastically increased free heme levels and, concomitantly, the EC50 values of artemisinin. We were unable to effectively mitigate free heme levels, possibly due to an unknown compensating heme uptake pathway, as evidenced by our observation of efficient uptake of a fluorescent heme homologue by the parasite. Our results thus indicate the existence of an effective and mutually compensating heme homeostasis network in the parasites, including an uncharacterized heme uptake pathway, to maintain a certain level of free heme and that augmentation of the free heme level negatively impacts the antimalarial action of artemisinin. Importance: It is commonly believed that heme is critical in activating the antimalarial action of artemisinins. In this work, we show that elevating free heme levels in the malarial parasites surprisingly negatively impacts the action of artemisinin. We tried to boost free heme levels with various means, such as by modulating heme synthesis, heme polymerization, hemoglobin degradation and using heme analogues. Whenever we saw elevation of free heme levels, reduction in artemisinin potency was also observed. The homeostasis of heme appears to be complex, as there exists an unidentified heme uptake pathway in the parasites, nullifying our attempts to effectively reduce intraparasitic free heme levels. Our results thus indicate that too much heme is not good for the antimalarial action of artemisinins. This research can help us better understand the biological properties of this mysterious drug.
Collapse
Affiliation(s)
- Pan Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
47
|
Mitochondrial COA7 is a heme-binding protein with disulfide reductase activity, which acts in the early stages of complex IV assembly. Proc Natl Acad Sci U S A 2022; 119:2110357119. [PMID: 35210360 PMCID: PMC8892353 DOI: 10.1073/pnas.2110357119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Assembly factors play key roles in the biogenesis of mitochondrial protein complexes, regulating their stabilities, activities, and incorporation of essential cofactors. Cytochrome c oxidase assembly factor 7 (COA7) is a metazoan-specific assembly factor, the absence or mutation of which in humans accompanies complex IV assembly defects and neurological conditions. Here, we report the crystal structure of COA7 to 2.4 Å resolution, revealing a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats. COA7 binds heme with micromolar affinity, even though the protein structure does not resemble previously characterized heme-binding proteins. The heme-bound COA7 can redox cycle between oxidation states Fe(II) and Fe(III) and shows disulfide reductase activity toward copper binding assembly factors. We propose that COA7 functions to facilitate the biogenesis of the binuclear copper site (CuA) of complex IV. Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.
Collapse
|
48
|
Kawai K, Hirayama T, Imai H, Murakami T, Inden M, Hozumi I, Nagasawa H. Molecular Imaging of Labile Heme in Living Cells Using a Small Molecule Fluorescent Probe. J Am Chem Soc 2022; 144:3793-3803. [PMID: 35133144 DOI: 10.1021/jacs.1c08485] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Labile heme (LH) is a complex of Fe(II) and protoporphyrin IX, an essential signaling molecule in various biological systems. Most of the subcellular dynamics of LH remain unclear because of the lack of efficient chemical tools for detecting LH in cells. Here, we report an activity-based fluorescence probe that can monitor the fluctuations of LH in biological events. H-FluNox is a selective fluorescent probe that senses LH using biomimetic N-oxide deoxygenation to trigger fluorescence. The selectivity of H-FluNox to LH is >100-fold against Fe(II), enabling the discrimination of LH from the labile Fe(II) pool in living cells. The probe can detect the acute release of LH upon NO stimulation and the accumulation of LH by inhibiting the heme exporter. In addition, imaging studies using the probe revealed a partial heme-export activity of the ATP-binding cassette subfamily G member 2 (ABCG2), potential LH pooling ability of G-quadruplex, and involvement of LH in ferroptosis. The successful use of H-FluNox in identifying fluctuations of LH in living cells offers opportunities for studying the physiology and pathophysiology of LH in living systems.
Collapse
Affiliation(s)
- Kanta Kawai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Haruka Imai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-shi, Gifu 501-1196, Japan
| |
Collapse
|
49
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
50
|
NO rapidly mobilizes cellular heme to trigger assembly of its own receptor. Proc Natl Acad Sci U S A 2022; 119:2115774119. [PMID: 35046034 PMCID: PMC8795550 DOI: 10.1073/pnas.2115774119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) performs many biological functions, but how it operates at the molecular and cellular levels is not fully understood. We discovered that cell NO generation at physiologic levels triggers a rapid redeployment of intracellular heme, an iron-containing cofactor, and we show that this drives the assembly of the natural NO receptor protein, soluble guanylyl cyclase, which is needed for NO to perform its biological signaling functions. Our study uncovers a way that NO can shape biological signaling processes and a way that cells may use NO to control their hemeprotein activities through deployment of the heme cofactor. These concepts broaden our understanding of NO function in biology and medicine. Nitric oxide (NO) signaling in biology relies on its activating cyclic guanosine monophosphate (cGMP) production by the NO receptor soluble guanylyl cyclase (sGC). sGC must obtain heme and form a heterodimer to become functional, but paradoxically often exists as an immature heme-free form in cells and tissues. Based on our previous finding that NO can drive sGC maturation, we investigated its basis by utilizing a fluorescent sGC construct whose heme level can be monitored in living cells. We found that NO generated at physiologic levels quickly triggered cells to mobilize heme to immature sGC. This occurred when NO was generated within cells or by neighboring cells, began within seconds of NO exposure, and led cells to construct sGC heterodimers and thus increase their active sGC level by several-fold. The NO-triggered heme deployment involved cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH)–heme complexes and required the chaperone hsp90, and the newly formed sGC heterodimers remained functional long after NO generation had ceased. We conclude that NO at physiologic levels triggers assembly of its own receptor by causing a rapid deployment of cellular heme. Redirecting cellular heme in response to NO is a way for cells and tissues to modulate their cGMP signaling and to more generally tune their hemeprotein activities wherever NO biosynthesis takes place.
Collapse
|