1
|
Hui W, Wu H, Zheng H, Wang K, Yang T, Fan J, Wu J, Wang J, Al Mutairi AA, Yang H, Yang C, Cui B, Loake GJ, Gong W. Genome-wide characterization of RR gene family members in Zanthoxylum armatum and the subsequent functional characterization of the C-type RR. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108943. [PMID: 39032447 DOI: 10.1016/j.plaphy.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Response Regulators (RRs) are crucial regulators in plant development and stress responses, comprising A-type, B-type, C-type, and pseudo-RR subfamilies. However, previous studies have often focused on specific subfamilies, which restricts our understanding of the complete RR gene family. In this study, we conducted a comprehensive analysis of 63 RR members from Zanthoxylum armatum, using phylogenetic relationships, motif composition, cis-acting elements, gene duplication and collinearity analyses. Segmental repeats among ZaRR genes enhanced the various environmental adaptabilities of Z. armatum, and the B-type ZaRR exhibited significant collinearity with the RRs in P. trichocarpa and C. sinensis. Cis-element analysis indicated ZaRRs play a significant role in abiotic stress and phytohormone pathways, particularly in light, drought, cold, abscisic acid (ABA) and salicylic acid (SA) responses. Abundant Ethylene Response Factor (ERF) and reproduction-associated binding sites in ZaRR promoters suggested their roles in stress and reproductive processes. A-type ZaRRs were implicated in plant vegetative and reproductive growth, whereas B-type ZaRRs contributed to both growth and stress responses. C-type ZaRRs were associated with plant reproductive growth, whereas pseudo-RRs may function in plant stress responses, such as water logging, cold, and response to ethylene (ETH), SA, and jasmonic acid (JA). Ectopic expression of ZaRR24, a C-type RR, inhibits growth, induces early flowering, and shortens fruit length in Arabidopsis. ZaRR24 overexpression also affected the expression of A- and B-type RRs, as well as floral meristem and organ identity genes. These findings establish a solid and comprehensive foundation for RR gene research in Z. armatum, and provide a platform for investigating signal transduction in other woody plants.
Collapse
Affiliation(s)
- Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiangtao Fan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ahmed A Al Mutairi
- Biology Department, College of Science, Jouf University, Sakaka, 41412, Saudi Arabia
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunlin Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Zhang Y, Xia G, Sheng L, Chen M, Hu C, Ye Y, Yue X, Chen S, OuYang W, Xia Z. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. PLANT CELL REPORTS 2022; 41:2125-2138. [PMID: 35922498 DOI: 10.1007/s00299-022-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses. Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China.
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Li Sheng
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Mingjue Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Chenyang Hu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Yule Ye
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Xiaoyan Yue
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Shaocong Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Wenwu OuYang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhenkai Xia
- China Medical University -The Queen's University of Belfast Joint College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Genome-Wide Analysis of the Type-B Authentic Response Regulator Gene Family in Brassica napus. Genes (Basel) 2022; 13:genes13081449. [PMID: 36011360 PMCID: PMC9408017 DOI: 10.3390/genes13081449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The type-B authentic response regulators (type-B ARRs) are positive regulators of cytokinin signaling and involved in plant growth and stress responses. In this study, we used bioinformatics, RNA-seq, and qPCR to study the phylogenetic and expression pattern of 35 type-B ARRs in Brassica napus. The BnARRs experienced gene expansion and loss during genome polyploidization and were classified into seven groups. Whole-genome duplication (WGD) and segmental duplication were the main forces driving type-B ARR expansion in B. napus. Several BnARRs with specific expression patterns during rapeseed development were identified, including BnARR12/14/18/23/33. Moreover, we found the type-B BnARRs were involved in rapeseed development and stress responses, through participating in cytokinin and ABA signaling pathways. This study revealed the origin, evolutionary history, and expression pattern of type-B ARRs in B. napus and will be helpful to the functional characterization of BnARRs.
Collapse
|
4
|
Timilsina R, Kim Y, Park S, Park H, Park SJ, Kim JH, Park JH, Kim D, Park YI, Hwang D, Lee JC, Woo HR. ORESARA 15, a PLATZ transcription factor, controls root meristem size through auxin and cytokinin signalling-related pathways. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2511-2524. [PMID: 35139177 DOI: 10.1093/jxb/erac050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An optimal size of post-embryonic root apical meristem (RAM) is achieved by a balance between cell division and differentiation. Despite extensive research, molecular mechanisms underlying the coordination of cell division and differentiation are still fragmentary. Here, we report that ORESARA 15 (ORE15), an Arabidopsis PLANT A/T-RICH SEQUENCE-AND ZINC-BINDING PROTEIN (PLATZ) transcription factor preferentially expressed in the RAM, determines RAM size. Primary root length, RAM size, cell division rate, and stem cell niche activity were reduced in an ore15 loss-of-function mutant but enhanced in an activation-tagged line overexpressing ORE15, compared with wild type. ORE15 forms mutually positive and negative feedback loops with auxin and cytokinin signalling, respectively. Collectively, our findings imply that ORE15 controls RAM size by mediating the antagonistic interaction between auxin and cytokinin signalling-related pathways.
Collapse
Affiliation(s)
- Rupak Timilsina
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Yongmin Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sung-Jin Park
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Ji-Hwan Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doa Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
5
|
Acheampong AK, Shanks C, Cheng CY, Schaller GE, Dagdas Y, Kieber JJ. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc Natl Acad Sci U S A 2020; 117:27034-27043. [PMID: 33051300 PMCID: PMC7604425 DOI: 10.1073/pnas.2013161117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phytohormone cytokinin influences many aspects of plant growth and development, several of which also involve the cellular process of autophagy, including leaf senescence, nutrient remobilization, and developmental transitions. The Arabidopsis type-A response regulators (type-A ARR) are negative regulators of cytokinin signaling that are transcriptionally induced in response to cytokinin. Here, we describe a mechanistic link between cytokinin signaling and autophagy, demonstrating that plants modulate cytokinin sensitivity through autophagic regulation of type-A ARR proteins. Type-A ARR proteins were degraded by autophagy in an AUTOPHAGY-RELATED (ATG)5-dependent manner, and this degradation is promoted by phosphorylation on a conserved aspartate in the receiver domain of the type-A ARRs. EXO70D family members interacted with type-A ARR proteins, likely in a phosphorylation-dependent manner, and recruited them to autophagosomes via interaction of the EXO70D AIM with the core autophagy protein, ATG8. Consistently, loss-of-function exo70D1,2,3 mutants exhibited compromised targeting of type-A ARRs to autophagic vesicles, have elevated levels of type-A ARR proteins, and are hyposensitive to cytokinin. Disruption of both type-A ARRs and EXO70D1,2,3 compromised survival in carbon-deficient conditions, suggesting interaction between autophagy and cytokinin responsiveness in response to stress. These results indicate that the EXO70D proteins act as selective autophagy receptors to target type-A ARR cargos for autophagic degradation, demonstrating modulation of cytokinin signaling by selective autophagy.
Collapse
Affiliation(s)
| | - Carly Shanks
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
6
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
7
|
Zou M, Mu Y, Chai X, Ouyang M, Yu LJ, Zhang L, Meurer J, Chi W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res 2020; 48:3195-3210. [PMID: 32095829 PMCID: PMC7102989 DOI: 10.1093/nar/gkaa129] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.
Collapse
Affiliation(s)
- Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Mu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
9
|
Li K, Liu Z, Xing L, Wei Y, Mao J, Meng Y, Bao L, Han M, Zhao C, Zhang D. miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:66-81. [PMID: 30878839 DOI: 10.1016/j.plaphy.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/27/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Adventitious root (AR) formation is essential for the vegetative propagation of apple rootstocks. miRNAs play a significant role in regulating AR development, however, large-scale transcriptomic data on miRNA mediated AR formation in apple rootstocks is lacking. Therefore, in order to identify the molecular mechanisms underlying AR formation in 'M9-T337' apple rootstocks, transcriptomic changes occurring during key time points of AR formation (0, 3, and 16 days) were analyzed using high-throughput sequencing with a focus on miRNAs. A total of 84 known miRNAs and 56 novel miRNAs have differentially expressed were identified. Additionally, a total of 88 target genes of known miRNAs and 76 target genes of novel miRNAs were identified by degradome sequencing. The expression levels of the miRNAs and target genes were quantified by RT-qPCR. Results indicate that miRNAs and their target genes are associated with auxin signal-related (miR160 and miR390), stress response-related (miR398, miR395 and miR408), cell fate transformation-, proliferation- and enlargement-related (miR171, miR156, miR166, miR319 and miR396). These all involve pathways that participate in AR formation in 'M9-T337' apple rootstock. In addition, hormones (AUX, CTK, GA3, BR, JA, and ABA) are also involved in regulating AR formation. The candidate genes belonging to pathways associated with AR formation exhibited significantly higher expression levels, providing evidence that they may be involved in the regulation of AR development. The collective results of the present study indicate that the developmental process associated with AR formation in apple rootstock is extremely complex. The known and novel miRNAs and target genes that were identified by high-throughput and degradome sequencing, respectively, provide a framework for the future analysis of miRNAs associated with AR development in apple rootstocks, and provide new information that can be used to better understand AR development in woody plants.
Collapse
Affiliation(s)
- Ke Li
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Zhen Liu
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Libo Xing
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Yanhong Wei
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Jiangping Mao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Yuan Meng
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Lu Bao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Mingyu Han
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Caiping Zhao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
10
|
Chefdor F, Héricourt F, Koudounas K, Carqueijeiro I, Courdavault V, Mascagni F, Bertheau L, Larcher M, Depierreux C, Lamblin F, Racchi ML, Carpin S. Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:68-78. [PMID: 30466602 DOI: 10.1016/j.plantsci.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP.
Collapse
Affiliation(s)
- F Chefdor
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - F Mascagni
- Università di Pisa, Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Via del Borghetto 80, 56124 Pisa, Italy
| | - L Bertheau
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M L Racchi
- Scienze delle Produzioni Agroalimentari e dell'Ambiente, sezione di Genetica agraria, via Maragliano, 75 50144 Firenze, Italy
| | - S Carpin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France.
| |
Collapse
|
11
|
Huang Y, Zhao S, Fu Y, Sun H, Ma X, Tan L, Liu F, Sun X, Sun H, Gu P, Xie D, Sun C, Zhu Z. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:716-733. [PMID: 30101570 DOI: 10.1111/tpj.14062] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Inflorescence branching is a key agronomic trait determining rice yield. The primary branch of the ancestral wild rice (Oryza rufipogon Griff.) bears few grains, due to minimal secondary branching. By contrast, Oryza sativa cultivars have been selected to produce large panicles with more secondary branches. Here we showed that the CONTROL OF SECONDARY BRANCH 1 (COS1) gene, which is identical to FRIZZY PANICLE (FZP), plays an important role in the key transition from few secondary branches in wild rice to more secondary branches in domesticated rice cultivars. A 4-bp tandem repeat deletion approximately 2.7 kb upstream of FZP may affect the binding activities of auxin response factors to the FZP promoter, decrease the expression level of FZP and significantly enhance the number of secondary branches and grain yield in cultivated rice. Functional analyses showed that NARROW LEAF 1 (NAL1), a trypsin-like serine and cysteine protease, interacted with FZP and promoted its degradation. Consistently, downregulating FZP expression or upregulating NAL1 expression in the commercial cultivar Zhonghua 17 increased the number of secondary branches per panicle, grain number per panicle and grain yield per plant. Our findings not only provide insights into the molecular mechanism of increasing grain number and yield during rice domestication, but also offer favorable genes for improving the grain yield of rice.
Collapse
Affiliation(s)
- Yongyu Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yongcai Fu
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Hengdi Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zuofeng Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
13
|
Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, Wu Y. Arabidopsis Aspartic Protease ASPG1 Affects Seed Dormancy, Seed Longevity and Seed Germination. PLANT & CELL PHYSIOLOGY 2018; 59:1415-1431. [PMID: 29648652 DOI: 10.1093/pcp/pcy070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Seed storage proteins (SSPs) provide free amino acids and energy for the process of seed germination. Although degradation of SSPs by the aspartic proteases isolated from seeds has been documented in vitro, there is still no genetic evidence for involvement of aspartic proteases in seed germination. Here we report that the aspartic protease ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) plays an important role in the process of dormancy, viability and germination of Arabidopsis seeds. We show that aspg1-1 mutants have enhanced seed dormancy and reduced seed viability. A significant increase in expression of DELLA genes which act as repressors in the gibberellic acid signal transduction pathway were detected in aspg1-1 during seed germination. Seed germination of aspg1-1 mutants was more sensitive to treatment with paclobutrazol (PAC; a gibberellic acid biosynthesis inhibitor). In contrast, seed germination of ASPG1 overexpression (OE) transgenic lines showed resistant to PAC. The degradation of SSPs in germinating seeds was severely impaired in aspg1-1 mutants. Moreover, the development of aspg1-1 young seedlings was arrested when grown on the nutrient-free medium. Thus ASPG1 is important for seed dormancy, seed longevity and seed germination, and its function is associated with degradation of SSPs and regulation of gibberellic acid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sheng Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Ouyang M, Li X, Zhao S, Pu H, Shen J, Adam Z, Clausen T, Zhang L. The crystal structure of Deg9 reveals a novel octameric-type HtrA protease. NATURE PLANTS 2017; 3:973-982. [PMID: 29180814 DOI: 10.1038/s41477-017-0060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 10/23/2017] [Indexed: 05/25/2023]
Abstract
The high temperature requirement A (HtrA) proteases (also termed Deg proteases) play important roles in diverse organisms by regulating protein quality and quantity. One of the 16 Arabidopsis homologs, Deg9, is located in the nucleus where it modulates cytokinin- and light-mediated signalling via degrading the ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). To uncover the structural features underlying the proteolytic activity of Deg9, we determined its crystal structure. Unlike the well-established trimeric building block of HtrAs, Deg9 displays a novel octameric structure consisting of two tetrameric rings that have distinct conformations. Based on the structural architecture, we generated several mutant variants of Deg9, determined their structure and tested their proteolytic activity towards ARR4. The results of the structural and biochemical analyses allowed us to propose a model for a novel mechanism of substrate recognition and activity regulation of Deg9. In this model, protease activation of one tetramer is mediated by en-bloc reorientation of the protease domains to open an entrance for the substrate in the opposite (inactive) tetramer. This study provides the structural basis for understanding how the levels of nuclear signal components are regulated by a plant protease.
Collapse
Affiliation(s)
- Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shun Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hua Pu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jianren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y. Coordinated Functional Divergence of Genes after Genome Duplication in Arabidopsis thaliana. THE PLANT CELL 2017; 29:2786-2800. [PMID: 29070508 PMCID: PMC5728133 DOI: 10.1105/tpc.17.00531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
Gene and genome duplications have been rampant during the evolution of flowering plants. Unlike small-scale gene duplications, whole-genome duplications (WGDs) copy entire pathways or networks, and as such create the unique situation in which such duplicated pathways or networks could evolve novel functionality through the coordinated sub- or neofunctionalization of its constituent genes. Here, we describe a remarkable case of coordinated gene expression divergence following WGDs in Arabidopsis thaliana We identified a set of 92 homoeologous gene pairs that all show a similar pattern of tissue-specific gene expression divergence following WGD, with one homoeolog showing predominant expression in aerial tissues and the other homoeolog showing biased expression in tip-growth tissues. We provide evidence that this pattern of gene expression divergence seems to involve genes with a role in cell polarity and that likely function in the maintenance of cell wall integrity. Following WGD, many of these duplicated genes evolved separate functions through subfunctionalization in growth/development and stress response. Uncoupling these processes through genome duplications likely provided important adaptations with respect to growth and morphogenesis and defense against biotic and abiotic stress.
Collapse
Affiliation(s)
- Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Ehsan Sabaghian
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, VIB, B-9052 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
16
|
Huang G, Han M, Yao W, Wang Y. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida. PeerJ 2017; 5:e3382. [PMID: 28584713 PMCID: PMC5455292 DOI: 10.7717/peerj.3382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022] Open
Abstract
Gerbera hybrida is a cut-flower crop of global importance, and an understanding of the mechanisms underlying petal development is vital for the continued commercial development of this plant species. Brassinosteroids (BRs), a class of phytohormones, are known to play a major role in cell expansion, but their effect on petal growth in G. hybrida is largely unexplored. In this study, we found that the brassinolide (BL), the most active BR, promotes petal growth by lengthening cells in the middle and basal regions of petals, and that this effect on petal growth was greater than that of gibberellin (GA). The RNA-seq (high-throughput cDNA sequencing) technique was employed to investigate the regulatory mechanisms by which BRs control petal growth. A global transcriptome analysis of the response to BRs in petals was conducted and target genes regulated by BR were identified. These differentially expressed genes (DEGs) include various transcription factors (TFs) that were activated during the early stage (0.5 h) of BL treatment, as well as cell wall proteins whose expression was regulated at a late stage (10 h). BR-responsive DEGs are involved in multiple plant hormone signal pathways, hormone biosynthesis and biotic and abiotic stress responses, showing that the regulation of petal growth by BRs is a complex network of processes. Thus, our study provides new insights at the transcriptional level into the molecular mechanisms of BR regulation of petal growth in G. hybrida.
Collapse
Affiliation(s)
- Gan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meixiang Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Wang W, Cai J, Wang P, Tian S, Qin G. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biol 2017; 18:47. [PMID: 28270225 PMCID: PMC5341188 DOI: 10.1186/s13059-017-1178-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Proteases represent one of the most abundant classes of enzymes in eukaryotes and are known to play key roles in many biological processes in plants. However, little is known about their functions in fruit ripening and disease resistance, which are unique to flowering plants and required for seed maturation and dispersal. Elucidating the genetic mechanisms of fruit ripening and disease resistance is an important goal given the biological and dietary significance of fruit. RESULTS Through expression profile analyses of genes encoding tomato (Solanum lycopersicum) cysteine proteases, we identify a number of genes whose expression increases during fruit ripening. RNA interference (RNAi)-mediated repression of SlVPE3, a vacuolar protease gene, results in alterations in fruit pigmentation, lycopene biosynthesis, and ethylene production, suggesting that SlVPE3 is necessary for normal fruit ripening. Surprisingly, the SlVPE3 RNAi fruit are more susceptible to the necrotrophic pathogen Botrytis cinerea. Quantitative proteomic analysis identified 314 proteins that differentially accumulate upon SlVPE3 silencing, including proteins associated with fruit ripening and disease resistance. To identify the direct SlVPE3 targets and mechanisms contributing to fungal pathogen resistance, we perform a screening of SlVPE3-interacting proteins using co-immunoprecipitation coupled with mass spectrometry. We show that SlVPE3 is required for the cleavage of the serine protease inhibitor KTI4, which contributes to resistance against the fungal pathogen B. cinerea. CONCLUSIONS Our findings contribute to elucidating gene regulatory networks and mechanisms that control fruit ripening and disease resistance responses.
Collapse
Affiliation(s)
- Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China
| | - Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Peiwen Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China.
| |
Collapse
|
18
|
Redding K. Honoring Jean-David Rochaix. PHOTOSYNTHESIS RESEARCH 2017; 131:221-225. [PMID: 27671312 DOI: 10.1007/s11120-016-0308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
We honor Jean-David Rochaix, an outstanding scholar of chloroplast biogenesis and photosynthesis, who received the prestigious Lifetime Achievement Award of the International Society of Photosynthesis Research at its 17th International Photosynthesis Congress held in Maastricht, The Netherlands (August 5-12, 2016). With this award he joins other major discoverers in the field of photosynthesis: Pierre Joliot (of France, 2013); Ulrich W. Heber* (of Germany, 2010) and Kenneth Sauer (of USA, 2010); Jan M. Anderson* (of Australia, 2007); and Horst T. Witt* (of Germany, 2004). See "Appendix 1" for the list of those who have received the ISPR Communication, Innovation, Calvin-Benson, and Hill awards.
Collapse
Affiliation(s)
- Kevin Redding
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| |
Collapse
|