1
|
Yamashita SI, Arai R, Hada H, Padman BS, Lazarou M, Chan DC, Kanki T, Waguri S. The mitophagy receptors BNIP3 and NIX mediate tight attachment and expansion of the isolation membrane to mitochondria. J Cell Biol 2025; 224:e202408166. [PMID: 40358358 PMCID: PMC12071194 DOI: 10.1083/jcb.202408166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ritsuko Arai
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hada
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Benjamin Scott Padman
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Australia
- The University of Western Australia, Crawley, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
2
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2025; 62:6715-6747. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhang Y, Li C, Zhang M, Qi S, Kong X. Autophagy receptor optineurin promotes spring viremia of carp virus replication via mitophagy and innate immune pathways in Cyprinus carpio. Int J Biol Macromol 2025; 315:144309. [PMID: 40403804 DOI: 10.1016/j.ijbiomac.2025.144309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Optineurin (OPTN), an important biological macromolecule protein, functions as a selective autophagy receptor that is essential for mitophagy induction and innate immune regulation. This study identified and characterized two OPTN genes from common carp (Cyprinus carpio), demonstrating that CcOPTNs promoted mitophagy while downregulating the interferon pathway and inflammatory response. Spring viremia of carp virus (SVCV), an RNA virus, poses a significant threat to Cyprinidae fish health. A comprehensive analysis of its interaction with the host can provide valuable insights for fish disease prevention and control. Therefore, we established an SVCV infection model and observed that SVCV stimulation significantly altered the expression of CcOPTNs. Furthermore, CcOPTNs facilitated SVCV replication by promoting mitophagy and impairing innate antiviral immunity. Collectively, our findings indicated that CcOPTNs serve as critical regulators of mitophagy and innate immunity, playing a pivotal role in the immune response to SVCV infection.
Collapse
Affiliation(s)
- Yunli Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| | - Mengxi Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Songjie Qi
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
4
|
Oettinger D, Yamamoto A. Autophagy dysfunction and neurodegeneration: Where does it go wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Shen Y, Wang L, Guo Z, Wang J, Zhang R, Tang C, Wu J. METTL14 promotes TBK1 mRNA stability through IGF2BP3-recognized m6A modification and enhances mitophagy in BMSCs. Cell Signal 2025; 133:111873. [PMID: 40381973 DOI: 10.1016/j.cellsig.2025.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Osteoporosis, particularly postmenopausal osteoporosis, represents a growing global health challenge characterized by impaired bone remodeling and increased fracture risk. The impairment of bone regeneration manifests in the field of oral and maxillofacial medicine as delayed alveolar bone healing after tooth extraction and poor osseointegration of dental implants, significantly compromising oral functional rehabilitation. This study investigates the role of METTL14 in osteogenic differentiation and its potential regulatory mechanisms in bone metabolism. We identified differential expression patterns of METTL14 in bone marrow-derived mesenchymal stem cells (BMSCs) between osteoporotic patients and healthy controls. Through loss-of-function experiments, we further demonstrated the critical role of METTL14 in promoting osteogenic differentiation, providing direct evidence for its functional importance in bone metabolism regulation. Transcriptome sequencing analysis revealed a significant association between METTL14 and mitophagy. JC-1 assay, Mitosox assay, mt-Keima assay, western blotting and immunofluorescence demonstrated METTL14's positive regulatory role in mitophagy, with TBK1 identified as the most significantly altered downstream target through qRT-PCR and rescue experiments. We further elucidated that IGF2BP3, an m6A reader, promotes osteogenesis and regulates TBK1 mRNA stability, as evidenced by Actinomycin D treatment and mitochondrial-lysosomal colocalization assays. In vivo experiments showed that METTL14 overexpression enhanced alveolar bone healing in ovariectomized osteoporotic mice. These findings provide novel evidence supporting METTL14 as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Long Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Zixiang Guo
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Jiaohong Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Runzi Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Chunbo Tang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China.
| | - Jin Wu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China; Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
6
|
Acharya D, Sayyad Z, Hoenigsperger H, Hirschenberger M, Zurenski M, Balakrishnan K, Zhu J, Gableske S, Kato J, Zhang SY, Casanova JL, Moss J, Sparrer KMJ, Gack MU. TRIM23 mediates cGAS-induced autophagy in anti-HSV defense. Nat Commun 2025; 16:4418. [PMID: 40360474 PMCID: PMC12075517 DOI: 10.1038/s41467-025-59338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | | | | | - Matthew Zurenski
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Kannan Balakrishnan
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Sebastian Gableske
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Eisai GmbH, Frankfurt am Main, Germany
| | - Jiro Kato
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Joel Moss
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
Zheng Y, Yang J, Li X, Qi L, Zheng Z, Kong J, Zhang G, Guo Y. Mitochondria at the crossroads: Quality control mechanisms in neuronal senescence and neurodegeneration. Neurobiol Dis 2025; 208:106862. [PMID: 40049539 DOI: 10.1016/j.nbd.2025.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/13/2025] Open
Abstract
Mitochondria play a central role in essential cellular processes, including energy metabolism, biosynthesis of metabolic substances, calcium ion storage, and regulation of cell death. Maintaining mitochondrial quality control is critical for preserving mitochondrial health and ensuring cellular function. Given their high energy demands, neurons depend on effective mitochondrial quality control to sustain their health and functionality. Neuronal senescence, characterized by a progressive decline in structural integrity and function, is a hallmark of neurodegenerative diseases. In senescent neurons, abnormal mitochondrial morphology, functional impairments, increased reactive oxygen species production and disrupted quality control mechanisms are frequently observed. Understanding the pathological changes in neuronal structure, exploring the intricate relationship between mitochondrial quality control and neuronal health, and leveraging mitochondrial quality control interventions provide a promising foundation for addressing age-related neurodegenerative diseases. This review highlights key mitochondrial quality control, including biogenesis, dynamics, the ubiquitin-proteasome system, autophagy pathways, mitochondria-derived vesicles, and inter-organelle communication, while discussing their roles in neuronal senescence and potential therapeutic strategies. These insights may pave the way for innovative treatments to mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Yifei Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiahui Yang
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Xuanyao Li
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Linjie Qi
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhuo Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China; Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
10
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
11
|
Johnson KM, Marley MG, Drizyte-Miller K, Chen J, Cao H, Mostafa N, Schott MB, McNiven MA, Razidlo GL. Rab32 regulates Golgi structure and cell migration through Protein Kinase A-mediated phosphorylation of Optineurin. Proc Natl Acad Sci U S A 2025; 122:e2502971122. [PMID: 40258145 PMCID: PMC12054839 DOI: 10.1073/pnas.2502971122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Rab32 is a small GTPase and molecular switch implicated in vesicular trafficking. Rab32 is also an A-Kinase Anchoring Protein (AKAP), which anchors cAMP-dependent Protein Kinase (PKA) to specific subcellular locations and specifies PKA phosphorylation of nearby substrates. Surprisingly, we found that a form of Rab32 deficient in PKA binding (Rab32 L188P) relocalized away from the Golgi apparatus and induced a marked disruption in Golgi organization, assembly, and dynamics. Although Rab32 L188P did not cause a global defect in PKA activity, our data indicate that Rab32 facilitates the phosphorylation of a specific PKA substrate. We uncovered a direct interaction between Rab32 and the adaptor protein optineurin (OPTN), which regulates Golgi dynamics. Further, our data indicate that optineurin is phosphorylated by PKA at Ser342 in a Rab32-dependent manner. Critically, blocking phosphorylation at OPTN Ser342 leads to Golgi fragmentation, and a phospho-mimetic version of OPTN rescues Golgi defects induced by Rab32 L188P. Finally, Rab32 AKAP function and OPTN phosphorylation are required for Golgi repositioning during cell migration, contributing to tumor cell invasion. Together, these data reveal a role for Rab32 in regulating Golgi dynamics through PKA-mediated phosphorylation of OPTN.
Collapse
Affiliation(s)
- Katherine M. Johnson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
| | - Maxwell G. Marley
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
| | | | - Jing Chen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
| | - Hong Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
| | - Nourhan Mostafa
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE68198
| | - Micah B. Schott
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE68198
| | - Mark A. McNiven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
| | - Gina L. Razidlo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN55905
| |
Collapse
|
12
|
Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol 2025:169161. [PMID: 40268233 DOI: 10.1016/j.jmb.2025.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more recent work has brought to light additional mitochondrial quality control mechanisms that operate either in parallel to or independent of PINK1/Parkin mitophagy. Here, we discuss our current understanding of mitophagy mechanisms operating in neurons to govern mitochondrial homeostasis. We also summarize progress in our understanding of the links between mitophagic dysfunction and neurodegeneration, and highlight the potential for therapeutic interventions to maintain mitochondrial health and neuronal function.
Collapse
Affiliation(s)
- Bishal Basak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
13
|
Luo C, Ma C, Xu G, Lu C, Ma J, Huang Y, Nie L, Yu C, Xia Y, Liu Z, Zhu Y, Liu S. Hepatitis B surface antigen hijacks TANK-binding kinase 1 to suppress type I interferon and induce early autophagy. Cell Death Dis 2025; 16:304. [PMID: 40234418 PMCID: PMC12000394 DOI: 10.1038/s41419-025-07605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
There are close links between innate immunity and autophagy. However, the crosstalk between innate immunity and autophagy in host cells infected with hepatitis B virus (HBV) remains unclear. Here, we reported that HBsAg suppressed type I interferon production and induced the accumulation of autophagosomes. HBsAg boosted TANK-binding kinase 1 (TBK1) phosphorylation and depressed interferon regulatory factor 3 (IRF3) phosphorylation ex vivo and in vivo. Mechanistic studies showed that HBsAg interaction with the kinase domain (KD) of TBK1 augmented its dimerization but disrupted TBK1-IRF3 complexes. Using the TBK1 inhibitor, BX795, we discovered that HBsAg-enhanced TBK1 dimerization, promoting sequestosome-1 (p62) phosphorylation, was necessary for HBV-induced autophagy and HBV replication. Moreover, HBsAg blocked autophagosome-lysosome fusion by inhibiting the synaptosomal-associated protein 29 (SNAP29) promoter. Notably, liver tissues from HBsAg transgenic mice or chronic HBV patients revealed that IFNβ signaling was inhibited and incomplete autophagy was induced. These findings suggest a novel mechanism by which HBsAg targets TBK1 to inhibit type I interferon and induce early autophagy, possibly leading to persistent HBV infection. Molecular mechanisms of HBsAg suppression of the IFNβ signaling pathway and triggering of early autophagy. HBsAg targets the kinase domain of TBK1, thereby disrupting the TBK1-IRF3 complex and inhibiting type I interferon production. On the other hand, HBsAg enhances TBK1 dimerization and phosphorylation, which upregulates the phosphorylation of p62 to induce p62-mediated autophagy. Furthermore, HBV infection causes the accumulation of autophagosomes. This is achieved by HBsAg suppressing the SNAP29 promoter activity, which blocks autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
15
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025; 22:e00525. [PMID: 39827052 PMCID: PMC12047401 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Kim HJ, Kim HJ, Kim SY, Roh J, Yun JH, Kim CH. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025:1-23. [PMID: 40114316 DOI: 10.1080/15548627.2025.2481661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells. Here, we report that MUL1 loss results in the hyperactivation of TBK1 in both HNC cells and tissues. Mechanistically, under proteotoxic stress induced by proteasomal inhibition, HSP90 inhibition, or Ub+ stress, MUL1 promotes the degradation of active TBK1 through K48-linked ubiquitination at lysine 584. Furthermore, TBK1 facilitates autophagosome-lysosome fusion and phosphorylates SQSTM1, regulating selective macroautophagic/autophagic clearance in HNC cells. TBK1 is required for SG formation and cellular protection. Moreover, we found that MAP1LC3B is partially localized within SGs. TBK1 depletion enhances the sensitivity of HNC cells to cisplatin-induced cell death. GSK8612, a novel TBK1 inhibitor, significantly inhibits HNC tumorigenesis in xenografts. In summary, our study reveals that TBK1 facilitates the rapid removal of ubiquitinated proteins within the cell through protective autophagy under stress conditions and assists SG formation through the use of the autophagy machinery. These findings highlight the potential of TBK1 as a therapeutic target in HNC treatment.Abbreviations: ALP: autophagy-lysosomal pathway; AMBRA1: autophagy and beclin 1 regulator 1; BaF: bafilomycin A1; CC: coiled-coil; CD274/PDL-1: CD274 molecule; CHX: cycloheximide; CQ: chloroquine; DNP: dinitrophenol; EGFR: epidermal growth factor receptor; ESCC: esophageal squamous cell carcinoma; G3BP1: G3BP stress granule assembly factor 1; HNC: head and neck cancer; HPV: human papillomavirus; IFN: interferon; IGFBP3: insulin like growth factor binding protein 3; IRF: interferon-regulatory factor 3; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NPC: nasopharyngeal carcinoma; PABP: poly(A) binding protein; PI: proteasome inhibitor; PQC: protein quality control; PROTAC: proteolysis-targeting chimera; PURA/PURα: purine rich element binding protein A; RIGI: RNA sensor RIG-I; SD: standard deviation; SG: stress granule; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; UPS: ubiquitin-proteasome system; USP10: ubiquitin specific peptidase 10; VCP: valosin containing protein; VHL: von Hippel-Lindau tumor suppressor; WT: wild type.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of New Business Development, Future Business Division, DaehanNupharm Co. Ltd, Seongnam, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
17
|
Feng C, Hu Z, Zhao M, Leng C, Li G, Yang F, Fan X. Region-specific mitophagy in nucleus pulposus, annulus fibrosus, and cartilage endplate of intervertebral disc degeneration: mechanisms and therapeutic strategies. Front Pharmacol 2025; 16:1579507. [PMID: 40248091 PMCID: PMC12003974 DOI: 10.3389/fphar.2025.1579507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent condition contributing to various spinal disorders, posing a significant global health burden. Mitophagy plays a crucial role in maintaining mitochondrial quantity and quality and is closely associated with the onset and progression of IVDD. Well-documented region-specific mitophagy mechanisms in IVDD are guiding the development of therapeutic strategies. In the nucleus pulposus (NP), impaired mitochondria lead to apoptosis, oxidative stress, senescence, extracellular matrix degradation and synthesis, excessive autophagy, inflammation, mitochondrial instability, and pyroptosis, with key regulatory targets including AMPK, PGC-1α, SIRT1, SIRT3, Progerin, p65, Mfn2, FOXO3, NDUFA4L2, SLC39A7, ITGα5/β1, Nrf2, and NLRP3 inflammasome. In the annulus fibrosus (AF), mitochondrial damage induces apoptosis and oxidative stress mediated by PGC-1α, while in the cartilage endplate (CEP), mitochondrial dysfunction similarly triggers apoptosis and oxidative stress. These mechanistic insights highlight therapeutic strategies such as activating Parkin-dependent and Ub-independent mitophagy pathways for NP, enhancing Parkin-dependent mitophagy for AF, and targeting Parkin-mediated mitophagy for CEP. These strategies include the use of natural ingredients, hormonal modulation, gene editing technologies, targeted compounds, and manipulation of related proteins. This review summarizes the mechanisms of mitophagy in different regions of the intervertebral disc and highlights therapeutic approaches using mitophagy modulators to ameliorate IVDD. It discusses the complex mechanisms of mitophagy and underscores its potential as a therapeutic target. The objective is to provide valuable insights and a scientific basis for the development of mitochondrial-targeted drugs for anti-IVDD.
Collapse
Affiliation(s)
- Chaoqun Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziang Hu
- Department of Orthopedics, The TCM Hospital of Longquanyi District, Chengdu, China
| | - Min Zhao
- International Ward (Gynecology), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Leng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangye Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
19
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
20
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
21
|
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, Bezbradica JS. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways. SCIENCE ADVANCES 2025; 11:eadq1047. [PMID: 40053580 PMCID: PMC11887814 DOI: 10.1126/sciadv.adq1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The loss of TBK1, or both TBK1 and the related kinase IKKε, results in uncontrolled cell death-driven inflammation. Here, we show that the pathway leading to cell death depends on the nature of the activating signal. Previous models suggest that in steady state, TBK1/IKKε-deficient cells die slowly and spontaneously predominantly by uncontrolled tumor necrosis factor-RIPK1-driven death. However, upon infection of cells that express the NLRP3 inflammasome, (e.g., macrophages), with pathogens that activate this pathway (e.g., Listeria monocytogenes), TBK1/IKKε-deficient cells die rapidly, prematurely, and exclusively by enhanced NLRP3-driven pyroptosis. Even infection with the RIPK1-activating pathogen, Yersinia pseudotuberculosis, results in enhanced RIPK1-caspase-8 activation and enhanced secondary NLRP3 activation. Mechanistically, TBK1/IKKε control endosomal traffic, and their loss disrupts endosomal homeostasis, thereby signaling cell stress. This results in premature NLRP3 activation even upon sensing "signal 2" alone, without the obligatory "signal 1." Collectively, TBK1/IKKε emerge as a central brake in limiting death-induced inflammation by both RIPK1 and NLRP3 death-inducing pathways.
Collapse
Affiliation(s)
- Fabian A. Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felicia Chan Hui Min
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kaiwen W. Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
22
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2025; 480:721-731. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
23
|
Lee MS, Kim JW, Park DG, Heo H, Kim J, Yoon JH, Chang J. Autophagic signatures in peripheral blood mononuclear cells from Parkinson's disease patients. Mol Cells 2025; 48:100173. [PMID: 39730076 PMCID: PMC11786884 DOI: 10.1016/j.mocell.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor impairments and the accumulation of misfolded α-synuclein. Dysregulation of the autophagy-lysosomal pathway (ALP), responsible for degrading misfolded proteins, has been implicated in PD pathogenesis. However, current diagnostic approaches rely heavily on motor symptoms, which occur due to substantial neurodegeneration, limiting early detection and intervention. This study investigated the potential of ALP-associated proteins in peripheral blood mononuclear cells (PBMCs) as diagnostic biomarkers for early-stage PD. Quantitative analysis revealed a significant reduction in optineurin levels in PBMCs from PD patients, and the expression levels of various ALP-associated proteins were tightly correlated, suggesting a coordinated dysregulation of the pathway. Correlation analyses revealed associations between ALP-associated features and clinical characteristics, such as age of onset and motor impairment. Furthermore, the study identified multiple positive correlations among ALP-associated proteins and functional readouts, highlighting the interconnectivity within the pathway. Notably, a PBMC biomarker model incorporating lysosomal-associated membrane protein 1 and optineurin exhibited high diagnostic accuracy (86%) in distinguishing PD patients from controls. These findings highlight the potential of ALP-associated protein signatures in PBMCs as novel diagnostic biomarkers for early detection and intervention in PD, offering insights into the systemic manifestations of the disease.
Collapse
Affiliation(s)
- Myung Shin Lee
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Whan Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Juyeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
25
|
He Y, Liu Y, Zheng M, Zou Y, Huang M, Wang L, Gao G, Zhou Z, Jin G. Targeting ATAD3A Phosphorylation Mediated by TBK1 Ameliorates Senescence-Associated Pathologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404109. [PMID: 39520088 PMCID: PMC11714148 DOI: 10.1002/advs.202404109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Targeting cellular senescence, one of the hallmarks of aging and aging-related pathologies emerges as an effective strategy for anti-aging and cancer chemotherapy. Here, a switch from TBK1-OPTN axis to TBK1-ATAD3A axis to promote cellular senescence is shown. Mechanically, TBK1 protein is abnormally activated and localized to the mitochondria during senescence, which directly phosphorylates ATAD3A at Ser321. Phosphorylated ATAD3A is significantly elevated in cellular senescence as well as in physiological and pathological aging and is essential for suppressing Pink1-mediated mitophagy by facilitating Pink1 mitochondrial import. Inhibition of ATAD3A phosphorylation at Ser321 by either TBK1 deficiency or by a Ser321A mutation rescues the cellular senescence. A blocking peptide, TAT-PEP, specifically abrogating ATAD3A phosphorylation, results in elevated cell death by preventing doxorubicin-induced senescence, thus leading to enhanced tumor sensitivity to chemotherapy. TAT-PEP treatment also ameliorates various phenotypes associated with physiological aging. Collectively, these results reveal the TBK1-ATAD3A-Pink1 axis as a driving force in cellular senescence and suggest a potential mitochondrial target for anti-aging therapy.
Collapse
Affiliation(s)
- Yujiao He
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanchen Liu
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Mingyue Zheng
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuxiu Zou
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Mujie Huang
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Linsheng Wang
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Ge Gao
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhongjun Zhou
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of Biomedical SciencesThe University of Hong KongHong KongChina
- Orthopedic CenterUniversity of Hong Kong‐Shenzhen HospitalNo.1, Haiyuan 1st Road, FutianShenzhen518053China
| | - Guoxiang Jin
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
26
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
28
|
Modica G, Tejeda-Valencia L, Sauvageau E, Yasa S, Maes J, Skorobogata O, Lefrancois S. Phosphorylation on serine 72 modulates Rab7A palmitoylation and retromer recruitment. J Cell Sci 2025; 138:jcs262177. [PMID: 39584231 PMCID: PMC11828465 DOI: 10.1242/jcs.262177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Rab7A has a key role in regulating membrane trafficking at late endosomes. By interacting with several different effectors, this small GTPase controls late endosome mobility, orchestrates fusion events between late endosomes and lysosomes, and participates in the formation of and regulates the fusion between autophagosomes and lysosomes. Rab7A is also responsible for the spatiotemporal recruitment of retromer, which is required for the endosome-to-trans-Golgi network retrieval of cargo receptors such as sortilin (SORT1) and CI-MPR (also known as IGF2R). Recently, several post-translational modifications have been shown to modulate Rab7A functions, including palmitoylation, ubiquitination and phosphorylation. Here, we show that phosphorylation of Rab7A at serine 72 is important to modulate its interaction with retromer, as the non-phosphorylatable Rab7AS72A mutant is not able to interact with and recruit retromer to late endosomes. We have previously shown that Rab7A palmitoylation is also required for efficient retromer recruitment. We found that palmitoylation of Rab7AS72A is reduced compared to that of the wild-type protein, suggesting an interplay between S72 phosphorylation and palmitoylation in regulating the Rab7A-retromer interaction. Finally, we identify NEK7 as a kinase required to phosphorylate Rab7A to promote retromer binding and recruitment.
Collapse
Affiliation(s)
- Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Laura Tejeda-Valencia
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Juliette Maes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Olga Skorobogata
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada
| |
Collapse
|
29
|
Zhao XY, Xu DE, Wu ML, Liu JC, Shi ZL, Ma QH. Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases. Neural Regen Res 2025; 20:6-20. [PMID: 38767472 PMCID: PMC11246128 DOI: 10.4103/nrr.nrr-d-23-00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
30
|
White J, Choi YB, Zhang J, Vo MT, He C, Shaikh K, Harhaj EW. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2025; 21:160-177. [PMID: 39193925 DOI: 10.1080/15548627.2024.2394306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chaoxia He
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
31
|
Hsiao YC, Chang CW, Yeh CT, Ke PY. Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation. Pathogens 2024; 13:1139. [PMID: 39770398 PMCID: PMC11680023 DOI: 10.3390/pathogens13121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy. However, the molecular mechanism by which HCV NS5A activates mitophagy remains largely unknown. Here, for the first time, we delineate the dynamic process of HCV NS5A-activated PINK1/Parkin-dependent mitophagy. By performing live-cell imaging and CLEM analyses of HCV NS5A-expressing cells, we demonstrate the degradation of mitochondria within autophagic vacuoles, a process that is dependent on Parkin and ubiquitin translocation onto mitochondria and PINK1 stabilization. In addition, the cargo receptors of mitophagy, NDP52 and OPTN, are recruited to the mitochondria and required for HCV NS5A-induced mitophagy. Moreover, ATG5 and DFCP1, which function in autophagosome closure and phagophore formation, are translocated near mitochondria for HCV NS5A-induced mitophagy. Furthermore, autophagy-initiating proteins, including ATG14 and ULK1, are recruited near the mitochondria for HCV NS5A-triggered mitophagy. Together, these findings demonstrate that HCV NS5A may induce PINK1/Parkin-dependent mitophagy through the recognition of mitochondria by cargo receptors and the nascent formation of phagophores close to mitochondria.
Collapse
Affiliation(s)
- Yuan-Chao Hsiao
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
| | - Chih-Wei Chang
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.H.); (C.-W.C.)
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
32
|
Weil R, Laplantine E, Attailia M, Oudin A, Curic S, Yokota A, Banide E, Génin P. Phosphorylation of Optineurin by protein kinase D regulates Parkin-dependent mitophagy. iScience 2024; 27:111384. [PMID: 39669425 PMCID: PMC11634986 DOI: 10.1016/j.isci.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Degradation of damaged mitochondria, a process called mitophagy, plays a role in mitochondrial quality control and its dysfunction has been linked to neurodegenerative pathologies. The PINK1 kinase and the ubiquitin ligase Parkin-mediated mitophagy represents the most common pathway in which specific receptors, including Optineurin (Optn), target ubiquitin-labeled mitochondria to autophagosomes. Here, we show that Protein Kinases D (PKD) are activated and recruited to damaged mitochondria. Subsequently, PKD phosphorylate Optn to promote a complex with Parkin leading to enhancement of its ubiquitin ligase activity. Paradoxically, inhibiting PKD activity enhances the interaction between Optn and LC3, promotes the recruitment of Parkin to mitochondria, and increases the mitophagic function of Optn. This enhancement of mitophagy is characterized by increased production of mitochondrial ROS and a reduction in mitochondrial mass. The PKD kinases may therefore regulate Optn-dependent mitophagy by amplifying the Parkin-mediated degradation signals to improve the cell response against oxidative stress damage.
Collapse
Affiliation(s)
- Robert Weil
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Sorbonne Université UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de Santé, 91 Boulevard de l’Hôpital, F-75013 Paris, France
| | - Emmanuel Laplantine
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Sorbonne Université UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de Santé, 91 Boulevard de l’Hôpital, F-75013 Paris, France
| | | | - Anne Oudin
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Sorbonne Université UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de Santé, 91 Boulevard de l’Hôpital, F-75013 Paris, France
| | - Shannel Curic
- Université Paris-Saclay, Faculté de Médecine, 91190 Gif-sur-Yvette, France
| | - Aya Yokota
- Sorbonne Université, Faculté des Sciences et Ingénierie, 75005 Paris, France
| | - Elie Banide
- Université Paris-Saclay, Faculté de Médecine, 91190 Gif-sur-Yvette, France
| | - Pierre Génin
- Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Sorbonne Université UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de Santé, 91 Boulevard de l’Hôpital, F-75013 Paris, France
| |
Collapse
|
33
|
Chin J, Abeydeera N, Repasy T, Rivera-Lugo R, Mitchell G, Nguyen VQ, Zheng W, Richards A, Swaney DL, Krogan NJ, Ernst JD, Cox JS, Budzik JM. Tax1bp1 enhances bacterial virulence and promotes inflammatory responses during Mycobacterium tuberculosis infection of alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628616. [PMID: 39763950 PMCID: PMC11702572 DOI: 10.1101/2024.12.16.628616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. Mycobacterium tuberculosis (Mtb) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during Mtb infection and the variation of the response in different macrophage subtypes remain obscure. Here, we show that the autophagy receptor Tax1bp1 plays a critical role in enhancing inflammatory cytokine production and increasing the susceptibility of mice to Mtb infection. Surprisingly, although Tax1bp1 restricts Mtb growth during infection of bone marrow-derived macrophages (BMDMs) (Budzik et al. 2020) and terminates cytokine production in response to cytokine stimulation or viral infection, Tax1bp1 instead promotes Mtb growth in AMs, neutrophils, and a subset of recruited monocyte-derived cells from the bone marrow. Tax1bp1 also leads to increases in bacterial growth and inflammatory responses during infection of mice with Listeria monocytogenes, an intracellular pathogen that is not effectively targeted to canonical autophagy. In Mtb-infected AMs but not BMDMs, Tax1bp1 enhances necrotic-like cell death early after infection, reprogramming the mode of host cell death to favor Mtb replication in AMs. Tax1bp1's impact on host cell death is a mechanism that explains Tax1bp1's cell type-specific role in the control of Mtb growth. Similar to Tax1bp1-deficiency in AMs, the expression of phosphosite-deficient Tax1bp1 restricts Mtb growth. Together, these results show that Tax1bp1 plays a crucial role in linking the regulation of autophagy, cell death, and pro-inflammatory host responses and enhancing susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Jeffrey Chin
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Abeydeera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Seattle Children's Hospital, Seattle, WA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Open Innovation at Global Health Disease Area for Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vinh Q Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Weihao Zheng
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joel D Ernst
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan M Budzik
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
34
|
Xiang Q, Wouters C, Chang P, Lu YN, Liu M, Wang H, Yang J, Pekosz A, Zhang Y, Wang J. Ubiquitin Ligase ITCH Regulates Life Cycle of SARS-CoV-2 Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.624804. [PMID: 39677672 PMCID: PMC11642887 DOI: 10.1101/2024.12.04.624804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
SARS-CoV-2 infection poses a major threat to public health, and understanding the mechanism of viral replication and virion release would help identify therapeutic targets and effective drugs for combating the virus. Herein, we identified E3 ubiquitin-protein ligase Itchy homolog (ITCH) as a central regulator of SARS-CoV-2 at multiple steps and processes. ITCH enhances the ubiquitination of viral envelope and membrane proteins and mutual interactions of structural proteins, thereby aiding in virion assembly. ITCH-mediated ubiquitination also enhances the interaction of viral proteins to the autophagosome receptor p62, promoting their autophagosome-dependent secretion. Additionally, ITCH disrupts the trafficking of the protease furin and the maturation of cathepsin L, thereby suppressing their activities in cleaving and destabilizing the viral spike protein. Furthermore, ITCH exhibits robust activation during the SARS-CoV-2 replication stage, and SARS-CoV-2 replication is significantly decreased by genetic or pharmacological inhibition of ITCH. These findings provide new insights into the mechanisms of the SARS-CoV-2 life cycle and identify a potential target for developing treatments for the virus-related diseases.
Collapse
Affiliation(s)
- Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Camille Wouters
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peixi Chang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Junqin Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
35
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
37
|
Bauer B, Idinger J, Schuschnig M, Ferrari L, Martens S. Recruitment of autophagy initiator TAX1BP1 advances aggrephagy from cargo collection to sequestration. EMBO J 2024; 43:5910-5940. [PMID: 39448883 PMCID: PMC11611905 DOI: 10.1038/s44318-024-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
Collapse
Affiliation(s)
- Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical, University of Vienna, A-1030, Vienna, Austria
| | - Jonas Idinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
38
|
Das D, Sharma M, Gahlot D, Nia SS, Gain C, Mecklenburg M, Zhou ZH, Bourdenx M, Thukral L, Martinez-Lopez N, Singh R. VPS4A is the selective receptor for lipophagy in mice and humans. Mol Cell 2024; 84:4436-4453.e8. [PMID: 39520981 PMCID: PMC11631789 DOI: 10.1016/j.molcel.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Lipophagy is a ubiquitous mechanism for degradation of lipid droplets (LDs) in lysosomes. Autophagy receptors selectively target organelles for lysosomal degradation. The selective receptor for lipophagy remains elusive. Using mouse liver phosphoproteomics and human liver transcriptomics, we identify vacuolar-protein-sorting-associated protein 4A (VPS4A), a member of a large family AAA+ ATPases, as a selective receptor for lipophagy. We show that phosphorylation of VPS4A on Ser95,97 and its localization to LDs in response to fasting drives lipophagy. Imaging/three-dimensional (3D) reconstruction and biochemical analyses reveal the concomitant degradation of VPS4A and LDs in lysosomes in an autophagy-gene-7-sensitive manner. Either silencing VPS4A or targeting VPS4AS95,S97 phosphorylation or VPS4A binding to LDs or LC3 blocks lipophagy without affecting other forms of selective autophagy. Finally, VPS4A levels and markers of lipophagy are markedly reduced in human steatotic livers-revealing a fundamental role of VPS4A as the lipophagy receptor in mice and humans.
Collapse
Affiliation(s)
- Debajyoti Das
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deepanshi Gahlot
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shervin S Nia
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chandrima Gain
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Mecklenburg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mathieu Bourdenx
- UK Dementia Research Institute, London, UK; UCL Queen Square Institute of Neurology, London, UK
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Nuria Martinez-Lopez
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajat Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
40
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
41
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
42
|
Adriaenssens E, Nguyen TN, Sawa-Makarska J, Khuu G, Schuschnig M, Shoebridge S, Skulsuppaisarn M, Watts EM, Csalyi KD, Padman BS, Lazarou M, Martens S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat Struct Mol Biol 2024; 31:1717-1731. [PMID: 38918639 PMCID: PMC11564117 DOI: 10.1038/s41594-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Thanh Ngoc Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Stephen Shoebridge
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Maria Watts
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kitti Dora Csalyi
- Max Perutz Labs BioOptics FACS Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus (VBC), Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
43
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
44
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
45
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
46
|
Fischer TD, Bunker EN, Zhu PP, Guerroué FL, Hadjian M, Dominguez-Martin E, Scavone F, Cohen R, Yao T, Wang Y, Werner A, Youle RJ. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NFκB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.14.562349. [PMID: 37873486 PMCID: PMC10592814 DOI: 10.1101/2023.10.14.562349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
STING activation by cyclic dinucleotides in mammals induces IRF3- and NFκB -mediated gene expression, and the lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NFκB activation mediated by STING remain unclear. We report that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub ubiquitin chains and reduces STING-induced NFκB and IRF3-mediated signaling in human monocytic THP1 cells and mouse bone marrow derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or the immune-related gene expression, however the recently reported function of STING to neutralize the pH of the Golgi may be involved. Thus, LUBAC synthesis of M1 ubiquitin chains mediates STING-induced innate immune signaling.
Collapse
Affiliation(s)
- Tara D. Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Eric N. Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Peng-Peng Zhu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - François Le Guerroué
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Mahan Hadjian
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Eunice Dominguez-Martin
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Robert Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Yan Wang
- Mass Spectrometry, National Institute of Dental and Craniofacial Research, National Institutes of Health; Bethesda, MD, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; Bethesda, MD, USA
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| |
Collapse
|
47
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
48
|
Otegui MS, Steelheart C, Ma W, Ma J, Kang BH, De Medina Hernandez VS, Dagdas Y, Gao C, Goto-Yamada S, Oikawa K, Nishimura M. Vacuolar degradation of plant organelles. THE PLANT CELL 2024; 36:3036-3056. [PMID: 38657116 PMCID: PMC11371181 DOI: 10.1093/plcell/koae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charlotte Steelheart
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juncai Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-348, Poland
| | - Kazusato Oikawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
49
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
50
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|