1
|
Sun J, Jin J, Xia J, Yu R, Zhang Y, Hou J, Gao C, Wang M. Integration of Phenotypic, Accumulative, Physiological-Biochemical, and Transcriptomic Analyses Reveals New Insights in Lettuce Response to Iodine: Enhancement or Toxic Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40230013 DOI: 10.1021/acs.jafc.4c10919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Iodine interferes with plant gene expression and affects plant growth, but the molecular mechanisms behind plant responses to iodine are not yet fully understood. In this study, lettuce (Lactuca sativa L.) was exposed to varying levels (0, 1, 5, 10, 50, and 100 μM) of iodine (NaI and NaIO3). The results indicate that NaI was more biologically effective than NaIO3. Low concentrations of iodine increased plant biomass, photosynthetic pigment content, and protein content while maintaining reactive oxygen species homeostasis by regulating antioxidant enzyme activities and antioxidant content. However, high concentrations of iodine caused toxic phenotypic symptoms and increased oxidative stress. Transcriptomic analysis showed that high concentration (50 μM) of NaI led to the downregulation of most genes related to photosynthetic metabolism, disrupting the electron transfer process and Calvin cycle of photosynthesis. Furthermore, iodine exposure activated plant hormone signaling. In conclusion, this study revealed the morpho-physiological, biochemical, and transcriptional response mechanisms of lettuce to iodine exposure.
Collapse
Affiliation(s)
- Jintao Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jinxia Xia
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Rui Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yue Zhang
- Tianjin Tianda Qiushi Electric Power High Technology Co., Ltd., Tianjin 300392, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chenyu Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengge Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
2
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 162:197-210. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
4
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
5
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
6
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
7
|
Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth. Commun Biol 2022; 5:727. [PMID: 35869258 PMCID: PMC9307576 DOI: 10.1038/s42003-022-03677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of the genus Synechococcus play a key role as primary producers and drivers of the global carbon cycle in temperate and tropical oceans. Synechococcus use phycobilisomes as photosynthetic light-harvesting antennas. These contain phycoerythrin, a pigment-protein complex specialized for absorption of blue light, which penetrates deep into open ocean water. As light declines with depth, Synechococcus photo-acclimate by increasing both the density of photosynthetic membranes and the size of the phycobilisomes. This is achieved with the addition of phycoerythrin units, as demonstrated in laboratory studies. In this study, we probed Synechococcus populations in an oligotrophic water column habitat at increasing depths. We observed morphological changes and indications for an increase in phycobilin content with increasing depth, in summer stratified Synechococcus populations. Such an increase in antenna size is expected to come at the expense of decreased energy transfer efficiency through the antenna, since energy has a longer distance to travel. However, using fluorescence lifetime depth profile measurement approach, which is applied here for the first time, we found that light-harvesting quantum efficiency increased with depth in stratified water column. Calculated phycobilisome fluorescence quantum yields were 3.5% at 70 m and 0.7% at 130 m. Under these conditions, where heat dissipation is expected to be constant, lower fluorescence yields correspond to higher photochemical yields. During winter-mixing conditions, Synechococcus present an intermediate state of light harvesting, suggesting an acclimation of cells to the average light regime through the mixing depth (quantum yield of ~2%). Given this photo-acclimation strategy, the primary productivity attributed to marine Synechococcus should be reconsidered. Probing the population of the cyanobacterium Synechococcus in an oligotrophic water column habitat at increasing depths reveals that light-harvesting quantum efficiency increases with depth.
Collapse
|
8
|
Nixon PJ, Telfer A. Remembering James Barber (1940-2020). PHOTOSYNTHESIS RESEARCH 2022; 153:1-20. [PMID: 35534741 PMCID: PMC9522743 DOI: 10.1007/s11120-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
James Barber, known to colleagues and friends as Jim, passed away in January 2020 after a long battle against cancer. During his long and distinguished career in photosynthesis research, Jim made many outstanding contributions with the pinnacle achieving his dream of determining the first detailed structure of the Mn cluster involved in photosynthetic water oxidation. Here, colleagues and friends remember Jim and reflect upon his scientific career and the impact he had on their lives and the scientific community.
Collapse
Affiliation(s)
- Peter J Nixon
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| | - Alison Telfer
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Feng L, Wang J, Mao M, Yang W, Adje MO, Xue Y, Zhou X, Zhang H, Luo J, Tang R, Tan L, Lin D, Zhang X, Zang Y, He Y, Chen C, Luan A, Lin W, Xu W, Li X, Sun L, Jiang F, Ma J. The highly continuous reference genome of a leaf-chimeric red pineapple (Ananas comosus var. bracteatus f. tricolor) provides insights into elaboration of leaf color. G3 (BETHESDA, MD.) 2022; 12:jkab452. [PMID: 35100332 PMCID: PMC8824783 DOI: 10.1093/g3journal/jkab452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ananas comosus var. bracteatus f. tricolor (GL1) is a red pineapple accession whose mostly green leaves with chimeric white leaf margins turn red in spring and autumn and during flowering. It is an important ornamental plant and ideal plant research model for anthocyanin metabolism, chimeric leaf development, and photosynthesis. Here, we generated a highly contiguous chromosome-scale genome assembly for GL1 and compared it with other 3 published pineapple assemblies (var. comosus accessions MD2 and F153, and var. bracteatus accession CB5). The GL1 assembly has a total size of ∼461 Mb, with a contig N50 of ∼2.97 Mb and Benchmarking Universal Single-Copy Ortholog score of 97.3%. More than 99% of the contigs are anchored to 25 pseudochromosomes. Compared with the other 3 published pineapple assemblies, the GL1 assembly was confirmed to be more continuous. Our evolutionary analysis showed that the Bromeliaceae and Poaceae diverged from their nearest common ancestor ∼82.36 million years ago (MYA). Population structure analysis showed that while GL1 has not undergone admixture, bracteatus accession CB5 has resulted from admixture of 3 species of Ananas. Through classification of orthogroups, analysis of genes under positive selection, and analysis of presence/absence variants, we identified a series of genes related to anthocyanin metabolism and development of chimeric leaves. The structure and evolution of these genes were compared among the published pineapple assemblies with reveal candidate genes for these traits. The GL1 genome assembly and its comparisons with other 3 pineapple genome assemblies provide a valuable resource for the genetic improvement of pineapple and serve as a model for understanding the genomic basis of important traits in different pineapple varieties and other pan-cereal crops.
Collapse
Affiliation(s)
- Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juntao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mark Owusu Adje
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuzixin Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruimin Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Tan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongpu Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaopeng Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yaoqiang Zang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Wenqiu Lin
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524000, China
| | - Wentian Xu
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524000, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
10
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
11
|
Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Commun Biol 2020; 3:232. [PMID: 32393811 PMCID: PMC7214436 DOI: 10.1038/s42003-020-0949-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Iron-stress induced protein A (IsiA) is a chlorophyll-binding membrane-spanning protein in photosynthetic prokaryote cyanobacteria, and is associated with photosystem I (PSI) trimer cores, but its structural and functional significance in light harvesting remains unclear. Here we report a 2.7-Å resolution cryo-electron microscopic structure of a supercomplex between PSI core trimer and IsiA from a thermophilic cyanobacterium Thermosynechococcus vulcanus. The structure showed that 18 IsiA subunits form a closed ring surrounding a PSI trimer core. Detailed arrangement of pigments within the supercomplex, as well as molecular interactions between PSI and IsiA and among IsiAs, were resolved. Time-resolved fluorescence spectra of the PSI–IsiA supercomplex showed clear excitation-energy transfer from IsiA to PSI, strongly indicating that IsiA functions as an energy donor, but not an energy quencher, in the supercomplex. These structural and spectroscopic findings provide important insights into the excitation-energy-transfer and subunit assembly mechanisms in the PSI–IsiA supercomplex. Akita et al. present the latest approach to solve IsiA–PSI supercomplex molecular structure with increased resolution using cryo-EM and time-resolved fluorescence studies. With 2.7 Å resolution, they reveal molecular interactions between PSI and IsiA subunits and that IsiA functions as an energy donor in the supercomplex.
Collapse
|
12
|
Barrera-Rojas J, de la Vara LG, Ríos-Castro E, Leyva-Castillo LE, Gómez-Lojero C. The distribution of divinyl chlorophylls a and b and the presence of ferredoxin-NADP + reductase in Prochlorococcus marinus MIT9313 thylakoid membranes. Heliyon 2018; 4:e01100. [PMID: 30627680 PMCID: PMC6312871 DOI: 10.1016/j.heliyon.2018.e01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
The marine unicellular green cyanobacterium Prochlorococcus marinus MIT9313 belongs to the most abundant and photosynthetically productive genus of cyanobacteria in the oceans. This monophyletic genus use divinyl chlorophyll a (Chl a 2 ) and b (Chl b 2 ) to build the photosystems and the membrane-intrinsic Pcb-type antennae. We used the mild detergent n-dodecyl β D-maltopyranoside to solubilize the thylakoid membranes. Gel electrophoresis and sucrose gradient ultracentrifugation was then used to separate the complexes of the photosynthetic apparatus. The proteins and the pigments were identified by mass spectrometry. Protein complexes were characterized biochemically, and the distribution of Chl a 2 and Chl b 2 was determined. The photosynthetic apparatus was shown as supercomplexes formed by Photosystem II dimers with up to eight PcbB proteins; Photosystem I was present as trimers. A heterogeneous distribution of pigments was shown using sucrose gradient-enriched fractions with ratios of [Chl b 2 ]/[Chl a 2 ] of 2.16 ± 0.13, 1.86 ± 0.08, and 2.61 ± 0.07, for Photosystem I, Photosystem II, and PcbB, respectively. These ratios of Chl b/a are without precedent in organisms with oxygenic photosynthesis. Diaphorase activity was measured in the fractions of the sucrose gradient. Gel electrophoresis, immunodetection, and mass spectrometry were used to conclude that the commonly soluble protein ferredoxin-NADP+ reductase (FNR) is a membrane-anchored protein (probably associated to cytochrome b 6 f complex) in the low-light adapted Prochlorococcus marinus MIT9313.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| | | | | | | | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| |
Collapse
|
13
|
Hamada F, Murakami A, Akimoto S. Adaptation of Divinyl Chlorophyll a/b-Containing Cyanobacterium to Different Light Conditions: Three Strains of Prochlorococcus marinus. J Phys Chem B 2017; 121:9081-9090. [DOI: 10.1021/acs.jpcb.7b04835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumiya Hamada
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
| | - Akio Murakami
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji 656-2401, Japan
| | - Seiji Akimoto
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
15
|
Shen G, Gan F, Bryant DA. The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. PHOTOSYNTHESIS RESEARCH 2016; 128:325-340. [PMID: 27071628 DOI: 10.1007/s11120-016-0257-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC-MS-MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
16
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
17
|
Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Klimant I, Larkum AWD. Microenvironmental Ecology of the Chlorophyll b-Containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella. Front Microbiol 2012; 3:402. [PMID: 23226144 PMCID: PMC3510431 DOI: 10.3389/fmicb.2012.00402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 11/13/2022] Open
Abstract
The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl) b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7-25 μm) unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub-) tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O(2) and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few minutes of darkness, while the same zone exhibited O(2) super-saturation and strongly alkaline pH after a few minutes of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella.
Collapse
Affiliation(s)
- Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological UniversitySingapore
| | - Lars Behrendt
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, University of CopenhagenCopenhagen, Denmark
| | - Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität WürzburgWürzburg, Germany
| | - Sergey M. Borisov
- Department of Analytical and Food Chemistry, Technical University of GrazGraz, Austria
| | - Ingo Klimant
- Department of Analytical and Food Chemistry, Technical University of GrazGraz, Austria
| | - Anthony W. D. Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
18
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
19
|
Hamada F, Yokono M, Hirose E, Murakami A, Akimoto S. Excitation energy relaxation in a symbiotic cyanobacterium, Prochloron didemni, occurring in coral-reef ascidians, and in a free-living cyanobacterium, Prochlorothrix hollandica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1992-7. [DOI: 10.1016/j.bbabio.2012.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/09/2012] [Accepted: 06/14/2012] [Indexed: 11/30/2022]
|
20
|
Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 2012; 22:867-907. [PMID: 22989289 DOI: 10.1111/mec.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023]
Abstract
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC-Université Paris 06, Station Biologique de Roscoff, Roscoff, France.
| | | | | | | | | |
Collapse
|
21
|
Pinevich A, Velichko N, Ivanikova N. Cyanobacteria of the genus prochlorothrix. Front Microbiol 2012; 3:173. [PMID: 22783229 PMCID: PMC3390582 DOI: 10.3389/fmicb.2012.00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/19/2012] [Indexed: 11/22/2022] Open
Abstract
Green cyanobacteria differ from the blue-green cyanobacteria by the possession of a chlorophyll-containing light-harvesting antenna. Three genera of the green cyanobacteria namely Acaryochloris, Prochlorococcus, and Prochloron are unicellular and inhabit marine environments. Prochlorococcus marinus attracts most attention due to its prominent role in marine primary productivity. The fourth genus Prochlorothrix is represented by the filamentous freshwater strains. Unlike the other green cyanobacteria, Prochlorothrix strains are remarkably rare: to date, living isolates have been limited to two European locations. Taking into account fluctuating blooms, morphological resemblance to Planktothrix and Pseudanabaena, and unsuccessful attempts to obtain enrichments of Prochlorothrix, the most successful strategy to search for this cyanobacterium involves PCR with environmental DNA and Prochlorothrix-specific primers. This approach has revealed a broader distribution of Prochlorothrix. Marker genes have been found in at least two additional locations. Despite of the growing evidence for naturally occurring Prochlorothrix, there are only a few cultured strains with one of them (PCC 9006) being claimed to be axenic. In multixenic cultures, Prochlorothrix is accompanied by heterotrophic bacteria indicating a consortium-type association. The genus Prochlorothrix includes two species: P. hollandica and P. scandica based on distinctions in genomic DNA, cell size, temperature optimum, and fatty acid composition of membrane lipids. In this short review the properties of cyanobacteria of the genus Prochlorothrix are described. In addition, the evolutionary scenario for green cyanobacteria is suggested taking into account their possible role in the origin of simple chloroplast.
Collapse
Affiliation(s)
- Alexander Pinevich
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| | - Natalia Velichko
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| | - Natalia Ivanikova
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| |
Collapse
|
22
|
Schmidt EW, Donia MS, McIntosh JA, Fricke WF, Ravel J. Origin and variation of tunicate secondary metabolites. JOURNAL OF NATURAL PRODUCTS 2012; 75:295-304. [PMID: 22233390 PMCID: PMC3288725 DOI: 10.1021/np200665k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ascidians (tunicates) are rich sources of structurally elegant, pharmaceutically potent secondary metabolites and, more recently, potential biofuels. It has been demonstrated that some of these compounds are made by symbiotic bacteria and not by the animals themselves, and for a few other compounds evidence exists supporting a symbiotic origin. In didemnid ascidians, compounds are highly variable even in apparently identical animals. Recently, we have explained this variation at the genomic and metagenomic levels and have applied the basic scientific findings to drug discovery and development. This review discusses what is currently known about the origin and variation of symbiotically derived metabolites in ascidians, focusing on the family Didemnidae, where most research has occurred. Applications of our basic studies are also described.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | |
Collapse
|
23
|
Kargul J, Barber J. Structure and Function of Photosynthetic Reaction Centres. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extensive biochemical, biophysical, molecular biological and structural studies on a wide range of prokaryotic and eukaryotic photosynthetic organisms has revealed common features of their reaction centres where light induced charge separation and stabilization occurs. There is little doubt that all reaction centres have evolved from a common ancestor and have been optimized to maximum efficiency. As such they provide principles that can be used as a blueprint for developing artificial photo-electrochemical catalytic systems to generate solar fuels. This chapter summarises the common features of the organization of cofactors, electron transfer pathways and protein environments of reaction centres of anoxygenic and oxygenic phototrophs. In particular, the latest molecular details derived from X-ray crystallography are discussed in context of the specific catalytic functions of the Type I and Type II reaction centres.
Collapse
Affiliation(s)
- Joanna Kargul
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
24
|
|
25
|
Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem 2011; 12:518-31. [PMID: 21344591 PMCID: PMC3098534 DOI: 10.1002/cphc.201000944] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 11/08/2022]
Abstract
Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Durchan M, Herbstová M, Fuciman M, Gardian Z, Vácha F, Polívka T. Carotenoids in energy transfer and quenching processes in Pcb and Pcb-PS I complexes from Prochlorothrix hollandica. J Phys Chem B 2010; 114:9275-82. [PMID: 20583762 DOI: 10.1021/jp1026724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorophyll (Chl) a/b-binding proteins from Prochlorothrix hollandica known as Pcb antennae were studied by femtosecond transient absorption technique to identify energy transfer rates and pathways in Pcb and Pcb-PS I complexes. Carotenoids transfer energy to Chl with low efficiency of approximately 25% in Pcb complexes. Interestingly, analysis of transient absorption spectra identified a pathway from the hot S(1) state of zeaxanthin and/or beta-carotene as the major energy transfer channel between carotenoids and chlorophylls in Pcb whereas the S(2) state contributes only marginally to energy transfer. Due to energetic reasons, no energy transfer is possible via the relaxed S(1) state of carotenoids. The low overall energy transfer efficiency of carotenoids recognizes chlorophylls as the main light-harvesting pigments. Besides Chl a, presence of Chl b, which transfers energy to Chl a with nearly 100% efficiency, significantly broadens the spectral range accessible for light-harvesting and improves cross section of Pcb complexes. The major role of carotenoids in Pcb is photoprotection.
Collapse
Affiliation(s)
- Milan Durchan
- Institute of Physical Biology, University of South Bohemia, 373 33 Nové Hrady, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Herbstová M, Litvín R, Gardian Z, Komenda J, Vácha F. Localization of Pcb antenna complexes in the photosynthetic prokaryote Prochlorothrix hollandica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:89-97. [DOI: 10.1016/j.bbabio.2009.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/01/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022]
|
28
|
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 2009; 73:249-99. [PMID: 19487728 PMCID: PMC2698417 DOI: 10.1128/mmbr.00035-08] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45 degrees N to 40 degrees S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
Collapse
Affiliation(s)
- D J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
30
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Kereïche S, Kouřil R, Oostergetel GT, Fusetti F, Boekema EJ, Doust AB, van der Weij-de Wit CD, Dekker JP. Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1122-8. [DOI: 10.1016/j.bbabio.2008.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/10/2008] [Accepted: 04/22/2008] [Indexed: 11/25/2022]
|
32
|
Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 2008; 9:R90. [PMID: 18507822 PMCID: PMC2441476 DOI: 10.1186/gb-2008-9-5-r90] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/17/2008] [Accepted: 05/28/2008] [Indexed: 12/20/2022] Open
Abstract
Local niche occupancy of marine Synechococcus lineages is facilitated by lateral gene transfers. Genomic islands act as repositories for these transferred genes. Background The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group. Results Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance. Conclusion We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data.
Collapse
Affiliation(s)
- Alexis Dufresne
- Université Paris 6 and CNRS, UMR 7144, Station Biologique, 29682 Roscoff, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci U S A 2008; 105:2005-10. [PMID: 18252824 DOI: 10.1073/pnas.0709772105] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acaryochloris marina is a unique cyanobacterium that is able to produce chlorophyll d as its primary photosynthetic pigment and thus efficiently use far-red light for photosynthesis. Acaryochloris species have been isolated from marine environments in association with other oxygenic phototrophs, which may have driven the niche-filling introduction of chlorophyll d. To investigate these unique adaptations, we have sequenced the complete genome of A. marina. The DNA content of A. marina is composed of 8.3 million base pairs, which is among the largest bacterial genomes sequenced thus far. This large array of genomic data is distributed into nine single-copy plasmids that code for >25% of the putative ORFs. Heavy duplication of genes related to DNA repair and recombination (primarily recA) and transposable elements could account for genetic mobility and genome expansion. We discuss points of interest for the biosynthesis of the unusual pigments chlorophyll d and alpha-carotene and genes responsible for previously studied phycobilin aggregates. Our analysis also reveals that A. marina carries a unique complement of genes for these phycobiliproteins in relation to those coding for antenna proteins related to those in Prochlorococcus species. The global replacement of major photosynthetic pigments appears to have incurred only minimal specializations in reaction center proteins to accommodate these alternate pigments. These features clearly show that the genus Acaryochloris is a fitting candidate for understanding genome expansion, gene acquisition, ecological adaptation, and photosystem modification in the cyanobacteria.
Collapse
|
34
|
Chen M, Zhang Y, Blankenship RE. Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. PHOTOSYNTHESIS RESEARCH 2008; 95:147-54. [PMID: 17912604 DOI: 10.1007/s11120-007-9255-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
35
|
Boichenko VA, Pinevich AV, Stadnichuk IN. Association of chlorophyll a/b-binding Pcb proteins with photosystems I and II in Prochlorothrix hollandica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:801-6. [PMID: 17174934 DOI: 10.1016/j.bbabio.2006.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/25/2006] [Accepted: 11/01/2006] [Indexed: 11/28/2022]
Abstract
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H(2) photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192+/-28 and 139+/-15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with approximately 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.
Collapse
Affiliation(s)
- Vladimir A Boichenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia.
| | | | | |
Collapse
|
36
|
Zhang Y, Chen M, Zhou BB, Jermiin LS, Larkum AWD. Evolution of the Inner Light-Harvesting Antenna Protein Family of Cyanobacteria, Algae, and Plants. J Mol Evol 2007; 64:321-31. [PMID: 17273917 DOI: 10.1007/s00239-006-0058-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Two hypotheses account for the evolution of the inner antenna light-harvesting proteins of oxygenic photosynthesis in cyanobacteria, algae, and plants: one in which the CP43 protein of photosytem II gave rise to the extrinsic CP43-like antennas of cyanobacteria (i.e. IsiA and Pcb proteins), as a late development, and the other in which CP43 and CP43-like proteins derive from an ancestral protein. In order to determine which of these hypotheses is most likely, we analyzed the family of antenna proteins by a variety of phylogenetic techniques, using alignments of the six common membrane-spanning helices, constructed using information on the antenna proteins' three-dimensional structure, and surveyed for evidence of factors that might confound inference of a correct phylogeny. The first hypothesis was strongly supported. As a consequence, we conclude that the ancestral photosynthetic apparatus, with 11 membrane-spanning helices, split at an early stage during evolution to form, on the one hand, the reaction center of photosystem II and, on the other hand, the ancestor of inner antenna proteins, CP43 (PsbC) and CP47 (PsbB). Only much later in evolution did the CP43 lineage give rise to the CP43' proteins (IsiA and Pcb) of cyanobacteria.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Biological Sciences, Heydon-Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
37
|
Cullen M, Ray N, Husain S, Nugent J, Nield J, Purton S. A highly active histidine-tagged Chlamydomonas reinhardtii Photosystem II preparation for structural and biophysical analysis. Photochem Photobiol Sci 2007; 6:1177-83. [DOI: 10.1039/b708611n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Sener MK, Park S, Lu D, Damjanovic A, Ritz T, Fromme P, Schulten K. Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys 2006; 120:11183-95. [PMID: 15268148 DOI: 10.1063/1.1739400] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A structure-based description of excitation migration in multireaction center light harvesting systems is introduced. The description is an extension of the sojourn expansion, which decomposes excitation migration in terms of repeated detrapping and recapture events. The approach is applied to light harvesting in the trimeric form of cyanobacterial photosystem I (PSI). Excitation is found to be shared between PSI monomers and the chlorophylls providing the strongest respective links are identified. Excitation sharing is investigated by computing cross-monomer excitation trapping probabilities. It is seen that on the average there is a nearly 40% chance of excitation cross transfer and trapping, indicating efficient coupling between monomers. The robustness and optimality of the chlorophyll network of trimeric PSI is examined.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Murray JW, Duncan J, Barber J. CP43-like chlorophyll binding proteins: structural and evolutionary implications. TRENDS IN PLANT SCIENCE 2006; 11:152-8. [PMID: 16473546 DOI: 10.1016/j.tplants.2006.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/22/2005] [Accepted: 01/30/2006] [Indexed: 05/06/2023]
Abstract
CP43, encoded by the psbC gene, is a chlorophyll (Chl)-binding protein of Photosystem II (PSII), the water-splitting and oxygen-evolving enzyme of photosynthesis. CP47, encoded by psbB, a Chl-binding protein of PSII, is closely related to CP43. The Chl-binding six transmembrane helical unit typified by CP43, is also structurally related to the N-terminal domains of the PsaA and PsaB proteins of Photosystem I (PSI) as well as to the family of light-harvesting proteins encoded by cyanobacterial isiA genes and prochlorophyte pcb genes. Here we use recent structural information derived for PSII and PSI to review similarities and differences between the various members of the CP43-like class of light-harvesting proteins, exploring both functional and evolutionary implications.
Collapse
Affiliation(s)
- James W Murray
- Division of Molecular Biosciences, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | | | | |
Collapse
|
40
|
Noy D, Moser CC, Dutton PL. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:90-105. [PMID: 16457774 DOI: 10.1016/j.bbabio.2005.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/20/2022]
Abstract
Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.
Collapse
Affiliation(s)
- Dror Noy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
41
|
Chen M, Bibby TS. Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. PHOTOSYNTHESIS RESEARCH 2005; 86:165-73. [PMID: 16172936 DOI: 10.1007/s11120-005-1330-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 01/27/2005] [Indexed: 05/04/2023]
Abstract
In this Review we give an overview of the structure and function of the membrane-bound photosynthetic antenna reaction centre complexes present in oxyphotobacteria. We summarise how variations in the organisation of these complexes have enabled oxyphotobacteria to exploit different ecological niches and discuss the evolutionary relationships of the IsiA/Pcb family of pigment-binding proteins.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia. minchen@bio. usyd.edu.au
| | | |
Collapse
|
42
|
Vacha F, Bumba L, Kaftan D, Vacha M. Microscopy and single molecule detection in photosynthesis. Micron 2005; 36:483-502. [PMID: 15951188 DOI: 10.1016/j.micron.2005.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/18/2005] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
Progress in various fields of microscopy techniques brought up enormous possibilities to study the photosynthesis down to the level of individual pigment-protein complexes. The aim of this review is to present recent developments in the photosynthesis research obtained using such highly advanced techniques. Three areas of microscopy techniques covering optical microscopy, electron microscopy and scanning probe microscopy are reviewed. Whereas the electron microscopy and scanning probe microscopy are used in photosynthesis mainly for structural studies of photosynthetic pigment-protein complexes, the optical microscopy is used also for functional studies.
Collapse
Affiliation(s)
- Frantisek Vacha
- Institute of Physical Biology, University of South Bohemia, Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
43
|
Chen M, Bibby TS, Nield J, Larkum A, Barber J. Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:367-74. [PMID: 15975547 DOI: 10.1016/j.bbabio.2005.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/10/2005] [Accepted: 05/16/2005] [Indexed: 11/26/2022]
Abstract
The prochlorophyte-like cyanobacterium Acaryochloris marina contains two pcb genes, pcbA and pcbC, which encode chlorophyll (Chl) d-binding antenna proteins PcbA and PcbC, respectively. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), it is shown that when Acaryochloris cells are grown in an iron-deficient medium, the transcription of the pcbC gene is up-regulated compared to that of pcbA. Biochemical and immunological analyses indicated that under the same iron-deficient conditions, the level of Photosystem I (PSI) decreased compared with that of Photosystem II (PSII). Electron microscopy revealed that concomitant with these changes was the formation of Pcb-PSI supercomplexes which, in their largest form, were composed of 18 Pcb subunits forming a ring around the trimeric PSI reaction centre core. Mass spectrometry indicated that the PcbC protein is the main constituent of this outer PSI antenna system. It is therefore concluded that in Acaryochloris, the PcbC protein forms an antenna for PSI when iron levels become limiting and in this way compensates for the drop in the level of PSI relative to PSII which occurs under these conditions.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
44
|
Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R, Schulten K. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J 2005; 89:1630-42. [PMID: 15994896 PMCID: PMC1366667 DOI: 10.1529/biophysj.105.066464] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of approximately 49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering.
Collapse
Affiliation(s)
- Melih K Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bumba L, Prasil O, Vacha F. Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:1-5. [PMID: 15949978 DOI: 10.1016/j.bbabio.2005.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/07/2005] [Accepted: 02/22/2005] [Indexed: 11/18/2022]
Abstract
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called "prochlorophytes") that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Plant Molecular Biology, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
46
|
Kouril R, Yeremenko N, D'Haene S, Oostergetel GT, Matthijs HCP, Dekker JP, Boekema EJ. Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:262-6. [PMID: 15694354 DOI: 10.1016/j.bbabio.2004.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
The cyanobacterium Synechocystis PCC 6803 grown under short-term iron-deficient conditions assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 IsiA complexes. Furthermore, it has been shown that single or double rings of IsiA with up to 35 copies in total can surround monomeric PSI. Here we present an analysis by electron microscopy and image analysis of the various PSI-IsiA supercomplexes from a Synechocystis PCC 6803 mutant lacking the PsaL subunit after short- and long-term iron-deficient growth. In the absence of PsaL, the tendency to form complexes with IsiA is still strong, but the average number of complete rings is lower than in the wild type. The majority of IsiA copies binds into partial double rings at the side of PsaF/J subunits rather than in complete single or double rings, which also cover the PsaL side of the PSI monomer. This indicates that PsaL facilitates the formation of IsiA rings around PSI monomers but is not an obligatory structural component in the formation of PSI-IsiA complexes.
Collapse
Affiliation(s)
- Roman Kouril
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:12-39. [PMID: 15620363 DOI: 10.1016/j.bbabio.2004.09.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/10/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.
Collapse
Affiliation(s)
- Jan P Dekker
- Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
| | | |
Collapse
|
48
|
Chen M, Bibby TS, Nield J, Larkum AWD, Barber J. Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 2005; 579:1306-10. [PMID: 15710430 DOI: 10.1016/j.febslet.2005.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
Acaryochloris marina is a prochlorophyte-like cyanobacterium containing both phycobilins and chlorophyll d as light harvesting pigments. We show that the chlorophyll d light harvesting system, composed of Pcb proteins, functionally associates with the photosystem II (PSII) reaction center (RC) core to form a giant supercomplex. This supercomplex has a molecular mass of about 2300 kDa and dimensions of 385 A x 240 A. It is composed of two PSII-RC core dimers arranged end-to-end, flanked by eight symmetrically related Pcb proteins on each side. Thus each PSII-RC monomer has four Pcb subunits acting as a light harvesting system which increases the absorption cross section of the PSII-RC core by almost 200%.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
49
|
Cadoret JC, Demoulière R, Lavaud J, van Gorkom HJ, Houmard J, Etienne AL. Dissipation of excess energy triggered by blue light in cyanobacteria with CP43' (isiA). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:100-4. [PMID: 15511532 DOI: 10.1016/j.bbabio.2004.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/03/2004] [Accepted: 08/05/2004] [Indexed: 11/19/2022]
Abstract
The chlorophyll-protein CP43' (isiA gene) induced by stress conditions in cyanobacteria is shown to serve as an antenna for Photosystem II (PSII), in addition to its known role as an antenna for Photosystem I (PSI). At high light intensity, this antenna is converted to an efficient trap for chlorophyll excitations that protects system II from photo-inhibition. In contrast to the 'energy-dependent non-photochemical quenching' (NPQ) in chloroplasts, this photoprotective energy dissipation in cyanobacteria is triggered by blue light. The induction is proportional to light intensity. Induction and decay of the quenching exhibit the same large temperature-dependence.
Collapse
Affiliation(s)
- Jean-Charles Cadoret
- Organismes Photosynthétiques et Environnement, FRE 2433 CNRS, Département de Biologie, ENS, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
50
|
Vasil'ev S, Bruce D. Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I. THE PLANT CELL 2004; 16:3059-68. [PMID: 15486105 PMCID: PMC527198 DOI: 10.1105/tpc.104.024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 08/26/2004] [Indexed: 05/19/2023]
Abstract
The efficiency of oxygenic photosynthesis depends on the presence of core antenna chlorophyll closely associated with the photochemical reaction centers of both photosystem II (PSII) and photosystem I (PSI). Although the number and overall arrangement of these chlorophylls in PSII and PSI differ, structural comparison reveals a cluster of 26 conserved chlorophylls in nearly identical positions and orientations. To explore the role of these conserved chlorophylls within PSII and PSI we studied the influence of their orientation on the efficiency of photochemistry in computer simulations. We found that the native orientations of the conserved chlorophylls were not optimal for light harvesting in either photosystem. However, PSII and PSI each contain two highly orientationally optimized antenna chlorophylls, located close to their respective reaction centers, in positions unique to each photosystem. In both photosystems the orientation of these optimized bridging chlorophylls had a much larger impact on photochemical efficiency than the orientation of any of the conserved chlorophylls. The differential optimization of antenna chlorophyll is discussed in the context of competing selection pressures for the evolution of light harvesting in photosynthesis.
Collapse
Affiliation(s)
- Sergej Vasil'ev
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| | | |
Collapse
|